
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Approximate theory of temperature coefficient of resistivity
of amorphous semiconductors

Ming-Liang Zhang and D. A. Drabold
Phys. Rev. B 85, 125135 — Published 29 March 2012

DOI: 10.1103/PhysRevB.85.125135

http://dx.doi.org/10.1103/PhysRevB.85.125135


BM11793

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Approximate Theory of Temperature Coefficient of Resistivity of Amorphous
Semiconductors

Ming-Liang Zhang and D. A. Drabold
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701

In this paper, we develop an approximate theory of the temperature coefficient of resistivity (TCR)
and conductivity based upon the recently proposed Microscopic Response Method. By introducing
suitable approximations for the lattice dynamics, localized and extended electronic states, we produce
new explicit forms for the conductivity and TCR, which depend on easily accessible material parame-
ters. The theory is in reasonable agreement with experiments on a-Si:H and a-Ge:H. A long-standing
puzzle, a “kink” in the experimental log10 σ vs. 1/T curve, is predicted by the theory and attributed
to localized to extended transitions, which have not been properly handled in earlier theories.
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I. INTRODUCTION

The temperature coefficient of resistivity (TCR) of
an amorphous semiconductor (AS) is not only an im-
portant quantity in transport theory, but also a critical
parameter controlling the sensitivity of uncooled mi-
crobolometers employed in thermal imaging “night vi-

sion” applications1,2.
The conventional approach to transport coefficients

is the kinetic method (Boltzmann or master equations
etc.). However, this is not applicable even to crys-
talline semi-metals and semiconductors (the so-called
Landau-Peierls criterion)3–5. Comparing to metals, the
low carrier concentration in these materials results in a
lower kinetic energy of carriers. Thus neither the elas-
tic scattering by disorder, nor the inelastic scattering by
a phonon has a well-defined transition probability per

unit time3–5. In AS, the strong electron-phonon inter-
action of localized states requires a reorganization of the
vibrational configuration for any transition involving lo-
calized state(s)6,7. For these intrinsic multi-phonon tran-
sitions, the energy conservation between initial and fi-
nal electronic states (a basic condition of Fermi’s golden

rule)3–5, is violated more seriously than that for single-
phonon emission and absorption.
In addition, transitions between localized and ex-

tended states (LE and EL) are not treated adequately in

a kinetic approach. The Miller-Abrahams theory8 and
its extensions suppose that LE and EL transitions do not
directly contribute to conduction, and only maintain the
distribution of carriers between localized states and ex-
tended states in thermal equilibrium (when an external
electric field is absent) or in the non-equilibrium sta-
tionary state (when an external field is present). Elec-
trical conduction is fulfilled by the transition from a lo-
calized state to another localized state (LL) and the tran-
sition from an extended state to another extended state
(EE)1,2,9. The theory of phonon-induced delocalization
and the theory of transient current excited by photon
have heuristically estimated conductivity from LE and
El transitions.

Rigorous expressions for the conductivity and Hall
mobility in AS have been obtained in the microscopic

response method (MRM)7,10. These expressions require
transition amplitudes rather than transition probability

per unit time11. Thus the long-time limit required in a

kinetic approach3,4 is avoided. To the lowest order self-
consistent approximation, there are 29 processes con-
tributing to conductivity and 10 processes contributing

to Hall mobility7. For example, in a n-dopedAS the con-
ductivity from LE transitions driven solely by an exter-

nal field is7

{
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where the real part takes the upper sign, imaginary part
the lower sign. Ωs is the physical infinitesimal volume
element used to take spatial average. An AS can be
viewed as uniform when we measure its properties (e.g.

conductivity) at a linear length scale larger than12 10nm.
If we take Ωs as a sphere with a radius larger than 5nm,
then the choice of the center s of Ωs inside the AS will
not affect7,10 σαβ. Ne is the number of carriers in the con-
duction band inside Ωs, and f is the Fermi distribution
function. The velocity matrix elements in Eq.(1) are de-
fined by

vα
BA = − ih̄

m

∫

d3xχ∗
B(r)

∂

∂xα
φA(r−RA), (2)

and

wα
AB = − ih̄

m

∫
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∂

∂xα
χ∗
B(r), (3)

where E0
A and φA are the eigenvalue and eigenfunction

of localized state A. We will use letter Awith or without
a natural number subscript to denote a localized state,
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similarly E0
B and χB are the eigenvalue and eigenfunc-

tion of extended state B. IB1A± arise from integrating out
the vibrational degrees of freedom, and are functions of
external field frequency ω:

IB1A±(ω) = exp{−1

2 ∑
α

coth
βh̄ωα

2
(θAα )

2}

×
∫ 0

−∞
dseis(±ω+ωAB1

)

exp{1
2 ∑

α

(θAα )
2[coth

βh̄ωα

2
cos sωα − i sin sωα]}, (4)

where ωAB = (E0
A − E0

B)/ℏ, ωα is the frequency of

the αth (α = 1, 2, · · · 3N ) normal mode, N is num-
ber of atoms inside Ωs. Denote ΘA

α as the shift in

the origin of the αth mode induced by the electron-

phonon (e-ph) interaction in a localized state6,7 A, θA
α =

ΘA
α (Mαωα/h̄)1/2. To make the narration specific, we

hereafter discuss conduction band transport only. For
transport processes in the valence band, one may repeat
the discussion mutatis mutandis.
To calculate conductivity strictly, one needs (i) the

eigenvalues and eigenvectors of single-electron states
and (ii) the eigenfrequencies and eigenvectors of the
normal modes and the electron-phonon coupling. These
can be approximately obtained by one step of ab ini-
tio molecular dynamics for an optimized configuration.
Then one can compute (i) vα

BA for all localized states and

extended states; (ii) θAα for all normal modes in each lo-
calized states; (iii) time integrals IB1A± for a given ω;
and (iv) sum over all localized states and extended states
∑AB. Although the result obtained in this way should
be accurate and predictive, it is useful to develop an
approximate theory, which also provides functional de-
pendence of transport on various material parameters.
In this paper, we will first present a tractable model

for the conductivity and Hall mobility in AS. Then we
will use this model to simplify the conductivity expres-
sions obtained in the MRM for the three simplest tran-
sitions: LL, LE and EL transitions driven solely by ex-
ternal field, cf. Fig. 2a, 2b and 6a of [7]. The conduc-
tivity from EE transition caused by disorder has been

solved in the coherent potential approximation13,14, ex-
hibits weak temperature dependence, and we will not
consider it further.
The outline of the paper is as following. In Sec.II

we describe our approximation for the lattice vibra-
tions and e-ph in coupling. In Sec.IIIA, we first il-
lustrate that the MRM conductivity can be put in the
customary form of relaxation time approximation and
of Greenwood formula. At moderately high tempera-
ture, we invoke an asymptotic expansion to simplify the
time integrals IB1A±. Under the approximations intro-
duced in Sec.II, one can (i) obtain the velocity matrix

TABLE I: Parameters for vibrational spectrum

B(GPa) µ(GPa) c(103m/s) kD(Å
−1) ρm(g/cm

3)

a-Si12,16,17 100 52 6.21 1.44 2.33

a-Ge12,16,17 75 41 3.08 1.38 5.33

elements analytically; (ii) partially carry out the two-
fold summations over the initial and final electronic
states. The conductivity from EL transitions is obtained
in Sec.III B. The conductivity from LL transitions is cal-
culated in Sec.IIIC. The matrix elements of electronic
velocity could be carried out in a spherical coordinate
system analytically. The conductivity from the LE tran-
sitions is the same order of magnitude as those from the
LL transitions. Below a crossover temperature T∗, the
later is larger; above T∗, the former is larger. This phe-
nomenon is the main reason for the kink in the experi-
mental log10 σ vs. 1/T curve. As a demonstration, the
numerical results for n-doped a-Si:H and a-Ge:H sam-
ples are given.

