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We present a model for the charge transfer contribution to surface enhanced Raman spectroscopy
(SERS) in a molecular junction. The model is a generalization of the equilibrium scheme for SERS
of a molecule adsorbed on a metal surface [B.N.J.Persson. Chem. Phys. Lett. 82, 561 (1981)]. We
extend the same physical consideration to non-equilibrium situation in a biased molecular junction
and to non-zero temperatures. Two approaches are considered and compared: A semiclassical
approach appropriate for non-resonance Raman scattering, and a quantum approach based on the
non-equilibrium Green function method. Non equilibrium effects on this contribution to SERS are
demonstrated with numerical examples. It is shown that the semiclassical approach provides an
excellent approximation to the full quantum calculation as long as the molecular electronic state is
outside the Fermi window, that is, as long as the field induced charge transfer is small.

PACS numbers: 73.23.-b 78.20.Jq 78.30.-j 78.67.-n

I. INTRODUCTION

Single molecule Raman spectroscopy is by now a well
established field of research, where surface enhancement
of the signal makes experimental observation feasible.1,2

Recent advances in fabricating molecular junctions3 have
made it possible to observe surface-enhanced molecular
optical response of such systems under non-equilibrium
current-carrying conditions.4–6 In particular, surface-
enhanced Raman spectroscopy of molecular junctions has
the potential to become an important diagnostic and con-
trol tool in the field of molecular electronics. Together
with inelastic electron tunneling spectroscopy,7–9 it can
provide detailed information on the vibrational structure
(molecular fingerprint) and dynamical effects of a junc-
tion. SERS also is invaluable source of information on
vibrational energy distribution in molecular junction.6,10

Development of experimental techniques has led to
a surge in theoretical research on spectroscopy of non-
equilibrium open molecular systems. Theoretical studies
on current-induced fluorescence,11–15 and photo-assisted
current16–19 are available in the literature. Recently
we20,21 proposed an approach for describing resonant
Raman spectroscopy of molecular conduction junction
within a two-level (HOMO-LUMO) model for the molec-
ular bridge. With many experiments done far from reso-
nance, a natural extension is the formulation of a theory
for off-resonant Raman scattering. Another important
extension is to address the often raised issue of the so
called “chemical” contribution, a name usually referred
to charge transfer (CT) effect, to SERS in such systems.
The issue is particularly relevant in molecular junctions,
where CT is significantly expressed in their behavior un-

der bias.

Many studies aimed to characterize the role played
by CT in SERS from molecules adsorbed on metal sur-
faces have been published in the past three decades.22–29

A particularly simple model by Persson30 considers the
light scattering signal resulting from the oscillating dipole
formed by CT between an adsorbed molecule and the
underline metal as evaluated within a Newns-Anderson
type model.31 In the present paper we extend this the-
ory to a molecule confined between the two metal elec-
trodes of a biased molecular junction. We use a non-
equilibrium Green function (NEGF) technique to calcu-
late the light scattering from such systems and identify
diagrams on the Keldysh contour that contribute to the
charge-transfer SERS. We derive an expression for the
Raman flux at steady state, thus generalizing the theory
of Ref. 30 to non-zero temperature and current-carrying
conditions. Our results become identical to those of
Ref. 30 in the equilibrium zero temperature limit.

The problem of Raman scattering from a molecule in
a metal-molecule-metal junction is associated with two
fundamental issues. One is the electromagnetic response
of the junction, specifically, one needs to relate the inci-
dent electromagnetic field to the local field in the junc-
tion as well as outgoing radiation to the time dependent
charge distribution in the junction. The other is the eval-
uation of the transport properties of the junction and the
time dependent charge distribution in the junction in the
presence of the combined driving by the DC voltage bias
and the local time dependent electromagnetic field. Here
we focus on the second problem, assuming that the elec-
tromagnetic response of the junction has been (or can
be) evaluated in a separate calculation. Such an ap-
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proach has been tacitly followed in most treatments of
radiation field effects on electronic transport in tunnel-
ing junctions. Several recent calculations15,32 have ad-
dressed the needed input using numerical solutions of the
Maxwell equations in an environment defined by a given
junction geometry.
Our model is introduced in Section II. A quasiclassi-

cal approach to CT contributions to SERS is discussed in
Section III. Section IV introduces corresponding quan-
tum consideration and identifies the Keldysh contour di-
agrams for the light scattering process relevant to obtain
the CT contributions to SERS. Numerical examples are
presented in Section V and our conclusions are summa-
rized in Section VI.

