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We investigate the entanglement spectra arising from sharp real-space partitions of the system
for quantum Hall states. These partitions differ from the previously utilized orbital and particle
partitions and reveal complementary aspects of the physics of these topologically ordered systems.
We show, by constructing one to one maps to the particle partition entanglement spectra, that the
counting of the real-space entanglement spectra levels for different particle number sectors versus
their angular momentum along the spatial partition boundary is equal to the counting of states
for the system with a number of (unpinned) bulk quasiholes excitations corresponding to the same
particle and flux numbers. This proves that, for an ideal model state described by a conformal
field theory, the real-space entanglement spectra level counting is bounded by the counting of the
conformal field theory edge modes. This bound is known to be saturated in the thermodynamic
limit (and at finite sizes for certain states). Numerically analyzing several ideal model states, we
find that the real-space entanglement spectra indeed display the edge modes dispersion relations
expected from their corresponding conformal field theories. We also numerically find that the
real-space entanglement spectra of Coulomb interaction ground states exhibit a series of branches,
which we relate to the model state and (above an entanglement gap) to its quasiparticle-quasihole
excitations. We also numerically compute the entanglement entropy for the ν = 1 integer quantum
Hall state with real-space partitions and compare against the analytic prediction. We find that the
entanglement entropy indeed scales linearly with the boundary length for large enough systems, but
that the attainable system sizes are still too small to provide a reliable extraction of the sub-leading
topological entanglement entropy term.

PACS numbers: 03.67.Mn, 05.30.Pr, 73.43.-f

I. INTRODUCTION

Quantum information theory provides powerful tools
and perspectives for understanding and characterizing
quantum many-body systems. This is particularly true
for topologically ordered phases of matter. Such systems
possess profoundly entangled states and cannot be char-
acterized by local order parameters, so it is natural to an-
alyze and characterize them through their entanglement
properties. One of the most basic (quantum information
theoretic) tools for studying entanglement is entropy. If
a system in a pure state ρ is partitioned into two subsys-
tems A and B, then their entanglement entropy, i.e. the
von Neumann entropy

SA = SB = −Tr [ρA log ρA] = −Tr [ρB log ρB ] (1)

of either reduced density matrix ρA = TrB [ρ] or ρB =
TrA [ρ], is the unique measure of entanglement between
the two subsystems.

For a real-space partition of a gapped, two-dimensional
(2D) system, the leading order contribution to the en-
tanglement entropy obeys a “perimeter law”, i.e. it
is proportional to the length L of the boundary, with
a non-universal coefficient α, as L → ∞1–3. Kitaev
and Preskill4 and Levin and Wen5 showed that the sub-
leading, constant term of the entanglement entropy for
such a system in its ground state is a universal quan-
tity, which they called the “topological entanglement en-
tropy.” In particular, the entanglement entropy (for the

ground state) takes the form SA = αL−nγ, up to terms
that vanish in the limit L → ∞, where n is the number
of connected components of the boundary of A. Here,
γ = logD, where D ≥ 1 is a quantity known as the “to-
tal quantum dimension,” which is characteristic of the
system’s topological order and equal to 1 only for trivial
topological order (i.e. a gapped system with no anyonic
excitations)48.

Quantum Hall systems are, so far, the most studied
and only experimentally realized topologically ordered
phases. Most observed Hall plateaus are expected to be
Abelian quantum Hall states6–10 with quasiparticles that
have fractional charge and exchange (braiding) statis-
tics11. However, some of the observed plateaus in the
second Landau12–15, most notably: ν = 5/2 and 12/5,
are expected to host non-Abelian states16–20, which pos-
sess quasiparticles with non-Abelian braiding statistics21.
These non-Abelian states have recently received much in-
terest due to their potential application for topologically-
protected fault-tolerant quantum computation22–25.

The entanglement entropy depends on the way the sys-
tem has been partitioned. Until now, two kinds of bipar-
tite partitions have been applied to fractional quantum
Hall (FQH) states: the orbital (or momentum) parti-
tion26, for which A consists of the first lA orbitals (on
the sphere or torus) while B consists of the remaining
ones and the particle partition27, for which A consists of
the first NA particles and B consists of the N −NA re-
maining ones. A third partition, the real-space partition,
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for which A is a spatial region and B is the complement of
A, has been applied to the integer quantum Hall (IQH)
states28, which can be treated analytically. These dif-
ferent partitions provide access to different properties of
the state. Using an orbital partition as an approximation
of a real-space partition (which was argued to be a rea-
sonable approximation, since the orbitals are Gaussian
localized), Haque et al.26 have numerically extracted the
expected value γ = 1

2 ln 3 for the ν = 1/3 Laughlin state.
However, the extraction of the topological entanglement
entropy (using the orbital partition) in numerical studies
has proven to be far less reliable for anything but the sim-
plest model wavefunctions, in particular for the Coulomb
Hamiltonian ground states29.

Even though the topological entanglement entropy can
provide significant information regarding the topological
order of a system, it is not able to uniquely identify it. In
Ref. 4, Kitaev and Preskill provided an additional heuris-
tic derivation of the topological entanglement entropy, in
which they suggested that the reduced density matrix ρA
for a disk-like region A can be used to define a Hamilto-
nian

HA ≡ − log ρA (2)

which, for a topologically ordered system, would be natu-
ral to regard as the Hamiltonian of a (1 + 1)-dimensional
conformal field theory (CFT) corresponding to the edge
of the system, at least for the purposes of determining the
universal contribution to the entanglement entropy. In
an effort to develop a more discriminating tool for iden-
tifying the topological order of a system (particularly for
non-Abelian FQH states), Li and Haldane30 proposed ex-
amining the (low-lying portion of the) spectrum of the fic-
titious Hamiltonian HA ≡ − log ρA, which they dubbed
the “entanglement spectrum” (ES), versus the quantum
numbers of the available symmetries in the problem.