II. APPROXIMATE IMPLEMENTATIONOFMRM

A. Vibrations

To calculate the e-ph interaction for a localized state,
we need the transformation matrix between the atomic
displacements and normal modes6. Because most amor-

phousmaterials are isotropic1,2 and only acoustic modes
are important for the e-ph interaction in one component

semiconductors15, one can use the acoustic dispersion
relation for the vibrational spectrum:

ωk = ck, k = |k| (5)

where ωk is the angular frequency for any mode char-
acterized by wave vector k. For every k, there are one
longitudinal and two transverse modes. We will use kτ
to label a normal mode, where τ = 1, 2, 3 is the index of
phonon branches18. Although translational invariance
is destroyed in AS, standing wave modes are still well-
defined. Here, c is the average speed of sound:

3

c3
=

2

c3t
+

1

c3l
, (6)

where ct and cl are the speeds of transverse and longitu-

dinal waves which are determined by18 the bulk mod-
ulus B and shear modulus µ. The cutoff wave vector

kD = (6π2na)1/3 is determined by the number density
na = N/V of atoms, where V is the volume of an AS,
N is total number of atoms19. na can be inferred from
the observed mass density ρm. For a-Si and a-Ge, ρm,

B, µ9,12, kD and c are listed in Table I. For a-Si, the De-

bye frequency ωD is 8.91× 1013Hz, not far from the ob-

served cut-off frequency20 70meV= 1.07× 1014Hz.
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It is convenient to use {x3(j−1)+1, x3(j−1)+2, x3(j−1)+3}
to represent the vibrational displacement vector uj =

{ujx, ujy, ujz} for the jth atom (j = 1, 2, 3 · · ·N ). Denote

Θα(α = 1, 2, · · · , 3N ) as the normal coordinate of the αth

mode, so that the atomic displacements and the normal
modes are related by

xm = ∑
α

∆mαΘα, m = 1, 2, · · · , 3N (7)

where ∆ is the minor of the determinant |Λjl − ω2Mjδjl|
(j, l = 1, 2, 3 · · ·3N ), Λ is the force constant matrix21.
When we use kτ to label modes, ∑α → ∑kτ.
For a localized state, the shifts in the origins of normal

modes caused by the e-ph interaction are the key quan-
tities to determine the reorganization energy for transi-

tions involving the localized state6. The shift in origin is

determined6 by Λ−1, ∆ and the e-ph coupling constant.

Λ−1 and ∆ are complicated for a system with many

atoms. To avoid using Λ−1 and find a more practical ∆,
we use a continuum to model the discrete random net-
work of AS. In a continuum one can classify the atomic
vibrations according to possible standing wave modes.
There is no reciprocal lattice for AS. Because a contin-
uum is isotropic and has continuous translational sym-
metry, the wave vectors of the possible standing waves
(k points) is uniformly distributed in the wave vector
space (Debye sphere SD). TheN k-points inside SD cor-
respond to 3N vibrational modes.
The atomic displacement u at position R and time t

satisfies the wave equation

1

c2
∂2u(R, t)

∂t2
= ∇2u(R, t). (8)

The plane wave solution of Eq.(8) is19

u(R, t) =
1

N 1/2 ∑
kτ

eik·RekτΘkτe
−i(tck+ϕkτ), (9)

where ekτ is the polarization vector of mode kτ. For a

one-component system19,

ekτ · e∗kτ′ = δττ′ . (10)

Θkτ and ϕkτ are the amplitude and phase of mode kτ,
and are determined by the initial conditions. The in-
verse of Eq.(9) is

Θkτe
−i(tck+ϕkτ) =

1

N 1/2 ∑
R

u(R, t) · e∗kτe
−ik·R. (11)

The normal coordinate of mode kτ is Θkτe
−i(tck+ϕkτ), so

that

∆u(R),kτ = N−1/2eik·Rekτ, (12)

and

(∆−1)kτ,u(R) = N−1/2e−ik·Re∗kτ. (13)

TABLE II: Parameters for electronic state

Ec(eV) U(meV) nloc(Å
−3) Z ε qTF(Å

−1) b

a-Si 0.5[30] 50[31] 5/10.863[32] 4 11.68 1.7 0.121

a-Ge 0.5 51 5/11.323 4 16 1.7 0.170

In other words, the u(R)th column of matrix ∆−1 is

the (kτ)th eigenvector belongs to the (kτ)th eigen-

value (ωkτ)
2 = (ck)2 of the matrix of force constants.

Eqs.(12,13) as consequences of Eq.(8) is contained in the
Debye assumption (5).

B. Localized states

To obtain analytical expressions for the e-ph interac-
tion in a localized state and the velocity matrix elements,
we need reasonable and simple approximate wave func-
tions for localized and extended states. We assume all
localized states are spherically symmetric. The differ-
ence among localized states is expressed by the localiza-

tion length2. For a localized state A, denote RA as the
position vector of the center, the normalized wave func-
tion is

φA(r− RA) = π−1/2ξ−3/2
A e−|r−rA|/ξA , (14)

where r and ξA are the coordinate of electron and local-
ization length22. Following Mott, ξA is determined by

the eigenvalue E of localized state φA
22:

ξE =
bZe2

4πǫ0ε
(Ec − E)−1, (15)

where Z is the effective nuclear charge of an atom core,
ε is the static dielectric constant. Ec is the mobility edge,
b is a dimensionless constant. b is determined by the
shortest possible localization length ξmin with E = 0.
Realistic calculations of tail states are given in [23–27].

The parameters1,12 for electron-core interaction and
localized state are listed in Table II. In a-Si:H and a-
Ge:H1,12, the most localized states are associated with
dangling bonds. The localization length is one half the
average bond length: ξmin = 2.35Å/2 and 2.45Å/2. Us-
ing Eq.(15), one has b = 0.121 and 0.170. The measured

value of mobility edge for a-Si is rather dispersed28,29:

0.2-2eV: we will take30 Ec = 0.5eV. Fig.1 plots local-
ization length vs. eigenenergy, we purposely left out a
small neighborhood [Ec − U, Ec) of E, where U is the
Urbach energy for band tail. When ξE is larger than the

linear size of a physical infinitesimal volume element16

(∼100Å), the corresponding localized state acts like an
extended state for purpose of transport.
There is a distinction between a large polaron and a

carrier in a weakly localized state with ξ several tens
of Å. A large polaron can move freely before meeting
a scatterer, while a localized carrier in AS is trapped in
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the region where φA has support. To make a localized
carrier move, thermal activation involving a reorganiza-

tion of vibrational configuration is necessary6.
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FIG. 1: Localization length as function of energy, 1(a): a-Si;
1(b): a-Ge.

