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A density-functional theory (DFT) based scheme to calculate effective forces for magnetic mate-
rials at finite temperatures is proposed. The approach is based on a coarse graining procedure in
the magnetic configuration space. As application we calculate phonon spectra of paramagnetic bcc
and fcc iron and show good agreement with experimental data.

Accurate and efficient computational schemes for the
theoretical prediction of parameter-free atomic forces and
force constants are an essential prerequisite for many ap-
plications within first-principles materials design, such
as lattice vibrations (phonon spectra, vibronic entropies,
phase transitions)[1-13], diffusion processes (vacancies,
impurities, etc.) [14], strain fields (e.g. in grain bound-
aries) or even fundamental methods such as molecular
dynamics simulations (MD) [15-17].

Although nowadays powerful tools exist to compute
and extract forces and force constants (direct force con-
stant approach/linear-response theory [18], ab initio MD
[19]), current approaches are often not suited for describ-
ing magnetic materials at finite temperatures, i.e., un-
der conditions away from the magnetic groundstate. A
prominent example is the paramagnetic regime. Due to
the lack of alternatives, current theoretical approaches
for, e.g., vibronic contributions of magnetic materials
such as bcc iron, rely on calculations performed in the
magnetic groundstate (e.g., the ferromagnetically satu-
rated state) [13, 20], or take the missing data from experi-
ment [7]. Approaches going beyond these simple approxi-
mations employ fixed-spin calculations [6, 21] or GGA+U
[5], but still employ magnetically fully ordered configura-
tions. Although it is known that magnetism can have a
substantial impact on vibrational properties [22, 23], the
basic fundamentals are still poorly understood [5, 8, 23].

A state-of-the-art first-principles approach to study
magnetically disordered systems is the coherent poten-
tial approximation (CPA) (a recent review is given e.g. in
[24]). In combination with the so called disordered local
moment (DLM) model, the magnetic disordered system
is modeled as an effective medium of spin-up and spin-
down species [25]. An inherent limitation of the CPA
treatment is that a direct evaluation of forces and force
constants is not possible due the single-site nature of this
approach [24]. This seriously limits the approach when
applied to systems for which relaxation effects become
important.

Recently, Shang et al. [26] proposed for magnetic sys-
tems at elevated temperatures an approach to determine
macroscopic thermodynamic properties such as free en-
ergies and specific heat capacities. In their approach a
Boltzmann statistical averaging of free energies of indi-
vidual magnetic microstates, such as ferromagnetic or an-

tiferromagnetic states, is performed. Individual force and
phonon calculations are performed for each microstate
independently. This approach implicitly assumes that in
each microstate “fast” atoms move in a “fixed” magnetic
configuration. This assumption does not hold at high
temperatures where the magnitude of typical magnetic
excitations is higher in energy than vibronic excitations,
implying a faster time scale for the magnetic degree of
freedom [11, 12, 27]. A very recent theoretical approach
by Leonov et al. which takes magnetic correlations in
force constant calculations within the framework of dy-
namical mean field theory into account, provides promis-
ing preliminary results for fcc iron [28]. This method is,
however, still under development.

In this letter we propose an approach that overcomes
the limitations of current theoretical treatments and that
can be easily implemented in existing DFT codes. We
start from the magnetic Born-Oppenheimer (BO) energy
surface EBO({R;},&) within constrained spin density-
functional theory, which denotes the unique total energy
for a given set of atomic coordinates {ﬁ 1} and local mag-
netic moments & = {oy}. As a first step we discretize and
coarse grain the (principally infinite) configurational spin
space and define a spin space averaged (SSA) free energy
energy as

Fian =—ksTnZ, (1)
where Z = 3" exp[—EBO({R;},5p)/ksT] denotes the
magnetic partition sum and m indexes the individual
magnetic configurations. Note that the SSA free energy
is not equivalent to the full free energy (which would have
to include e.g. vibronic excitations).