For both the Moore-Read (MR) model state16 and the
ground state of the ν = 5/2 Coulomb interaction, Li and
Haldane30 plotted the ES versus LzA, the quantum num-
ber of angular momentum along the z-axis for subsystem
A. For computational expediency, they used the orbital
partition, assuming that, since the orbital basis states are
Gaussian localized, this would give a good approxima-
tion to the real-space partition. They found that the ES
matched the expected MR CFT [i.e. Ising x U(1)] edge
mode counting at the lowest pseudo-energies. Given this
numerical observation, they suggested (along the lines
of Kitaev and Preskill’s statement) that the counting
of the low lying ES levels would match the CFT edge
mode counting for all quantum Hall states (up to some
limit, which grows with the system size). This obser-
vation is even more remarkable if one realizes that for
generic states the number of entanglement levels should
saturate the Hilbert space dimension, a number expo-
nentially larger than the number of CFT edge modes.
Renormalization group arguments supporting this con-
jecture have been given in Ref. 31, whereas Ref. 32 proved
that the number of levels of the orbital partition ES is

0

5

10

15

20

8 10 12 14 16 18 20 22 24

(a) ν = 1/3

x

0

5

10

15

20

36 38 40 42 44 46 48 50 52

(b) ν = 2/3

x

FIG. 1: (a) The OES for the ν = 1/3 Laughlin state with
N = 8 and NA = 4. (b) The OES for the ν = 2/3 particle-
hole conjugate of the ν = 1/3 Laughlin state with N = 14 and
NA = 7. The two spectra are mirror images of each other:
the ν = 1/3 spectrum contains a chiral mode, moving upward
towards the left, while the ν = 2/3 spectrum contains an anti-
chiral mode, moving upward towards the right. The counter-
propagating boson mode that should appear in the ν = 2/3
state’s edge mode spectra does not appear in the OES for the
same reason the ν = 1 integer quantum Hall state exhibits
trivial OES, i.e. the OES probes only the “interacting” part
of the wavefunction. (We note that the degeneracy between
states at LzA = 24, 23 for ν = 1/3 spectrum is a detail due
to the fact that, for this particular partition, the two states
enjoy an ~L symmetry, which is not present for some other
partition cuts, nor for the bosonic version of this state.)

bounded from above by the number of the CFT edge
modes, thereby proving a large part of the conjecture. In
the absence of accidental reductions of the rank of the
density matrix, this bound should be saturated.

However, since the orbitals have non-zero support
across the entire sphere (or plane), the orbital partition
entanglement spectra (OES) will not precisely match the
real-space partition entanglement spectra (RES). A sim-
ple example of this mismatch is provided by the ν = 1
IQH state, for which the ground-state wavefunction is
the fully filled n = 0 Landau level. An easy inspection
reveals that the ground state ρ is a product state in the
orbital basis and, hence, ρA is a pure state for any or-
bital bi-partition (where all NA orbitals in subsystem A
are filled) of this system. Consequently, the ES (and,
hence, the entanglement entropy) is trivial, consisting of
exactly one level, rather than exhibiting the edge CFT.
On the other hand, the edge mode counting is expected
to be that of a U(1) CFT (i.e. a free chiral boson). The
RES has been computed analytically for non-interacting
states28,33, which is done by filling up the levels of a
single-particle spectrum (an easily obtainable quantity).
For such states, the RES was found to agree with the
edge CFT, with a linearly scaling entanglement entropy.
Additional examples of the mismatch between the OES
and RES are provided by particle-hole conjugation34 of
quantum Hall states (such as the ν = 2/3 state obtained
from the ν = 1/3 Laughlin state by particle-hole conju-
gation). The OES of a state is exactly the mirror image,
up to a constant shift for LzA, of that of its particle-hole
conjugate state, see Fig. 1 for the ν = 1/3 and ν = 2/3
Laughlin state example. The RES is expected (from the
edge CFT) to be given by a combination of the mirror
modes with an additional mode propagating counter to
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these. In a sense, the orbital partition only probes the
“interacting” part of the state and is not sensitive to the
presence of the (non-interacting) integer-filled portion of
a quantum Hall state.

In this paper, we examine the ES of quantum Hall
states using real-space partitions, both on the sphere and
on the disk geometry. The paper is organized as follows:
In Section II, we provide the general formalism for calcu-
lating real-space partition reduced density matrices. In
Section II A, we specialize the formalism to (bosonic and
fermionic) quantum Hall states. In Section II B, we show
that the RES is related to the particle partition entan-
glement spectrum (PES)35 through a one to one map.
For quantum Hall states described by a CFT, i.e. with
trial wavefunctions generated by conformal blocks, this
proves that the RES level counting is bounded by the
CFT edge mode level counting. Moreover, it proves that
this bound is saturated in the thermodynamic limit for
such states and at finite sizes for some states. We expect
that the bound will also be saturated at finite sizes by all
such states. (This is supported by our numerical results.)
In Section III, we numerically analyze several important
examples. In particular, we analyze the ν = 1 IQH state,
the ν = 1/3 Laughlin state and its ν = 2/3 particle-
hole conjugate state, and the ν = 1 bosonic MR state,
which all have RES that exhibit the structures expected
from the corresponding CFTs. We also analyze the RES
of the ground-states of realistic Coulomb Hamiltonians
and find that they exhibit the same low-lying levels as
the corresponding model states believed to describe their
universality classes. The RES of ground states of these