Because (i) no translational invariance exists in an AS;
and (ii) a localized electronic state is confined in some
finite region, the spatial distribution of localized states
needs special attention. For various macroscopic prop-
erties, an AS can be viewed as isotropic and uniform at a

length scale larger than16 10nm (this effectively defines
the physical infinitesimal volume element Ω). Therefore
it is convenient to describe the spatial distribution of lo-
calized states in a spherical coordinate system. For a
given origin and polar axis, the sum over localized states
A1 can be changed into an integral over a combined spa-
tial and energetic distribution of localized states:

∑
A1

→
∫ Rc

0
R2dR

∫ π

0
sin θdθ

∫ 2π

0
dφ

∫ Ec

−∞
dE f (R, θ, φ; E),

(16)
where R is the distance between the origin and the cen-
ter RA1

of a localized state φA1
, Rc is the radius of an

AS sample, f (R, θ, φ; E) is the number of localized states
in a volume element defined by (R, R+ dR), (θ, θ + dθ)
and (φ, φ + dφ) with energy (E, E+ dE), i.e. position de-
pendent density of states. Since a volume element with
a linear size of 10nm is representative for an AS, in the

calculation of transport coefficients, one may replace the
volume V of the entire AS sample with the volume Ω of
a physical infinitesimal volume element. Then Rc is the
radius of Ω.
In a physical infinitesimal volume Ω, various possible

atomic configurations appear according to the proper
statistical weights which would be found in a much

larger sample. Therefore the coarse-grained average f
of f (R, θ, φ; E) over such a physical infinitesimal volume

element is no longer position dependent: f = N(E),
where N(E) is the usual density of states. However the
weight factors in Eq.(16) play an important role in deter-
mining transport properties. The reason is that although

f is independent of (R, θ, φ), the transition amplitudes
(velocity matrix elements) depend on the relative posi-
tion of another localized state or on the wave vector di-
rection of the involved extended state.
For many AS33,34, in the range of band tail, the density

of localized states satisfies

f (R, θ, φ; E) = N(E) =
nloc
U

e−(Ec−E)/U, (17)

where U is the Urbach energy, nloc is the number of lo-
calized states per unit volume. The pre-exponential fac-
tor is determined from the requirement that the integral
of N(E) over all localized energy spectrum should be
nloc. In general Ec andU take different values for the va-

lence band and the conduction band34. Denote n as the
carrier concentration, the Fermi energy EF of a weakly
doped AS is:

EF = Ec +U ln(n/2nloc), (18)

When n ≤ 2nloc, all occupied states are localized at
T= 0K. For a-Si, the conduction band energy spectrum
(17) is illustrated in Fig.2. We can see from Fig.1(a) and

0.1 0.3 0.5 0.7
0

20

40

60

80
90

E (eV)

N
(E

)

E
c
=0.5eV

extended
 states

E
F
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FIG. 2: Density of states of the conduction tail for n-doped a-Si
samples: the first three vertical lines are the Fermi energy for

n = 1019, 1020 and 1021 cm−3. The rightmost vertical line is
the mobility edge.

Eq.(17) that most localized states in a-Si have a localiza-
tion length in the range 6-12Å. In approximation (17),
the density of states N(E) of localized states reaches its
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maximum at Ec. Therefore, the most probable localiza-

tion length is ξ = cZe2/(4πǫ0εU). For a-Si, ξ = 11.75Å.

This is consistent with various experiments35–41.
Making use of relation (15), the integral over the en-

ergy eigenvalues of localized states is converted into an
integral over localization lengths:

∫ Ec

−∞
dEAN(EA) → (19)

bZe2nloc
4πǫ0εU

∫ ∞

0

dξ

ξ2
exp(− bZe2

4πǫ0εUξ
).

Comparing Eq.(16) with the sum over states ∑k →
∫

BZ
Vd3k
(2π)3

in a crystal is helpful, where k is the wave vec-

tor of a Bloch state in Brillouin zone, V is volume of the
crystal. The matrix elements behind ∑k may depend on

the direction of k, d3k = k2dk sin θkdθkdφk takes into ac-
count the dependence on the two wave vectors of two
Bloch states.

C. Extended states

If one imagines that an AS is obtained from deform-
ing its reference crystal, an extended state in the AS can
be viewed as a superposition of a principal Bloch wave
with a given wave vector and its scattered secondary

waves42,43. The scattered waves are produced by scat-
tering the principal Bloch wave with the disorder poten-
tial (the difference between the potential energy in the

AS and that in its reference crystal)42,43. Excepting the
EE transitions driven by external field, we may approx-
imate an extended state χB1

(r) by a plane wave with
certain momentum p, and its eigenenergy is that of the
plane wave:

χB1
= V−1/2eip·r/h̄, EB1 = p2/2m, (20)

where V is the volume of AS sample, the energy zero-
point of extended states is at the mobility edge Ec. An
extended state in an AS is labeled by the wave vector of
its principal Bloch wave. The sum over extended states

becomes an integral over momentum: ∑B1
→

∫ Vd3p

(2πh̄)3
.

D. Interaction between a carrier and an atomic core

In a solid, the attraction to an electron from an
atomic core may be crudely approximated by a screened

Coulomb potential19

V(r) =
Ze2

4πǫ0ε

e−qTFr

r
, (21)

where r is the position of electron relative to an atomic

core. qTF = 2.95(rs/a0)
−1/2Å−1 is the Thomas-Fermi

wave vector, is determined by the carrier density. rs/a0
is a number about 2 to 6. For a-Si:H1 and a-Ge12, we take
the value for c-Si and c-Ge: qTF = 1.7Å−1.

E. Electron-phonon coupling in a localized state

We consider the mean e-ph interaction in a localized
state φA. The e-ph interaction Hamiltonian is

He-ph = ∑
nσ

unσ
∂V(r−Rn)

∂Xnσ
, σ = x, y, z, (22)

where Rn (Xnx,Xny,Xnz) is the position vector of the

nth atom, unσ is the σth Cartesian component of vibra-

tional amplitude of the nth atom. Usually the average e-
ph interaction in state φA is written in a linear coupling

form44

∫

d3xφ∗
A(r−RA)He-phφA(r− RA) = −∑

nσ

unσg
A
nσ,

(23)
where gAnσ is the e-ph coupling constant in state φA. Be-
cause we consider only localized state φA, it is conve-
nient to shift the origin of coordinate to the center RA of
φA. In Eq.(22), we sum over all the atoms in V of an AS
sample. In addition, the factors V(r − Rn) and φA(r −
RA) in the integrand of Eq.(23) involve two atoms, di-
rectly integrating over coordinate is difficult (requiring
ellipsoidal coordinate system). To obtain the coupling

constant gAnσ, we Fourier transform ∂V(r−Rn)/∂Xnσ in
the LHS of Eq.(23), first carry out the integral in coordi-
nate r, then execute the integral over wave vector q. The
final result is:

gAnσ =
16(Ze2/4πǫ0ε)

ξ4
Xnσ

R2
n
{Rn

2

e−2Rn/ξ

q2TF − (2/ξ)2

+[
qTFe

−qTFRn − (2/ξ)e−2Rn/ξ

[(2/ξ)2 − q2TF]
2

− ξ

8

e−2Rn/ξ

q2TF − (2/ξ)2
]

+
1

Rn
[
e−qTFRn − e−2Rn/ξ

[(2/ξ)2 − q2TF]
2

− ξ2

16

e−2Rn/ξ

q2TF − (2/ξ)2
]}, (24)

where Rn = |Rn − RA| is the distance between the

nth atom to the center RA of localized state φA. The
first term decays exponentially, the second and the third

term contain additional decay factors R−1
n and R−2

n re-
spectively. Since we are concerned only with localized
state φA, hereafter we drop the subscript A on ξ and g.