A major advantage of this formulation is that atomic
forces on an atom J are directly accessible as gradients
on the SSA free energy BO surface:

SSA

RSSA _{Riy OEBC({R1},6m)
JARY T T AR, zm:pm R, (2)

Here, F}{F({R}}, Fm) are the Hellmann-Feynman forces
for an individual magnetic configuration &, and p,, =
exp[—EB°({R;},5.)/ksT)/Z denotes the Boltzmann
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FIG. 1. (Color online) Sketch of the randomized magnetic SQS. The forces are indicated by orange arrows.

weights. The forces for each magnetic state can be re-
garded as fluctuations around the SSA forces

" ({R1},5m) = PR} G ()

The impact of the fluctuation term 5ﬁ}{F({}§1}, Gm) On

FSSA
the SSA forces F] (R}

of magnetic and atomic degrees of freedom. For the com-
mon case that magnetic moment oscillations are fast com-
pared to atomic oscillations the magnetic induced fluctu-
ations 5ﬁﬁp({él}, Fm) average out. The actual forces
experienced by the atoms will thus be the effective av-

eraged F?S{% ) rather than E?F({ﬁl},ﬁm). The above

formulation is general and allows to compute the atomic
forces by fully including finite temperature magnetism.

In order to test the reliability and applicability of
the proposed approach, we apply it to the hitherto un-
solved problem of computing phonons in the paramag-
netic (PM) regime. As a material system we chose one
of the best studied magnetic materials, pure iron. Al-
though vibronic excitations in iron have been studied
intensively both, experimentally as well as theoretically
since decades [1, 5, 6, 8, 11, 21, 22], many basic questions
remain still open. In particular the impact of magnetism
on lattice vibrations and phase stability is poorly un-
derstood up to now [5, 8, 11, 22, 29]. In the following
we consider the paramagnetic 5 (bcc) and v (fcc) phase
of iron. For these high temperature phases a long time
question is the source of stabilization, i.e., whether vi-
bronic (phonons) [22] or magnetic excitations (magnons)
[29] drive the phase transition and stabilize the high tem-
perature fcc phase.

In the high temperature paramagnetic state the local
magnetic moments are randomly distributed over the lat-
tice as sketched in Fig. 1 and fluctuate in size and direc-
tion. Since at present DFT implementations are lim-
ited in computing accurate forces for constrained non-
collinear magnetic structures, we simplify the model-
ing of the paramagnetic state by considering collinearly
disordered magnetic moments. The SSA procedure is
therefore performed employing a sufficiently large set of
such randomly disordered collinear configurations {&, }.
These configurations are constructed using the concept of
special quasi-random structures (SQS) as obtained from
the ATAT package [30]. We note, however, that the pro-
posed scheme itself is very general and would in princi-

ASSA
FJ{R}

is directly related to the time scale

ple allow the incorporation of non-collinear structures, if
technically realizable.

To compute the phonon spectra we employ the direct
force constant method. Specifically, we diagonalize the
force constant matrix ¢o5 = —OFIF /dug created by
the individual displacements ug as sketched by the blue
atoms in Fig. 1. The indices a and § go over all degrees
of freedom of the atomic system. For a nonmagnetic
(NM) calculation, the force constant matrix satisfies the
underlying lattice symmetries S (point and translational
symmetries), i.e.

ok =D SIS (5)
Yo

where A\ numerates all symmetry operators S providing
symmetry equivalent atomic force constants.

It is crucial to note that switching on magnetism
and considering an individual magnetic configuration the
above symmetry will be destroyed. The resulting force
constant matrix ¢,5(dy,) has therefore no longer the
symmetry of an fcc or bee crystal. As a consequence,
diagonalization of the corresponding dynamical matrix
results in unstable (imaginary) phonon modes. Apply-
ing the SSA scheme restores the full atomic symmetry in
the force constant matrix, i.e., QSSSA has the same sym-
metry as ¢ and thus obeys Eq (5) This observation
can be used to derive the following equivalence between
symmetrization and spin averaging:

G = 303 SN 056 (6)

A vo
=" $as(@rma))
A

where &y(;n,) denotes the magnetic configuration after
applying the symmetry operation. The above equiva-
lence allows to perform the full SSA using a single mag-
netic configuration &,,, provided that (i) the number of
symmetry operations A(mg) is sufficiently large and (ii)
Tm, 18 constructed such that it resembles a large num-
ber of locally inequivalent magnetic configurations. Note
that due to the fact that all displacements are computed
in the same super cell, the total energies entering the
Boltzmann factor in Eq. (1) are identical (degenerate),
i.e. all magnetic configurations have the same weight. If
the number of symmetry operations A is not sufficient to