Hamiltonians also exhibit several other branches, besides
that of the model states’, in the higher ES levels. In Sec-
tion IV, we relate these higher branches to non-Abelian
quasielectron-quasihole excitations of the system for the
case of the ν = 5/2 Coulomb state. In Section VI, we an-
alyze the RES for the Laughlin model state as we change
the geometry of the manifold from the disk to the annulus
to show how the edges of the sample influence the RES.
In Section V, we analyze the RES of the MR state with
quasiholes. We show that, when a non-Abelian quasihole
crosses the partition boundary, the RES exhibits a sharp
change corresponding to the change of topological sec-
tors of the CFT edge mode. Finally, in Section VII, we
compute the entanglement entropy using the spatial par-
tition for the ν = 1 IQH state to verify the validity of the
entanglement entropy perimeter law and try to extract
the topological entanglement entropy. While we find the
entanglement entropy scales linearly with the length of
the boundary (for long boundary length), but are unable
to reliably compute the topological entanglement entropy
even for this simple case. This shows that determining
the topological entropy directly from numerics without
using prior knowledge about the state is not currently
possible.

II. REAL-SPACE ENTANGLEMENT
SPECTRUM

We consider a pure, N particle state with wavefunction
Ψ and a bipartite real-space partition into regions A and
B. The (normalized) density matrix is

ρ(r1, . . . , rN ; r′1, . . . , r
′
N ) =

Ψ∗(r1, . . . , rN )Ψ(r′1, . . . , r
′
N )∫ N∏

i=1

d2ri |Ψ(r1, . . . , rN )|2
. (3)

(We allow for unnormalized wavefunctions, but the density matrices and reduced density matrices throughout this
paper are properly normalized to have unit trace.) The reduced density matrix ρA, obtained by tracing out the

degrees of freedom in region B, will commute with N̂A, the number operator of particles in region A, so the density
matrix is block diagonal in sectors of different NA, which can be considered separately. In particular,

ρA =

N∑
NA=0

pNA ρNA(r1, . . . , rNA ; r′1, . . . , r
′
NA), (4)

where

pNA =

(
N

NA

)∫
A

NA∏
i=1

d2ri

∫
B

N∏
j=NA+1

d2rj ρ(r1, . . . , rN ; r1, . . . , rN ) (5)
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is the probability of the reduced system having NA electrons in region A with (normalized) density matrix

ρNA(r1, . . . , rNA ; r′1, . . . , r
′
NA) =

∫
B

N∏
j=NA+1

d2rj ρ(r1, . . . , rNA , rNA+1, . . . , rN ; r′1, . . . , r
′
NA , rNA+1, . . . , rN )

∫
A

NA∏
i=1

d2ri
∫
B

N∏
j=NA+1

d2rj ρ(r1, . . . , rN ; r1, . . . , rN )

=
1

pNA

(
N

NA

)∫
B

N∏
j=NA+1

d2rj ρ(r1, . . . , rNA , rNA+1, . . . , rN ; r′1, . . . , r
′
NA , rNA+1, . . . , rN ) (6)

where the coordinates of the NA remaining particles are restricted to region A (and the NB = N − NA particles
confined to region B have been traced out). We note that if ρ is a product of (identical) single-particle states, then

pNA =
(
N
NA

)
pNAA (1−pA)N−NA , where pA is the probability for any one of the particles to be in region A, is a binomial

distribution (which becomes a Gaussian distribution as N → ∞). In the rest of the paper, we will work with the
density matrix ρNA of a specific NA subspace, and leave the coordinates implicit when the context is clear.

A. Quantum Hall States

A general bosonic or fermionic quantum Hall wavefunction for N particles in the lowest Landau level with total
z-axis angular momentum Lztot along the z-axis can be expressed as linear combinations of Fock states of single
particle orbitals: Ψ =

∑
λ cλMλ. Here λ = (λ1, . . . , λN ) is a length N partition of Lztot, i.e., ‖λ‖ ≡

∑
i λi = Lztot and

λi ≥ λi+1. The normalized symmetric monomial (for bosonic systems) or Slater determinant (for fermionic systems)
that has orbital occupation corresponding to the partition λ is given by

Mλ =
1√

N !
∏
m

[nm(λ)]!

∑
σ∈SN

ε(σ)

N∏
i=1

φλσ(i)
(ri), (7)

where SN is the permutation group of N objects, ε(σ) = (±1)σ is equal to 1 for bosonic systems or the signature
of the permutation σ for fermionic systems, nm(λ) is the number of occurrences of the integer m in the partition λ,
corresponding to an occupation of the mth orbital (which are all equal to 0 or 1 for the fermionic case), and

φm(r) =


1√

2π2mm!
zme−

1
4 |z|

2

plane√
(Nφ+1)!

4πm!(Nφ−m)!

[
cos(θ/2)eiϕ/2

]m [
sin(θ/2)e−iϕ/2

]Nφ−m
sphere

(8)

is the single particle orbital with Lz eigenvalue m on the plane with coordinates z = x+ iy (where m = 0, 1, . . .), or
with Lz eigenvalue m−Nφ/2 of the sphere with polar coordinates (θ, ϕ) and Nφ flux quanta through the surface of
the sphere (where m = 0, 1, . . . , Nφ). The functions Mλ form a set of orthonormal free many-body states.

Using Eq. (6), we can derive the expression of the reduced density matrix for the real space partition as a function
of the coefficients cλ:

ρNA =
1

pNA

(
N

NA

)∑
λ,λ′

c∗λcλ′

N∏
j=NA+1

∫
B

d2rjM∗λMλ′

=
1

pNANA!NB !