F. Polaron formation

The static displacements of atoms induced by the e-ph
interaction measure the strength of e-ph interaction and
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determine whether the e-ph coupling should be treated
as a perturbation or be included in the zeroth order

Hamiltonian6. The static displacement of themth atomic
degree of freedom caused by the e-ph interaction in lo-

calized state φA is6

xA0m = ∑
p

(Λ−1)mpg
A
p , m, p = 1, 2, · · · 3N , (25)

where Λ−1 is the inverse of force constant matrix. The
shift ΘA

α in origin of the αth (α = 1, 2, · · · 3N ) mode by

the carrier localized in state φA is6

ΘA
α = ∑

m

(∆−1)αmx
A0
m . (26)

This has the physical interpretation of the polaronic re-
laxation due to the e-ph coupling.

If Λ−1 and ∆−1 were known analytically, we could use

Eq.(25) to find {xA0m }, and then use Eq.(26) to find {ΘA
α }.

The continuum model in Sec.IIA allows us to first find
the shifts in origins {ΘA

α } of normal modes in a localized

state. Then static displacements {xA0m } can be obtained
from Eq.(7). In the continuummodel, the normal modes
are labeled by wave vectors k. Substitute Eq.(25) into

Eq.(26), notice ∆−1Λ−1 = W−1∆T , where (W−1)αβ =

δαβM
−1
α ω−2

α , one concludes that

ΘA
kτ = M−1

k ω−2
k ∑

nσ

gAnσ∆nσ,kτ, (27)

where n = 1, 2, 3 · · ·N and σ = x, y, z. Substituting
Eq.(12) into Eq.(27) and replacing the sum by an integral
over all space, Eq.(27) becomes

ΘA
kτ =

Re∑σ

∫

V d3XgARσe
σ
kτe

ik·R

N 1/2Mkω2
kΩa

, (28)

where Ωa = V/N is the average volume occupied by

one atom. For a-Si and a-Ge12,19, Ωa ≈ (5.43Å)3/4 and

(5.66Å)3/4. Eq.(28) expresses the shift ΘA
k in the ori-

gin of normal mode k with the e-ph coupling constant

gAnσ. We take k as the polar axis (z axis) and transform to
a spherical coordinate system, because the integrand of

Eq.(28) does not contain azimuthal angle φ, {gAnx} and

{gAny} do not contribute to ΘA
kτ. Only when gA

n has a

component along k, does it contribute to ΘA
kτ. The in-

tegrations over the R−2 and R−3 terms in Eq.(24) are

purely imaginary, and do not contribute to ΘA
k . The ori-

gin shift of mode kτ induced by the e-ph interaction in
localized state φA is:

ΘA
kτ =

1

N 1/2Mk2c2
27πZe2/(4πǫ0εΩaξ

5)

[q2TF − (2/ξ)2][(2/ξ)2 + k2]2
. (29)

Because we take AS to be an isotropic continuous

medium, ΘA
kτ depends only on the magnitude k. The

k−2 divergence in Eq.(29) when k → 0 is caused by
the Debye spectrum (ωk = ck). In a Debye model,
the number of modes per unit volume per unit angu-

lar frequency interval is19 (2π2c)−13k2 when k < kD.
The shift is smaller for higher wave number, decays

with wave vector k as [(2/ξ)2 + k2]−2. Because for all
materials19 qTF ∼ 1.2− 2.1Å−1, while ξ > 2Å for local-

ized states caused by topological disorder22, the factor

[q2TF− (2/ξ)2] in the denominator of Eqs.(24,29,31,34,37)
will not lead to a divergent result.

Eq.(29) exhibits two obvious features: (i) ΘA
k > 0

for every mode k; (ii) if ξA1
< ξA2

, then Θ
A1
k > Θ

A2
k

for every mode k. We have shown that three-state
conduction processes which are first order in residual
interactions, are the same order of magnitude as the

two-states processes discussed here7. Also, in the low-
est order self-consistent approximation, three- and four-
state processes must be included in the Hall mobility

calculation7. Some of the aforementioned transport pro-
cesses involve at least two localized states. To carry out
asymptotic expansion at high temperature for such pro-
cesses, the features (i) and (ii) are essential.
The static atomic displacements in localized state A

can be found from Eqs.(26,29):

x0Aσ (R) =
N 1/2Ωa

(2π)3

3

∑
τ=1

∫

d3keik·RΘA
kτe

σ
kτ. (30)

Next, substitute Eq.(29) into Eq.(30) and carry out the in-

tegral. One finds the displacement x0A along the radial
direction for an atom at R caused by e-ph interaction in
a localized state:

x0A(R) =
4

Mc2
Z∗e2/4πǫ0ε

ξ[q2TF − (2/ξ)2]

1− 1
2 e

−2R/ξ

R
, (31)

where we have let kD → ∞ to obtain an analytic re-
sult. It is interesting to notice that Eq.(31) is similar to
the wave function of large polaron in strong coupling
limit, cf. pp513-523 of [15].
Fig.3(a) is an illustration of Eq.(31) for a-Si at ξ =

11.75Å and 23.50Å (5 and 10 times bond length). We
observe that the more localized (smaller ξ) the state, the
larger the atomic displacements, i.e. the stronger e-ph
interaction (larger atomic displacements). This agrees

with previous experiments and simulations45,46. For

the hardest mode20 ω = 70meV of a-Si, the amplitude

A0 =(h̄/Mω)1/2 of zero-point vibration is 0.046Å, the

amplitude Ath =(kBT/Mω2)1/2of thermal vibration at
300K is 0.028Å. Considering these two peaks of the a-

Si phonon spectrum are at20 20 meV (A0 = 0.086Å,
Ath = 0.098Å) and 60 meV (A0 = 0.050Å, Ath =
0.033Å), the static displacements of atoms estimated in
Eq.(31) are twice the amplitude of vibrations. Compar-
ing the rootmean square of bond length fluctuation 0.2Å
(geometric disorder) from ab initio molecular dynamics
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FIG. 3: 3(a): Static displacements x0(r) of atoms in a localized
state φA as function of the distance r to the center of φA in a-

Si: solid line is for ξ = 11.75Å, circle line is for ξ = 23.5Å.
The displacements are larger in a more localized state. 3(b):
The binding energy caused by e-ph interaction as function of
localization length. The binding energy is larger for a more
localized state.

simulation23, the approximate acoustic dispersion rela-
tion Eq.(5) somewhat overestimates the long wave con-
tribution in Eqs.(28,29,30,31).