¢SSA (7)
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FIG. 2. (Color online) Phonon spectra for paramagnetic bee and fee iron in comparison with experimental data [22 and 31].
In addition the results obtained from a ferromagnetic (FM) and a nonmagnetic (NM) calculation are shown.

obtain converged SSA force constants, the above formal-
ism can be straightforwardly extended by replacing the
single initial magnetic configuration &,,, by a set of G,
where the index ¢ marks symmetry inequivalent magnetic
configurations.

Before applying our approach, we first show results
obtained from two common treatments for phonon spec-
tra of paramagnetic bee and fcc iron. These are based
on ferromagnetic (FM) and nonmagnetic (NM) calcu-
lations. All DFT calculations in the following are per-
formed using the VASP [32] package employing the pro-
jector augmented wave method [33] within the gener-
alized gradient approximation (Perdew-Burke-Ernzerhof
parametrization [34]) [35].

The first approximation (FM) assumes that even at
high temperatures, where the magnetic order is de-
stroyed, it is still possible to use the magnetic ground-
state, e.g., the ferromagnetically saturated state for bcc
iron [9, 11, 13, 20]. The theoretical calculations are car-
ried out at the experimental volume at the considered
temperatures [36]. This allows to test the performance
and applicability of our approach. The ultimate goal is
of course a fully theoretical determination of the equi-
librium lattice constant at the considered temperature.
The proposed SSA scheme itself is a mandatory step in
this direction, since vibronic contributions are the basic
driving force of volume expansion. In fcc iron interesting
magneto-volume effects [8, 37, 38] are observed. These
are particularly prominent at 7'= 0 K and result e.g. in
a highly sensitive dependence of magnetic interactions on
volume [38] or in a strong dependence of elastic proper-
ties on the magnetic state [37]. In the high temperature
paramagnetic limit which is in the focus of the present
paper such effects are likely to be averaged out. This is in
agreement with recent DMFT calculations by Leonov et
al. [28], where paramagnetic phonons at a lower lattice
constant are computed and found to be in good agree-
ment with our results. In Fig. 2 the results at high tem-
perature (Texp, = 1173 K and 1428 K) obtained for a
FM calculation for bee and fee iron (orange lines) are

shown in comparison with experimental data. Both tem-
peratures are above the critical magnetic temperature of
bee and fee iron, respectively. In case of bce iron, the
longitudinal branches are in reasonable agreement with
experiment. However, the experimentally observed pro-
nounced softening at high temperatures, in particular of
the transversal modes (T) between H and P as well as
between I' and N are not reproduced. The softening of
the latter modes is directly related to a strong decrease
in the elastic constants C’ and Ci;. These elastic con-
stants are directly involved in the structural transforma-
tion path (Bain path) from bce to fee, and e.g. critical
to understand mechanical failure of ferritic steels at high
T.

The difference between experiment and this level of
theory is even more pronounced for fcc iron [39]. Here
the calculations provide imaginary phonon frequencies
for the L-modes between I' and X, and I" and L consistent
with structural instability of FM fcc iron with respect to
tetragonal deformation [38, 40].

The second approximation to approximate the param-
agnetic states is to perform nonmagnetic (NM) (i.e. non-
spin polarized) calculations. This approximation is based
on the Stoner theory of magnetism [41]. According to
this model, magnetic moments remain ferromagnetically
ordered for the whole temperature range 0 < T < T¢.
With increasing temperature the magnitude of the local
moments decreases and finally vanishes for T' > T. To
elucidate how such an approach performs in case of iron
we show the results of NM calculations in Fig. 2 (grey
lines). The results are very similar to recent calculations
employing ultrasoft pseudopotentials [6, 21]. For both,
bee and fee iron, unstable (imaginary) phonon modes
appear. For bcc iron, the softening appears around the
I'-point consistent with a negative shear elastic constant
(C7) [40].