∑
λ,λ′

c∗λcλ′√∏
m

[nm(λ)]! [nm(λ′)]!

∑
σ,τ∈SN

ε(σ)ε(τ)

NA∏
i=1

φ∗λσ(i)
(ri)φλ′

τ(i)
(r′i)

×
N∏

j=NA+1

∫
B

d2rjφ
∗
λσ(j)

(rj)φλ′
τ(j)

(rj). (9)

To proceed further, we need to specify the spatial regions A and B. While a generic integration domain can certainly
be used, we want to minimize our computational burden and also be able to compare the resulting ES with that of
previous approaches. For these reasons, we chose to use domains that are rotationally invariant around the z-axis,
which preserves the Lz symmetry. The projection on the z-axis of the angular momentum for the particles in region
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A, LzA, was key in identifying the model state structure within the ES of realistic system30. On the plane, we take
region A to be the disk-shaped domain centered at the origin with radius R (i.e. the region r < R). On the sphere, we
take A to be the cap centered at the north pole up to azimuthal angle Θ (i.e. the region θ < Θ). For such domains,
the integrals of Eq. (9) will lead to a vanishing contribution unless λσ(j) = λ′τ(j) for all j = NA + 1, . . . , N . This

ensures that [ρA, L̂
z
A] = 0 and, thus, ρA is also block-diagonal in LzA sectors. To write ρNA more explicitly, we use the

property

Mλ(r1, . . . , rN ) =
∑
µ,ν

〈µ;ν〉=λ

ε(µ,ν)

(
NA!NB !

N !

∏
m

[nm(λ)]!

[nm(µ)]! [nm(ν)]!

) 1
2

Mµ(r1, . . . , rNA)Mν(rNA+1, . . . , rN ) (10)

where µ are lengthNA partitions, ν are lengthNB partitions, we define 〈µ;ν〉 to be the ordered partition with elements
µ1, . . . , µNA , ν1, . . . , νNB , we define ε(µ,ν) = ε(σ) for σ ∈ SN such that (λσ(1), . . . , λσ(N)) = (µ1, . . . , µNA , ν1, . . . , νNB )

for λ = 〈µ;ν〉 (i.e. σ−1 is the permutation needed to combine µ and ν into an ordered, length N partition), and
the sum is over all such partitions that can be combined to give the partition λ (i.e. µ and ν are subjected to the
constraint 〈µ;ν〉 = λ). We also define

FB(m) =

∫
B

d2r |φm(r)|2 =


Q(m+ 1, R

2

2 ) plane

Icos2(Θ
2 )(m+ 1, Nφ −m+ 1) sphere

(11)

to be the norm-squared of the orbitals restricted to region B, where Q(a, x) = Γ(a, x)/Γ(a) is the regularized incom-
plete gamma function and Ix(a, b) = B(x; a, b)/B(a, b) is the regularized incomplete beta function. This allows us to
write

ρNA =
∑

µ,µ′;ν

R∗µ,νRµ′,νM∗µMµ′ (12)

Rµ,ν =
1

√
pNA

c〈µ;ν〉ε(µ,ν)

√∏
m

[nm(〈µ;ν〉)]!
[nm(µ)]! [nm(ν)]!

√√√√NB∏
j=1

FB(νj). (13)

We note that this indicates that the RES will weight the different orbitals according to the overlaps of orbitals in the
traced out region B.

We can also write this in terms of LzA sectors as

ρNA =

Lztot∑
LzA=0

p(LzA|NA)ρNA,LzA (14)

ρNA,LzA =
1

p(LzA|NA)

∑
µ,µ′

‖µ‖=‖µ′‖=LzA

∑
ν

‖ν‖=LzB

R∗µ,νRµ′,νM∗µMµ′ (15)

where p(LzA|NA) is the conditional probability of the re-
duced system A having angular momentum LzA, given
that it has NA particles, and pNA,LzA = p(LzA|NA)pNA is
the probability that the reduced system A has NA parti-
cles and angular momentum LzA.

We emphasize that the coordinates are restricted to
the region A and so one might want to write the reduced
density matrices in terms of basis states that are normal-

ized on region A. Defining

φAm(r) =
φm(r)√

1−FB(m)
(16)

MA
µ =

Mµ√∏NA
i=1 [1−FB(µi)]

(17)

RAµ,ν =

√√√√NA∏
i=1

[1−FB(µi)] Rµ,ν (18)

it is clear that we can simply substitute these in for their
corresponding quantities in the above equations. Using
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MA
µ to define orthonormal basis states |µA〉 for subsys-

tem A, we can thus write the density matrix operator
as

ρ̂NA =
∑

µ,µ′;ν

RA∗µ,νR
A
µ′,ν |µ′A〉 〈µA| . (19)

In other words, the density matrix elements in this basis
are

[ρ̂NA ]µ′,µ =
∑

µ,µ′;ν

RA∗µ,νR
A
µ′,ν = [RARA†]µ′,µ (20)

where on the right hand side we are treating RA as a
matrix with row indices µ and column indices ν.

It is worth pointing out a distinction between the or-
bital and real-space partitions that generally appears in
the probability distribution pNA of having NA particles
in subsystem A. As the (non-interacting) IQH states
are product states, the probabilities pNA form a bino-
mial distribution. On the other hand, applying an or-
bital partition to an IQH state gives pNA = δNA,Norb

A
,

where Norb
A is the total number of orbitals comprising

subsystem A. More generally, one expects the interact-

ing quantum Hall ground states to exhibit a probabil-
ity distribution pNA that is qualitatively similar for the
real-space partition, i.e. a nearly binomial distribution

peaked around NA ≈ fAN where fA = area(A)
area(A∪B) . Simi-

larly, the probability distribution for the orbital partition
will be sharply peaked around NA ≈ fAN , where here

fA =
Norb
A

Norb
A +Norb

B

, and will drop to exactly zero for values

of NA beyond some range away from fAN , as dictated
by the squeezing properties of the state.