G. Reorganization energy

Unlike a carrier in an extended state, a carrier in a lo-
calized state is confined by the disorder potential. Be-

yond that, the e-ph interaction produces6 an additional

binding energy EA
b to a localized carrier in φA:

EA
b =

1

2 ∑
α

Mαω2
α(Θ

A
α )

2. (32)

Because the reorganization energy measures the energy
shift from initial vibrational configuration to the final vi-

brational configuration, EA
b is the same as6 the reorgani-

zation energy λBA of LE transition φA → χB and the
reorganization energy λAB of EL transition χB → φA:

λAB = λBA = EA
b . For the continuous medium model,

the sum over modes in Eq.(32) may be converted to an

integral over the Debye sphere in spherical coordinate
system (k, θ′, φ′):

λAB =
NΩa

2(2π)3

3

∑
τ=1

∫ kD

0
dkk2× (33)

∫ π

0
dθ′ sin θ′

∫ 2π

0
dφ′Mk2c2(ΘA

kτ)
2.

Owing to spherical symmetry in Eq.(33), the direction of
polar axis is arbitrary. Substituting Eq.(29) into Eq.(33)
and carrying out the integral, one finds:

λAB = 2π
(27πZ∗e2/4πǫ0ε)2ξ

27Mc2Ωa[(ξqTF)2 − 4]2
(34)

×{15
48

tan−1 kDξ

2
+

kDξ[1+ ( kDξ
2 )2]−1

12
×

([1+ (
kDξ

2
)2]−2 +

5

4
[1+ (

kDξ

2
)2]−1 +

15

8
)}.

Fig.3(b) displays the change in binding energy with lo-
calization length. We can see that more localized states
have larger binding energy. In other words, when a car-
rier leaves or enters a more localized state, the required
reorganization energy is larger, the corresponding LE
and EL transitions are more hindered.
The reorganization energy λA2A1

for LL transition

φA1
→ φA2

satisfies a reciprocity condition6 λA1A2
=

λA2A1
, where

λA2A1
=

1

2 ∑
α

Mαω2
α(Θ

A2
α − Θ

A1
α )2. (35)

Eq.(35) can be expressed as

λA2A1
= |EA1

b |+ |EA2
b | − BA2A1

, (36)

where E
A1
b is obtained from Eq.(34) by replacing ξ with

ξ1, ξ1 is the localization length of φA1
. BA2A1

=

∑α h̄ωαθ
A2
α θ

A1
α is the interference term:

BA2A1
=

27πZ∗e2/4πǫ0ε

Ωaξ51[q
2
TF − (2/ξ1)

2]

27πZ∗e2/4πǫ0ε

ξ52[q
2
TF − (2/ξ2)

2]
(37)

× 4π

Mc2
{[(2/ξ2)

2 − (2/ξ1)
2]−2[

ξ31
16

tan−1 kDξ1
2

+
kDξ41

8(k2Dξ21 + 4)
+

ξ32
16

tan−1 kDξ2
2

+
kDξ42

8(k2Dξ22 + 4)
]

−2[(2/ξ2)
2− (2/ξ1)

2]−3[
ξ1
2

tan−1 kDξ1
2

− ξ2
2

tan−1 kDξ2
2

]}.

Eqs.(34,36,37) determined the reorganization energy
λA2A1

for LL transition φA1
→ φA2

.
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III. CONDUCTIVITY FROM LE AND EL TRANSITIONS
DRIVEN SOLELY BY FIELD

In this section we assemble the approximations of the
proceeding section to estimate the various contributions
to the conductivity.

A. LE transitions driven by field

1. Connection to relaxation time approximation and
Kubo-Greenwood formula

Inside the summation of Eq.(1), only electronic de-
grees of freedom appear. Each term can be written as:

{

Re

Im
σBA

αβ (ω) = (mBA
e f f )

−1
αβ ne

2τBA
± (ω), (38)

where n = Ne/Ωs is the carrier density,

τBA
± (ω) = Im i[IBA+ ± IBA−]

may be viewed as a relaxation time, the real part of con-
ductivity takes plus sign, the imaginary part takes the
minus sign. Here

(mBA
e f f )

−1
αβ = − (wα

AB − vα
BA)(v

β
BA)

∗

2(E0
A − E0

B)
, (39)

may be interpreted as the inverse of the effective mass
matrix tensor for transition φA → χB. In this sense,

σ
B1A
αβ (ω) is a generalization of the energy dependent

conductivity2 σE
αβ(ω). With this notation, Eq.(1) be-

comes

σαβ(ω) = ∑
AB1

σ
B1A
αβ (ω)[1− f (EB1)] f (EA), (40)

a generalization of Kubo-Greenwood formula, Eq.(2.11)
of [2,49]. This shows how a kinetic approach may be
properly generalized to AS.

2. High temperature approximation of the time integral IBA±

To calculate IBA±(ω) defined by Eq.(4), we change the
integration variable from s to t: s = t − iβh̄/2. Eq.(4)
becomes

IBA±(ω) = exp{−1

2 ∑
α

coth
βh̄ωα

2
(θA

α )
2}eβh̄(±ω+ωAB)/2

∫ iβh̄/2

−∞+iβh̄/2
dteit(±ω+ωAB)
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FIG. 4: Conductivity and TCR as functions of temperature in
two n-doped a-Ge:H samples at ω = 0. The experimental val-
ues are taken from [47,48].

exp{1
2 ∑

α

(θAα )
2 csc h

βh̄ωα

2
cos tωα}. (41)

If we view t as a complex variable, the saddle point

of 1
2 ∑α(θ

A
α )

2 csc h
βh̄ωα

2 cos tωα is at (0, 0). Because the
integrand in Eq.(41) is analytic in the whole complex-
t plane, we can deform the integral path from (−∞ +
iβh̄/2, 0+ iβh̄/2] to a new path C1+C2+C3 crossing the
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saddle point (0, 0), where C1: (−∞ + iβh̄/2,−∞ + i0],
C2: (−∞, 0], C3: (0+ i0, 0+ iβh̄/2]. Because of the ex-
ternal field and residual interactions being adiabatically

introduced7, the integration along C1 is zero. When
kBT ≥ h̄ω (ω is the frequency of the first peak in

phonon spectrum), ∑α(θ
A
α )

2kBT/h̄ω is large. The inte-
grals along C2 and C3 can be asymptotically calculated

by the Laplace method50. The final result for IBA± is

IBA±(ω) = ih̄/λBA (42a)

+
h̄eβh̄(±ω+ωAB)/2−yBA± −λBA/4kBT

(kBTλBA)1/2
[

√
π

2
− iA(yBA± )],

where

yBA± =
[h̄(±ω + ωAB)]

2

4λBAkBT
, λBA =

1

2 ∑
α

h̄ωα(θ
A
α )

2, (43)

and

A(y±) =







∑
∞
n=0

yn+1/2
±

n!(2n+1)
, if y± ≤ 1

ey±
2
√
y± [1+ ∑

∞
n=1

(2n−1)!!
2nyn±

], if y± > 1
. (44)

The applicable condition for a-Si is T> 232K20,51,52; for

a-Ge is T> 115K51–53.