Summarizing, none of the two existing approaches, i.e.
approximating the PM state by FM or NM calculations,
provide an accurate description of the vibrational fre-
quencies.
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FIG. 3. Left panels: Convergence of the mean value of the

force on the displaced atom, F::, and its nearest neighbor

F:;n. Right panels: Density of states of force constants due

to individual displacements.

As a first step to test our proposed approach we set up
a 16 atomic spin SQS for bee iron (sketched in Fig. 1)
with the atoms in the ideal bce positions. For this fixed
spin configuration we obtain non-vanishing atomic forces,
i.e., the magnetically disordered structure is unstable at
T = 0 K and atomic relaxation would destroy the bcc
symmetry. In a second step we compute the atomic forces
for all inequivalent displacements. After employing the
SSA procedure [Eq. (7)], we obtain the force on the dis-
placed atoms as well as the force on its nearest-neighbor
(Fig. 3, upper panel). The individual forces F}{E (Gr(mo))
[Bq. (4)] fluctuate around the mean SSA value F TR as
can be also seen in the force density of states (right panel
in Fig. 3). A denotes the change of the atomic positions
from the ideal to the displaced configuration used in the
force calculation. We can thus conclude that a single
SQS provides a sufficient set of magnetic configurations
if the lattice symmetries are employed.

From the effective force constants the phonon disper-
sions for bee iron are computed and shown in Fig. 2 (left
panel, blue line). First, it can be seen that no imagi-
nary phonon frequencies occur in contrast to the non-
magnetic calculations. The overall dispersions are shifted
to lower energies as compared to the ferromagnetic solu-
tion and significantly improve the agreement with exper-
iment. In particular the strong softening of the transver-
sal I'N-modes as well as the softening around the dip
in the HP-branches are now well reproduced and clearly
demonstrate the large impact magnetic disorder has on
the vibrational properties of bcc iron.

To estimate the impact of supercell size convergence we
performed the same procedure starting from a 54 atomic
bee SQS. The obtained phonon spectra are also shown
in Fig. 2 (dashed blue). The corresponding spectrum is
slightly shifted to lower frequencies. The overall correc-

tion is about one order of magnitude smaller than the
impact of the magnetic state and thus for the present
analysis negligible.

We now discuss the fcc phase of Fe. As discussed in the
beginning, neither FM nor NM calculations are sufficient
to correctly reproduce the experimental data. The cal-
culations are performed using a 32 atomic SQS. All 32-6
inequivalent displacements giving in total N = 192 indi-
vidual snapshots o', for the statistical average Eq. (4)
are included. The performance of the spin averaging pro-
cedure on the forces is shown in Fig. 3, lower panel. Sim-
ilar as for bce iron we obtain a rapid convergence of the
averaged forces by including more and more individual
snapshots. From the averaged force matrix we deduce the
phonon spectrum for fcc iron. In overall the obtained dis-
persion is in excellent agreement with experimental data.
Compared to the FM solution, dominantly the longitu-
dinal branches are shifted to lower values whereas the
transversal branches are shifted to higher frequencies, re-
moving the instability around the I' point. We can thus
conclude that PM suffices to make fcc iron metastable.

In conclusion we propose an approach that allows to
compute atomic forces for magnetic systems at finite T’
and that can be easily connected to existing DFT codes.
To test the reliability and performance of the proposed
approach phonon spectra of PM 3 (bcc) and « (fec) iron
are computed. Our results clearly demonstrate that mag-
netic disorder alone, i.e., without having to invoke high
temperature anharmonic contributions, guarantees dy-
namic stability of the iron fcc phase. In the absence of
a realistic paramagnetic description, i.e. considering fcc
Fe in a ferro- or nonmagnetic state, unphysical imagi-
nary phonon modes arise. This clearly demonstrates the
strong interplay of atomic and magnetic degrees of free-
dom involved in the stability mechanisms in iron and the
importance to perform phonon calculations based on the
actual (realistic) magnetic phases. The approach can be
easily extended to structures with reduced symmetries
(e.g., point or extended defects) or to perform molecular
dynamics (MD) calculations including finite temperature
magnetism. MD calculations will largely profit from a
straightforward parallelization over disordered magnetic
configurations.
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