B. Relation between real-space partition and
particle partition entanglement spectra

We can now demonstrate that there is a one to one
map between the RES and the PES of an arbitrary N
particle state |Ψ〉. For a particle partition of the system

into subsystems Ã and B̃ comprised of NA and NB par-
ticles, respectively, the reduced density matrix operator
for subsystem Ã is obtained by removing NB particles,
irrespective of their position in space. This is given by

ρÃ(r1, . . . , rNA ; r′1, . . . , r
′
NA) =

∫ N∏
j=NA+1

d2rj ρ(r1, . . . , rNA , rNA+1, . . . , rN ; r′1, . . . , r
′
NA , rNA+1, . . . , rN ) (21)

where the domains of the integrals and the coordinates of the remaining particles are the entire physical space of
the system. We notice, apart from normalizations and the difference of domains of the integrations and remaining
coordinates, this has a form similar to ρNA of Eq. (6), so it should be clear that the two can be related.

Using the decomposition of Eq. (10), we can write the wavefunction Ψ =
∑

λ cλMλ as

Ψ =
∑
µ,ν

〈µ;ν〉=λ

c〈µ;ν〉ε(µ,ν)

(
NA!NB !

N !

∏
m

[nm(〈µ;ν〉)]!
[nm(µ)]! [nm(ν)]!

) 1
2

Mµ(r1, . . . , rNA)Mν(rNA+1, . . . , rN ). (22)

Applying the particle partition, the reduced density matrix operator’s elements are given simply by

[ρ̂Ã]µ′,µ =
∑
ν

c∗〈µ;ν〉c〈µ′;ν〉ε(µ,ν)ε(µ′,ν)
NA!NB !

N !

(∏
m

[nm(〈µ;ν〉)]! [nm(〈µ′;ν〉)]!
[nm(µ)]! [nm(µ′)]! ([nm(ν)]!)

2

) 1
2

= [PP †]µ′,µ (23)

where we have defined the matrix P with elements

[P ]µ,ν = c〈µ;ν〉ε(µ,ν)

√
NA!NB !

N !

(∏
m

[nm(〈µ;ν〉)]!
[nm(µ)]! [nm(ν)]!

) 1
2

(24)

with row indices µ and column indices ν. Comparing this to ρ̂NA in Eq. (20), we can define the
diagonal matrices Q and S with elements

[Q]ν,ν′ =

√√√√ 1

pNA

(
N

NA

) NB∏
j=1

FB(νj) δν,ν′ (25)
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and

[S]µ,µ′ =

√√√√NA∏
i=1

[1−FB(µi)] δµ,µ′ (26)

to give us the relation RA = SR = SPQ. Within the
many-body basis, the calculations of the RES can now
be done numerically in a way similar to the calculations
of PES.

Since Q and S are diagonal with no zeroes on the diag-
onal, RA, R, and P have the same rank. Consequently,
the reduced density matrix operators ρ̂Ã of the particle
partition and ρ̂NA of the real-space partition in the NA
sector have the same rank. It is clear that this also holds
when one restricts to a particular LzA or Lz

Ã
sector. How-

ever, it is worth mentioning that, on the sphere, the total
angular momentum L2

A of subsytem A is a good quantum
number for the PES, but is not a good quantum num-
ber for the RES and the OES. This gives a one to one
mapping between the levels of the RES and the PES. For
states described by a CFT, the counting of the PES levels
per momentum sector was shown to equal the counting
of states for the system with unpinned bulk quasiholes
corresponding to the same number of particles NA and
orbitals Nφ + 135. It has been proven for such quantum
Hall states that this counting of states with quasiholes
is bounded by the level counting of the corresponding
CFT edge modes35. Moreover it has been proven that
this bound is saturated in the thermodynamic limit for
all such quantum Hall states and also at finite sizes for
Laughlin states36. Thus, we have proven that the RES
level counting of such model states similarly satisfies and
saturates the bound by the CFT edge mode counting.

III. EXAMPLES

A. ν = 1 Integer Quantum Hall

As a first example, we consider the ν = 1 IQH state.
In the orbital basis, this state can always be written as
a tensor product |111 . . . 11〉 = |11〉A ⊗ |1 . . . 11〉B where
|111 . . . 11〉 means that each one of the Nφ + 1 = N or-
bitals is occupied by exactly one electron. Thus, for any
orbital partition, its OES always consists in a single state
(see inset of Fig. 2), which does not correspond to its ex-
pected edge mode. This shortcoming is averted by the
use of the real-space partition. As shown in Fig. 2, the
RES exhibits a linear dispersion relation. (Note that all
our entanglement spectra are displayed for NA = N/2,
which is the one that contains the largest amount of in-
formation.) As expected, the counting in each (NA, L

z
A)

sector is given by the counting of states for a number un-
pinned bulk quasiholes corresponding to the same quan-
tum numbers. This equals the number of ways to put
NA particles in Nφ+1 orbitals such that the sum of their
orbital numbers equals LzA. Note that the RES for the
ν = 1 state exhibits a chiral structure of levels.
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FIG. 2: The RES of the ν = 1 slater state for N = 11 particles
with NA = 5. The sphere was partition into two hemispheres
(Θ = π/2). Inset: The OES for the same state (NA = 5).