3. Velocity matrix elements

Under the approximations in Sec.II B and II C, the
velocity matrix elements in Eq.(2) can be obtained by
changing the integration variable from r to r′ = r− RA,
and introducing a spherical coordinate system with RA

as the origin and p as polar axis. One can show that

vxB1A = v
y
B1A

= 0, i.e. for the velocity components per-

pendicular to p, the matrix elements are zero:

v
B1A
⊥ = 0. (45)

The matrix element of vz (the velocity component paral-
lel to p) is

v
B1A
‖ = vzB1A =

p

m
8π1/2 e

−ip·RA/h̄V−1/2ξ3/2

(1+ p2ξ2/h̄2)2
. (46)

Similarly,

w
AB1
‖ = wz

AB1
= − p

m
8π1/2 e

−ip·RA/h̄V−1/2ξ3/2

(1+ p2ξ2/h̄2)2
. (47)

Substitute Eqs.(46,47) into Eq.(39), and the inverse of the
effective mass tensor becomes

(mB1A−1
e f f )αβ =

m−1pαpβ

m(E0
B1

− E0
A)

32πξ3V−1

(1+ p2ξ2/h̄2)4
. (48)

Since for each Cartesian component2,

〈χB|xα|φA〉 =
ih̄〈χB|vα|φA〉
(EA − EB)

, α = x, y, z, (49)

from (45) and (46), one has

〈χB|r⊥|φA〉 = 0 and 〈χB|r‖|φA〉 =
ih̄vBA‖

(EA − EB)
. (50)

4. Relation to kinetic method

Because φA vanishes at xα = ±∞ (α = x, y, z), by
means of partial integration, one can show that wα

AB =
−vα

BA. Then

(wα
AB− vα

BA)(v
β
BA)

∗ = −2vα
BA(v

β
BA)

∗ = −2

3
vα
BA(v

α
BA)

∗δαβ,

(51)
the last step is correct only for a cubic or isotropic body.
For such a body, the product of two matrix elements is
a real number. From the requirement that Re σαβ and
Im σαβ are real numbers, we only require

Re[IBA+ ± IBA−] =
√

πh̄

2(kBTλBA)1/2
(52)

×[e
− λBA

4kBT
[1+

(h̄ωBA−h̄ω)
λBA

]2 ± e
− λBA

4kBT
[1+

(h̄ωBA+h̄ω)
λBA

]2
]

in expression (1). The temperature dependence (52) is

the same as that obtained from the kinetic method6,
although the Landau-Peierls condition is not satisfied.
This is a coincidence caused by two factors. First, for
LE, EL, LL and EE transitions driven by external field,
the contribution to conductivity has the form of Eq.(1).
Thus only the real part of the one dimensional time inte-
gral plays a role. In contrast to Eq.(4), in the correspond-

ing kinetic expression6, the upper limit of time integral
is ∞ (long time limit) rather than 0. Second, because
in both cases we apply an asymptotic expansion to cal-
culate the time integral at high temperature, at leading
order, the real part of (4) is half the corresponding time
integral in kinetic theory. The difference in temperature
dependence only appears in subdominant terms.
When transfer integrals or e-ph interaction are in-

volved at first order, various transport processes are
the same order of magnitude as the processes discussed
here (zero-order in residual interaction). In these first-
order processes, it is the imaginary part of a two-fold
time integral that contribute to conductivity cf. [7].
Some of these first order processes do not appear in ki-
netic models. Even for the processes expected from ki-
netic theory, the temperature dependence derived in the
MRM is different from that derived from kinetic theory.
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FIG. 5: Conductivity and TCR as functions of temperature in

two n-doped a-Ge:H samples at ω = 1013 Hz. The experimen-
tal values are taken from [47,48].

5. Summation over electronic states

To carry out the sum over the final extended states
and average over initial localized states, we first carry
out ∑B for a fixed localized state A. We take the center
RA of φA(r − RA) as the origin of coordinates, the in-
cident direction k/|k| of electromagnetic wave as polar
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FIG. 6: Conductivity and TCR as functions of temperature in

two n-doped a-Si:H samples at ω = 1013 Hz. The experimen-
tal values are taken from [55]

axis (z axis), the directions (ǫ1, ǫ2) of two linear polar-
ization vectors as x and y axis respectively. The incident
field is expressed as

F = F1ǫ1 + F2ǫ2 + 0k/|k|. (53)

Consider an extended state (a wave packet propagating

along p) V−1/2eip·r/h̄, here for simplicity we neglected
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other waves with wave vectors close to p. We can select
an orthogonal frame (l, m, n), where n = p/|p|, l and
m are two unit vectors perpendicular to each other and
perpendicular to n. The position vector r of electron can
be resolved as

r = r⊥1l+ r⊥2m+ r‖n. (54)

According to Eq.(50), one has

〈χB|r|φA〉 = n〈χB|r‖|φA〉. (55)

The matrix elements of the perturbation of external field
is simplified to

〈χB|F · r|φA〉 = F · n〈χB|r‖|φA〉. (56)

= sin θ(F1 cos φ + F2 sin φ)
ih̄vBA‖

(EA − EB)
,

where θ is the inclination angle of p relative to k, φ is
the azimuth angle of the orthogonal projection of p on
plane (ǫ1, ǫ2) relative to ǫ1. In this coordinate system,

∑
B1

→ V

(2πh̄)3

∫ ∞

0
dpp2

∫ π

0
dθ sin θ

∫ 2π

0
dφ. (57)

The incident field (53) has only x and y components.
So that only the xx, xy, yx and yy components of the
conductivity tensor are involved in the conduction pro-
cess driven by field (53). In consonance with Eq.(56), one
should make the substitution

vxBA → vBA‖ sin θ cos φ, v
y
BA → vBA‖ sin θ sin φ, (58)

in the conductivity tensor (1). The angular part of inte-
gral (57) can be carried out. From Eqs.(57,58), one can
see σxy = σyx = 0 and σxx = σyy = σ. Because the fac-
tors in Eq.(1) do not depend on the position of localized
state φA, one can carry out the spatial integral in ∑A.
The conductivity from LE transitions is

{

Re

Im
σ(ω) =

4πξ
3

3

bZe2nloc
4πǫ0εU

8ne2

3πh̄3m2

∫ ∞

0
dξ

∫ ∞

0
dp

×[1− f (EB1)] f (EA)
p4

(E0
B1

− E0
A)

ξ exp(− bZe2

4πǫ0εUξ )

(1+ p2ξ2/h̄2)4
(59)

×
√

πh̄

2(kBTλBA)1/2
[e
− λBA

4kBT
(1+

h̄ωBA−h̄ω
λBA

)2 ± e
− λBA

4kBT
(1+

h̄ωBA+h̄ω
λBA

)2
],

where n = Ne/Ωs is the carrier concentration, EA and
EB1 are given in Eqs.(15,20). From Eq.(59), one can eas-

ily compute TCR: ρ−1 dρ
dT = −σ−1 dσ

dT , an important ma-

terial parameter for bolometer1,55. σ and TCR are ex-
pressed with easy access quantities: U and Ec for local-
ized states, ε and qTF for the interaction between elec-
tron and atomic core, the averaged sound speed c for
the vibrations.

B. EL transitions driven by external field

Since the field-matter coupling is Hermitian, the cor-
responding expressions for EL transition driven by field
can be obtained from those for LE transitions driven by
field through exchanging the status of φA and χB.

{

Re

Im
σ(ω) =

4πξ
3

3

bZe2nloc
4πǫ0εU

8ne2

3πh̄3m2

∫ ∞

0
dξ

∫ ∞

0
dp

×[1− f (EA)] f (EB)
p4

(E0
A − E0

B)

ξ exp(− bZe2

4πǫ0εUξ )

(1+ p2ξ2/h̄2)4
(60)

×
√

πh̄

2(kBTλAB)1/2
[e
− λAB

4kBT
(1+

h̄ωAB−h̄ω
λAB

)2 ± e
− λAB

4kBT
(1+

h̄ωAB+h̄ω
λAB

)2
],

where

yAB
± =

(ωBA ± ω)2

4λABkBT
, λAB =

1

2 ∑
α

h̄ωα(θ
A
α )

2. (61)

For the LE transition driven by the transfer integral and
the EL transition driven by e-ph interaction, one does

not have this symmetry6,7.

C. LL transition driven by external field

One can similarly find the conductivity from the LL
transitions driven by external field (Fig.2a of [7]):

{

Re

Im
σαβ(ω) = −Nee

2

2Ωs
∑
AA1

Im
(wα

AA1
− vα

A1A
)(v

β
A1A

)∗

(E0
A − E0

A1
)

×i[IA1A+ ± IA1A−][1− f (EA1
)] f (EA), (62)

where the velocity matrix elements are

wα
AA1

= − ih̄

m

∫

d3xφ(r− RA)
∂

∂xα
φ∗(r−RA1

), (63)

and

vα
A1A

= − ih̄

m

∫

d3xφ∗(r−RA1
)

∂

∂xα
φ(r−RA). (64)

vα
A1A

is given in Eq.(A2) and wα
AA1

= −vα
A1A

. The time

integral

IA1A±(ω) = exp{−1

2 ∑
α

(θA1
α − θA

α )
2 coth

βh̄ωα

2
} (65)

×
∫ 0

−∞
dse±iωse

−is(E′
A1

−E′
A)/h̄×
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exp[
1

2 ∑
α

(θA1
α − θA

α )
2

2
(coth

βh̄ωα

2
cosωαs+ i sin ωαs)],

contains the primary temperature dependence of con-
ductivity. At high temperature kBT ≥ h̄ω, IA1A± re-
duces to

IA1A±(ω) = −ih̄/λA1A (66)

+
h̄e−βh̄(±ω+ωAA1

)/2−y
A1A
± −βλA1A

/4

(λA1AkBT)
1/2

[

√
π

2
− iA(yA1A

± )],

where

λA1A =
1

2 ∑
α

h̄ωα(θ
A1
α − θA

α )
2, (67)

and

y
A1A
± =

[h̄(±ω + ωAA1
)]2

4λA1AkBT
. (68)

To carry out the summation over initial and final elec-
tronic states, we first fix the initial electronic state A.
We take the center RA of localized state φA(r− RA) as
the origin, the incident direction k of the electromag-
netic wave as the polar axis. Denote R = RAA1

=
|RA1

− RA| the distance between the centers of local-
ized states φA1

(r− RA1
) and φA, the unit vector along

(RA1
−RA) is nAA1

= (XAA1
,YAA1

,ZAA1
)/RAA1

, where
(XAA1

,YAA1
,ZAA1

) are the Cartesian components of
vector RA1

− RA.
Since the conductivity tensor is usually expressed in

a system of Cartesian coordinates, we introduce an aux-
iliary Cartesian system (ǫ1, ǫ2, k), where ǫ1 and ǫ2 are
the two linear polarization vectors. The electric field F
has only x and y components: F = F1ǫ1 + F2ǫ2 + 0k.
Because we sum over A1, the centers RA1

of localized
states φA1

(r − RA1
) sit at different points. To simplify

the calculation of the velocity matrix elements, we re-
solve the position vector r of electron in an orthogonal
frame:

r = r⊥1lAA1
+ r⊥2mAA1

+ r‖nAA1
, (69)

where lAA1
and mAA1

are two unit vectors perpendicu-
lar to each other and to nAA1

. From Eq.(A4), one has

〈φA1
|r|φA〉 = nAA1

〈φA1
|r‖|φA〉. (70)

By means of Eq.(70), the perturbation of the electric field
is

〈φA1
|F · r|φA〉 = F · nAA1

〈φA1
|r‖|φA〉 (71)

= sin θ(F1 cos φ + F2 sin φ)
ih̄v

A1A
‖

(EA − EA1
)
,
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FIG. 7: Conductivity as function of frequency at T=300K. 7(a):
LL transition; 7(b):LE transition. In the frequency range, the
contribution from LE transition is more important than that
from LL transitions.

where v
A1A
‖ has been obtained in appendix A. The an-

gular integrals in summation ∑A1
can be effected: σxy =

σyx = 0 and σxx = σyy = σ. Because of the uniformity
of AS, the spatial integral in ∑A can be carried out. The
conductivity from LL transition driven by field is

{

Re

Im
σ(ω) =

4πξ
3

3
[
bZe2nloc
4πǫ0εU

]2
∫ ∞

0

dξ1
ξ21

exp(− bZe2

4πǫ0εUξ1
)

×
∫ ∞

0

dξ2
ξ22

exp(− bZe2

4πǫ0εUξ2
)ne2

[1− f (EA1
)] f (EA)

2(E0
A − E0

A1
)

×
√

πh̄

2(λA1AkBT)
1/2

[e
−

λA1A
4kBT

(1+
h̄ωA1A

−h̄ω

λA1A
)2

± e
−

λA1A
4kBT

(1+
h̄ωA1A

+h̄ω

λA1A
)2

]

×
∫ Rc

0
R2dR

4π

3
(wAA1

‖ − v
A1A
‖ )(vA1A

‖ )∗, (72)

where and in appendix, to shorten the symbols, we use
ξ2 instead of ξA1

, use ξ1 instead of ξA.
We can see from Eqs.(59,60,72) that when ω = 0,

Im σ = 0 for LL, LE and EL transitions. For two n-doped

a-Ge:H samples with n = 1018 and 1019cm−3, log10 σ
and TCR from LL, LE and EL transitions as functions
of temperature at ω = 0 are plotted in Fig.4. The cor-

responding results at ω = 1013 Hz are plotted in Fig.
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5. Re σ increases with frequency while TCR decreases
with frequency. For two n-doped a-Si:H samples, the
conductivity and TCR as functions of temperature at

ω = 1013Hz are plotted in Fig.6, the results at ω = 0 was

reported in [54]. The calculated TCR for a-Si:H falls54 in

the observed55,57,58 range between -2% and -8%.
At ω = 0, the conductivity from LE transition is the

same order of magnitude as that from LL transitions, the
conductivity from EL transitions is much smaller than
those from LL and LE transitions. There is a crossover
temperature T∗, below T∗ the conductivity fromLL tran-
sitions is larger than the conductivity from LE transi-
tions, above T∗ the conductivity from LE transitions is
larger. Because the activation energy for LL transitions
is different to that for LE transitions, this phenomenon
explained the kink on the observed log10 σ vs. 1/T

curve54.
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FIG. 8: (color online) TCR as function of temperature in two

n-doped a-Si:H with n = 1017cm−3 and 5× 1017cm−3, the dia-
mond symbol data are taken from [47,48], the solid line exper-
imental data taken from [56].