The spread of the levels at each LzA scales to zero in
the thermodynamic limit, as can be seen in Fig. 3a, and
the spectrum has a linear shape reminiscent of a (rela-
tivistic) CFT edge theory’s energy dispersion. As such,
we can compute the RES’s “edge velocity,” which is the
overall slope of the entanglement spectrum. The cal-
culation uses the following procedure: We partition the
system into two hemispheres (Θ = π/2) and focus on
NA = N/2, so that the filling factor in A is identical to
that of the original system. We then plot the mean value
of ξL for a given LzA sector as a function of 1/N . From
these values, we subtract the zero momentum energy ob-
tained at the maximal value of LzA. If RES mimics the
edge mode’s true energy spectrum in the thermodynam-
ical limit, the extrapolated values of ξL should be equal
to 2πv(max[LzA]−LzA) when N →∞, where v is the edge
mode velocity. The extrapolation, shown in Fig. 3b, gives
an extracted velocity of v = 2.254(3).

B. ν = 1/3 Fractional Quantum Hall

We next consider the ν = 1/3 Laughlin state (Fig. 4a).
As expected, the counting of the RES levels is given by
the counting of the quasiholes states of NA particles in
Nφ+ 1 orbitals at momentum LzA. The RES of this state
is chiral and exhibits more pronounced non-linearities
than the RES of the ν = 1 IQH state, but should be-
coming increasingly linear as the thermodynamical limit
is approached, as shown in Fig. 5. Notice that similar re-
sults have already been obtained for the OES in Ref. 37.

C. ν = 2/3 Fractional Quantum Hall

The RES is also able to exhibit the full edge mode
structure of particle-hole conjugate states, which com-
bine chiral and anti-chiral edge modes. In Fig. 6, we
plot the RES of the ν = 2/3 particle-hole conjugate of
the Laughlin state. Unlike the OES (see Fig. 1), the
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FIG. 3: (a) Spread in RES levels vs. 1/N for different LzA
sectors for Θ = π/2. An even-odd particle number effect is
observed, and the spread of the levels vanishes in the ther-
modynamic limit. (b) Value of the zero-spread ES-levels (as
shown in (a), the spread of the levels for each LzA vanishes in
the thermodynamic limit, which means that all the entangle-
ment levels at a particular LzA collapse to the same value; this
value is the zero-spread-ES level) extrapolated at the thermo-
dynamic limit. Here n = max[LzA]− LzA. The velocity of the
edge mode is v = 2.254(3).

structure of the RES reveals the presence of both a chi-
ral and an anti-chiral modes. Starting from the maximal
value of LzA, the entanglement levels first have an over-
all anti-chiral shape with negative velocity, followed by
an overall chiral shape with positive velocity. In finite
size samples, the two modes cover different total ranges
of LzA (see Fig. 6) due to the different compactification
radii of the U(1) CFTs in this model. At intermedi-
ate values of LzA, the two modes combine in finite size,
and their counting matches that of two mixed chiral and
anti-chiral branches. Even though the RES can detect
the presence of counter-propagating modes, it is not reli-
able in pining down the topological order of particle-hole
conjugate FQH states. For example, given the RES of
Fig. 6, and no other information, we could immediately
see that the state has counter-propagating edge modes,
but could not infer that the state is the particle-hole con-
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FIG. 4: The RES of (a) the ν = 1/3 Laughlin state and
(b) the ν = 1/3 Coulomb interaction ground state, both for
N = 8 particles with NA = 4, on a sphere partitioned into
two hemispheres (Θ = π/2).

jugate of the ν = 1/3 Laughlin state. This is due to the
fact the spectrum is filled with levels obtained by excit-
ing some number of chiral and anti-chiral modes. How-
ever, having earned the information that the state has
counter-propagating modes, we could now plot the OES
of the ν = 2/3 state, which would give us the mirror-
image of the ν = 1/3 Laughlin OES (see Fig. 1). The
two pieces of information allow one to identify the state
as the particle-hole conjugate of the ν = 1/3 Laughlin
state.

D. ν = 1 Bosonic Moore-Read State

We have also computed the RES for non-Abelian quan-
tum Hall states. While the study of the ν = 5/2 is highly
relevant for FQH in experimental systems, we will focus
on the simpler analog that occurs for ν = 1 bosonic sys-
tems. The fermionic ν = 5/2 state involves the second
(n = 1) Landau level, which would require to use the
corresponding one-body wavefunctions, instead of those
displayed in Eq. (8). The ν = 1 bosonic case is still a
purely lowest Landau level problem. This system is also
relevant for rapidly rotating ultra-cold atomic gases38.
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FIG. 5: (a) The spread in ES levels vs 1/N for different LzA
sectors, using Θ = π/2. An even-odd particle number effect
is observed, and the spread of the levels vanishes in the ther-
modynamic limit. (b) The zero-spread ES levels extrapolated
at the thermodynamic limit. Here n = max[LzA] − LzA. The
even-odd effect is just a consequence of NA being the integer
part of N/2. The velocity of the edge mode is v = 1.41(5).
Such value would be compatible with a rescaling of the ν = 1
edge mode velocity with a factor 1/

√
3.
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FIG. 6: The RES of the ν = 2/3 particle-hole conjugate of
the Laughlin state for N = 14, NA = 7, and Θ = π/2.

For such systems, the physics is similar to that of FQH

systems, except with bosons rather than electrons, and
replacing the Coulomb interaction with the short range
(two-body) delta-function interaction. There are several
numerical studies that indicate this ν = 1 bosonic system
is accurately described by the bosonic MR state39–41.

The RES for the bosonic MR is shown in Fig. 7a. As
expected, its level counting matches that of the CFT
edge mode counting. The corresponding RES for the
delta-function interaction is depicted in Fig. 7b. There
is a clear entanglement gap and the low-lying branch has
counting, shape, and values almost identical to those of
the bosonic MR state. The structure of the spectrum
above the gap will be analyzed in the following section.

IV. HIGHER LEVELS IN THE
ENTANGLEMENT SPECTRA

Similar to the situation for the OES, the RES of the
Coulomb interaction ground state at ν = 1/3 (shown
in Fig. 4b) exhibits the same low-lying structure as
the RES for the ν = 1/3 Laughlin state. Additional
branches are also clearly observed in the higher ES levels.
These branches form what was thought to be the “non-
universal” part of the Coulomb ES and are absent in the
Laughlin model state ES. Similar to Ref. 42 for OES,
we find that the RES branches of the Coulomb interac-
tion ground-state are organized in a hierarchical struc-
ture that mimics the excitation-energy structure of the
model pseudopotential Hamiltonian that has its ground
state given by the Laughlin state. These structures can
be accurately modeled using quasihole-quasielectron ex-
citation wavefunctions. The study of Ref. 42 can be re-
peated here for the RES, with similar results.

The non-Abelian states also exhibits a series of higher
energy branches that mimic the excitation-energy struc-
ture of the model pseudopotential Hamiltonian that
has its ground state given by the MR state. These
structures can be accurately modeled using the non-
Abelian quasihole-quasielectron wavefunctions described
in Ref. 43 (these excitations can be obtained by tak-
ing two layers of Laughlin ν = 1/2 states, forming
quasielectron-quasihole excitations in these layers, then
symmetrizing over the electron coordinates between the
layers), and the results are presented in Fig. 7.

V. REAL SPACE ENTANGLEMENT
SPECTRUM OF QUASIHOLE EXCITATIONS

We analyze the change in the RES for the MR state as
a non-Abelian quasihole is taken from the north pole to
the south pole across the real-space partition boundary.
The evolution of the OES under this operation was an-
alyzed in Ref. 44. The RES transformation is similar to
that of the OES. Partitioning the system in real space at
Θ = π/2, for the state with two quasiholes at the north
pole in the vacuum (I) channel (equivalently, one Abelian
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FIG. 7: The RES of (a) the ν = 1 bosonic MR state, (b) the
Delta interaction ground state, and (c) an approximate state
of Delta interaction ground state involving up to 2-quasihole-
2-quasielecton excitations for N = 12 particles with NA = 6.
The sphere was partitioned into two hemispheres (Θ = π/2).

quasihole sits at the north pole), we see an entanglement
spectrum that mimics that of the pure MR ground-state,
with the counting 1, 1, 3... (see Fig. 8). Taking one of
these non-Abelian quasiholes across the sphere to the
south pole brings us to the state with one quasihole at
the north pole and one at the south pole. The counting
in the RES is now 1, 2, 4... which is the that of the MR
state with a σ charge on the edge. The change in the
counting occurs when the particle crosses the partition
boundary.
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FIG. 8: (a) The RES for the (ν = 1 bosonic) MR state with
N = 14 and one Abelian quasihole at the north pole. The
wavefunction for this configuration is the Jack polynomial
with root partition 02020202020202. (b) The RES for the
MR state with N = 14 and one non-Abelian quasihole at the
north pole and one non-Abelian quasihole at the south pole.
The wavefunction for this configuration is the Jack polyno-
mial with root partition 11111111111111. For both of these,
the sphere was partitioned into two hemispheres (Θ = π/2)
and the particle sector is NA = 6.

VI. REAL SPACE ENTANGLEMENT
SPECTRUM ON THE ANNULUS

We now analyze the evolution of the RES when the ge-
ometry of the sample is altered from the disk to the thin
annulus. The annulus represents the geometry of the so-
called “conformal limit”37 for the OES, in which one no-
tices a complete separation of the low-lying model-state
universal ES levels from the high-lying non-universal lev-
els, for the Coulomb ground states of bosons at ν = 1/2
and 1 and fermions at ν = 1/3 and 5/2. We start from
the filled disk and then proceed to insert a large number
of quasiholes in order to reach the thin annulus limit. For
a state of fixed number of particles (we work withN = 8),
this pushes the FQH liquid into an annulus of thickness
∆R = N/(2πRµ). For R → ∞, the radial spatial ex-
tent of the annulus vanishes, the partition boundary is
close to both edges of the annulus, and the entanglement
spectrum is influenced by the presence of the annulus
edges. This gives rise to the chiral and antichiral spectra
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FIG. 9: Evolution of the RES with the changing of sample
geometry from the disk to the thin annulus. (a) The RES for
the Laughlin state with N = 8 for the disk geometry, with a
cut at radius R =

√
Nφ. The RES exhibits the usual chiral

structure. (b) The RES for the Laughlin state on a thick
annulus, obtained by inserting 20 quasiholes at the origin.
Note that the spectrum has flattened from the case of the
disk. (c) The RES for the Laughlin state on the thin annulus,
obtained by inserting a infinite number of quasiholes at the
origin. The spectrum has a flat portion, sandwiched between
a chiral and anti-chiral region (see the blue and green arrows)
of states corresponding to the edge modes on the two sides of
the annulus.

in Fig. 9.
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FIG. 10: Comparison between the entanglement entropy us-
ing the real-space partition and the orbital partition for the
ν = 1/2 bosonic Laughlin state with N = 11 particles.

VII. ENTANGLEMENT ENTROPY

Using the real-space partition, we have computed the
entanglement entropies for different model states in order
to numerically verify the perimeter law and extract the
value of the topological entanglement entropy. We com-
pared the entanglement entropy obtained using a real-
space partition with that obtained using an orbital par-
tition, for the bosonic ν = 1/2 Laughlin state. As can be
seen in Fig. 10, the difference between these can be quite
substantial.