For two n-doped a-Si:H samples at 300K, log10 σ(ω)

vs. log10 ω in a frequency range 1013 to 1014Hz is illus-
trated in Fig. 7(b). We can see that (i) the conductivity
of LL transitions slowly decreases with ω; (ii) the con-
ductivity from LE transitions increases rapidly with fre-
quency. The total conductivity is a sum from various

processes7, and the conductivity from LL transitions is
smaller than that from the LE transitions at higher fre-
quency. The total conductivity arises mainly from LE

transitions at higher frequencies. The general trend in

log10 σ(ω) vs. log10 ω is not far from Tanaka and Fan’s59

result σ(ω) ∼ ω2, but obviously deviates from the sim-

ple power law around 1013Hz. Wemust be cautious that
the results derived in this work is only suitable to the
contributions from electrons: at such high frequency the
ionic contribution should also be included.
In Fig.8, we compared the observed and calculated

TCR for two n-doped a-Si:H with n = 1017cm−3 and

5× 1017cm−3. The calculations roughly agree with the

experiment56 in temperature range 282K-349K. The ob-
served absolute values of TCR is systematically smaller
than those of calculated. This is due to the samples con-
tain micro-crystalline grains in the amorphous matrix55,
while crystalline material has smaller absolute value of
TCR. Fig.9 is the comparisons for conductivity.
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FIG. 9: (color online) DC conductivity as function of tem-

perature in two n-doped a-Si:H with n = 1017cm−3 and

5× 1017cm−3, experimental data taken from [56].

IV. CONCLUSION

Themicroscopic response method expresses transport
coefficients with transition amplitude rather than transi-
tion probability per unit time, andmay be used in amor-
phous semiconductors in which Landau-Peierls condi-

tion is violated3,4.
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We presented an approximate theory for the conduc-
tivity and Hall mobility in amorphous semiconductors
systematically derived from the MRM. We obtained the
temperature dependence of the conductivity from the
three simplest transitions: LL, LE and EL transitions
driven solely by field, cf. Eqs.(62,59,60). The conduc-
tivity is expressed in terms of accessible physical quan-
tities: mobility edge, Urbach energy, static dielectric
constant and elastic modulus. LE transition (ignored
in previous theories) contributes to conductivity in the
same order as LL and EE transitions. Below a crossover
temperature T∗, the conductivity from LL transitions
is larger than that from LE transitions; above T, the
conductivity form LE transitions is larger. This phe-
nomenon, and different activation energy for LL and LE
transitions is the reason for the kink in the observed con-
ductivity vs. 1/T curve. We show how a kinetic theory
of transport can be properly generalized for AS.

Acknowledgments

We would like to express our deep appreciation to
Drs. D. B. Saint John and N. J. Podraza giving us their

unpublished resistivity vs. temperature raw data56 of n-
doped a-Si:H samples, which made a broader compar-
ison with experiments possible. We thank for support
from the U.S. Army Research Laboratory and the U. S.
Army Research Office under grant numberW911NF-11-
1-0358 and NSF under DMR 09-03225 .

Appendix A: velocity matrix elements between two
localized states

To calculate the velocity matrix elements in Eq.(64), it
is convenient to adopt a system of spherical coordinates.
We take the center RA of localized state φA(r − RA)
as the origin RA = 0, the connection line RA1

− RA
between the centers of two localized states as the po-
lar axis. Denote r = |r − RA| and r2 = |r − RA1

| =

[r2 + R2 − 2rR cos θ]1/2, where R = RA1
− RA, θ is the

angle between r−RA and RA1
−RA. The vz matrix ele-

ment can be written as

vzA1A
= − iℏ

m
π−1ξ−3/2

1 ξ−3/2
2

∫ ∞

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφe−r2/ξ2

∂

∂z
e−r/ξ1 ,

and one has similar expressions for the matrix elements
of vx and vy. Because r2 does not depend on the azimuth
angle φ,

vxA1A
= v

y
A1A

= 0. (A1)

We condense them as v
A1A
⊥ = 0: the matrix element for

any component of velocity perpendicular to the connec-
tion line between two localized states is zero.
The φ integral is immediate, the remaining r and θ in-

tegrals in vzA1A
can be calculated by changing the inte-

gration variable θ to r2 for a fixed r. With the help of

cos θ =
r2+R2−r22

2rR and sin θdθ = r2dr2
Rr , the integral over

θ becomes an integral over r2. One first carries out the
integral over r2, then carries out the integral over r. For
the velocity component parallel to the connection line
between two localized states, the matrix element is

v
A1A
‖ = − iℏ

m
π−1ξ−3/2

1 ξ−3/2
2

∫

d3xe−r2/ξ2∇‖e
−r/ξ1

= − iℏ

m
(ξ1ξ2)

−3/2{−4(
ξ22
R2

+
ξ2
R
)
e−R/ξ2ξ ′3

ξ1

−(2+ 6
ξ2
R
+ 6

ξ22
R2

)
ξ2e

−R/ξ2ξ ′2

ξ1
− (2+ 6

ξ2
R
+ 6

ξ22
R2

)
ξ22e

−R/ξ2ξ ′

ξ1

+(
2

ξ2R
+

2

R2
)

ξ22e
−R/ξ2ξ ′′3

ξ1
[2− (R2/ξ ′′2+ 2R/ξ ′′+ 2)e−R/ξ′′ ]

−(
2

ξ2
+

6

R
+ 6

ξ2
R2

)
ξ22e

−R/ξ2ξ ′′2

ξ1
[1− (R/ξ ′′ + 1)e−R/ξ′′ ]

+(2+ 6
ξ2
R

+ 6
ξ22
R2

)
ξ22e

−R/ξ2ξ ′′

ξ1
(1− e−R/ξ ′′)

+(
2

R2
− 2

Rξ2
)

ξ22e
−R/ξ1ξ ′3

ξ1
(
R2

ξ ′2
+ 2

R

ξ ′
+ 2)

+(
6ξ2
R2

+
2

ξ2
− 6

R
)

ξ22e
−R/ξ1ξ ′2

ξ1
(
R

ξ′
+ 1)

+(2− 6
ξ2
R

+ 6
ξ22
R2

)
ξ22e

−R/ξ1ξ ′

ξ1
}, (A2)

where ξ ′ and ξ ′′ are defined by

ξ ′−1 = ξ−1
1 + ξ−1

2 and ξ ′′−1 = ξ−1
1 − ξ−1

2 .

Eq.(A2) displays the exponential decay of velocity ma-
trix elements with distance R between two localized
states. In the variable range hopping argument2, only
the exponential decay of transfer integral with R is
treated. In a process which is first order in transfer inte-
gral, that is not discussed here, one may expect interest-
ing new features.
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Because for each Cartesian component,

〈φA1
|xα|φA〉 =

ih̄〈φA1
|vα|φA〉

(EA − EA1
)

, α = x, y, z, (A3)

from (A1) and (A2), one has

〈φA1
|r⊥|φA〉 = 0 and 〈φA1

|r‖|φA〉 =
ih̄v

A1A
‖

(EA − EA1
)
.
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