We have also attempted to numerically verify the for-
mula of Ref. 28 for the entanglement entropy of the ν = 1
IQH state in the thermodynamical limit: SA ' cvL − γ
with a geometry-dependent cv = 0.203 and γ = 0. For
various boundary lengths L we compute the entangle-
ment entropy for up to N = 20 particles, then calculate
the thermodynamic value using a polynomial fit in 1/N ;
this gives the thermodynamic limit of the entanglement
entropy for a boundary of length L. The estimated val-
ues and their errors are plotted in Fig. 11 along with a
linear fit, with only L > 10 values taken into account, of
these data and the theoretical prediction for the L � 1
regime. The linear fit of our data gives γ = 0.241(5),
which is not compatible with the expected value γ = 0.
However, the difference between our data and the analyt-
ical values vanishes for large L (see inset of Fig. 11). This
indicates that, even for this very simple and ideal case,
we are not able to reliably extract the value of the topo-
logical entanglement entropy without prior knowledge of
its value (which would allow informed, but biased deci-
sions on what data to keep) for the attainable system
sizes in numerical studies. This casts doubt on prior nu-
merical studies that claim to have extracted values of γ
that match the theoretical predictions.
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of the boundary between the two subspaces. The red Xs are
the (thermodynamic limit extrapolation of the) entanglement
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is a linear fit of the entanglement entropies for L > 10. The
solid blue line is the analytical result from Ref. 28 that is
valid in the L large limit. In the inset, we show the difference
between the analytical and numerical values.

VIII. CONCLUSIONS

In this paper we have analyzed the entanglement spec-
trum for a sharp, real-space partition of the space in
which a FQH liquid exists. We have showed that the
RES is intimately related (through diagonal transforma-
tions involving geometry dependent normalization fac-
tors) to the PES and that, in particular, the two en-
tanglement spectra have identical level counting. This
counting is bounded by the number of CFT edge mode
levels of the particular model state analyzed. It has been
proven that this bound is saturated in the thermody-
namic limit for these states and also at finite sizes for
some of these states. We expect that the bound is satu-
rated at any finite size for all model states described by a
CFT, and have numerically confirmed this for all sizes ex-
amined. We have also shown that the RES offers comple-
mentary information to the OES. In particular, the RES
exhibits the expected (gapless) CFT edge spectra, even
for the ν = 1 filled Landau level (IQH) state, and also re-
veals the presence of counter-propagating edge modes in

particle-hole conjugate states, both of which fail to show
up in the OES. For Coulomb states at fractional filling,
the RES exhibits an entanglement gap and a series of
higher entanglement energy branches whose level count-
ing is in one-to one correspondence with that of the hier-
archical quasihole-quasielectron excitations of the model
state. This is similar to the information given by the
OES; however, in the latter case, a full entanglement gap
completely separating the low entanglement energy, uni-
versal levels from the spurious level, can sometimes exist
by going to the conformal limit. In the case of the RES
an entanglement gap exists only for the very few first lev-
els of the spectrum. We have also analyzed the behavior
of the RES as a non-Abelian quasihole is taken from the
north pole to the south pole, passing across the partition
boundary. The RES exhibits a change in its counting as
the quasihole crosses the boundary, corresponding to the
change between different topological sectors of the CFT
(i.e. different topological charge on the boundary). Fu-
ture research will focus on the real-space partitioning on
the torus, on which the OES was investigated in Ref. 45
and the PES in Ref. 35.

Note added : During the completion of this manuscript,
we learned of similar unpublished works46,47.
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K. W. West, Phys. Rev. Lett. 105, 246808 (2010).

16 G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
17 S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys.

Rev. Lett. 99, 236807 (2007).
18 M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett.

99, 236806 (2007).
19 N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).
20 P. Bonderson and J. K. Slingerland, Phys. Rev. B 78,

125323 (2008).
21 P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B 83,

075303 (2011).
22 A. Y. Kitaev, Annals of Physics 303, 2 (2003).
23 M. H. Freedman, Proc. Natl. Acad. Sci. USA 95, 98 (1998).
24 M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang,

Bull. Amer. Math. Soc. 40 (2003).
25 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
26 M. Haque, O. Zozulya, and K. Schoutens, Phys. Rev. Lett.

98, 060401 (2007).
27 O. S. Zozulya, M. Haque, K. Schoutens, and E. H. Rezayi,

Phys. Rev. B 76, 125310 (2007).
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45 A. M. Läuchli, E. J. Bergholtz, J. Suorsa, and M. Haque,

Phys. Rev. Lett. 104, 156404 (2010).
46 J. Dubail, N. Read, and E. Rezayi, unpublished.
47 I. D. Rodriguez, S. H. Simon, and J. K. Slingerland, un-

published.
48 The total quantum dimension D ≡

√∑
a d

2
a, where da

are the quantum dimensions of the anyonic charge types
that can exist in the corresponding TQFT that describes
the long-distance physics of the topologically ordered sys-
tem. It is also related to the dimension of the ground-
state subspace Hg for the system on a genus g surface
by dimHg = CgD2g−2, with 1 ≤ Cg ≤ D2 for all g. For
a Z2-graded TQFT, i.e. a topological spin theory, which
are relevant for the description of fermionic quantum Hall
states, the anyonic charges come in Z2 doublets (e.g. the
vacuum and the electron charges form a doublet), so one

should use D̃ = D/
√

2 as the total quantum dimension of
the Z2-graded theory, in order to count each Z2 anyonic
charge doublet only once.