II. MODEL

Following Ref. 30, the molecular junction is repre-
sented by a single level of energy ε0 coupled to two metal
contacts L and R, each at its own equilibrium char-
acterized by the junction temperature T and the elec-
trochemical potentials µL = EF + η|e|Vsd and µR =
EF − (1− η)|e|Vsd, respectively, where Vsd is the poten-
tial bias and where the bias division factor η is used to
model the voltage distribution in the junction. The tun-
neling electron is coupled to a single molecular vibration
of frequency ωv which in turn is coupled to a thermal
bath of harmonic oscillators. In addition to the imposed
bias, the junction is driven by an external field repre-
sented by a single pumping mode of frequency νi and a
continuum of modes {νf} that are assumed vacant. The
light scattering signal is calculated as the flux into the
latter modes.
In the absence of the electromagnetic field the system

Hamiltonian is

Ĥ =Ĥ0 + V̂ (1)

Ĥ0 =ĤM +
∑

K={L,R,B}

ĤK (2)

V̂ =V̂M +
∑

K={L,R,B}

V̂MK (3)

where ĤM is the molecular Hamiltonian that describes
the electronic and vibrational degrees of freedom of the
molecule

ĤM = ε0n̂+ ωv v̂
†v̂ (4)

and ĤK (K={L,R,B}) are Hamiltonians of the electrodes
(L and R) and thermal bath (B)

ĤK =
∑

k∈K

εk ĉ
†
kĉk (5)

ĤB =
∑

β

ωβ b̂
†
β b̂β (6)

V̂M is the coupling between the molecular electronic and
vibrational degrees of freedom, and V̂MK (K = L,R,B)
are couplings between molecule and corresponding bath,

V̂M =Mv(v̂ + v̂†)n̂ (7)

V̂MK =
∑

k∈K

(

Vkd̂
†ĉk + V ∗k ĉ

†
kd̂
)

; K = L,R (8)

V̂MB =
∑

β

WβQ̂βQ̂v (9)

In Eqs. (4)-(9) d̂† (d̂) and ĉ†k (ĉk) are creation (annihila-
tion) operators for electrons on the molecule and in state

k of the contacts, n̂ ≡ d̂†d̂ is the population operator of

the molecular level, v̂† (v̂) and b̂†β (b̂β) are creation (anni-

hilation) operators of vibrational excitation (phonon) on

the molecule and in state β of thermal bath, Q̂v ≡ v̂+ v̂†

and Q̂β ≡ b̂β+ b̂†β are coordinate operators for the molec-

ular vibration and the thermal bath mode β. Eq.(8) de-
scribes the standard electron transfer interaction between
the molecule and the two metals. The coupling (9) in-
duces thermal relaxation of the molecular vibration be-
cause of interaction with the external thermal harmonic
bath.
For the light scattering problem, the minimal model

for the electromagnetic field is represented by a single
pumping (incident) mode i, and a set of final accepting
modes {f}. The unperturbed Hamiltonian now becomes

Ĥ0 = ĤM +
∑

K={L,R,B} ĤK + Ĥrad where

Ĥrad = νiâ
†
i âi +

∑

f

νf â
†
f âf (10)

Here â†i (âi) and â†f (âf ) are creation (annihilation) oper-

ators for photons in the initial (pumping) and final modes
i and {f}, respectively. For the system-radiation field in-

teraction, V̂rad, we follow Ref. 30 in assuming that the
field affects relative energies of single electron states lo-
calized on the molecule and in the leads. Specifically,
we assume that the field acts as a time dependent gate
potential, affecting oscillations of the molecular energy
level relative to the electrodes. We write it in the form

V̂rad = −
(

~pCT · ~̂E
)

n̂ (11)

(note that either n̂ or (n̂− n̄) can be used in these ex-
pressions since only the time dependent part of n con-

tributes to the light scattering processes), where ~̂E is the
electric field operator and ~pCT (n̂− n̄) is the dipole asso-
ciated with the charge transfer into/out of the molecule.
The form (11) is valid when the molecular charging dy-
namics (determined by the rates ΓL, ΓR (defined in Eq.
(33)) are slow relative to the metal dielectric relaxation
measured by the plasma frequency. In Ref. 30 that con-
siders a molecule adsorbed on a single metal substrate,

this charge transfer dipole is represented by ~pCT = e~d,

where ~d is the distance vector from the electrode surface
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(or image plane) to the molecule and e is the electron
charge. Again, such a model is valid at low frequencies,
in which case electric field is perpendicular to the metal
surface so that Eq. (11) becomes V̂rad = −edÊn̂. In
the present case, the determination of the charge transfer
dipole, i.e. the dipole induced in the junction in response
to molecular charging is a complex problem even in the
electrostatic limit and depends on details of the junction
geometry. In the simplest case of a point molecule lo-
cated at mid-point between two metal planes this dipole
vanishes. A realistic junction does not usually possess
this perfect symmetry, and charge transfer to/from the
metal will usually lead to induced dipole. At the same
time, for a molecule located between plasmon sustain-
ing metal structures pCT may be strongly enhanced if
νi is close to the plasmon resonance frequency. Another
source of coupling may be dominant in the case where the
molecular permanent dipole ~pM (n) depends strongly on
its electronic population n (within our model this implies
that the molecular HOMO (highest occupied molecular
orbital) and LUMO (lowest unoccupied molecular or-
bital) are associated with different molecular permanent
dipoles). In this case (d~pM/dn)n̄ provides another im-
portant contribution to ~pCT .

33 In what follows we carry
the calculations assuming that ~pCT is known or has been
determined.
In the following sections we evaluate the Raman light

scattering associated with this model. In a quasi-classical
approach (Section III) the incident field is treated clas-
sically and the scattered radiation is evaluated from the
resulting oscillating dipole. In a fully quantum treatment
(Section IV) the field is an operator expressed in terms
of its photon degrees of freedom. Eq.(11) then takes the
form

V̂rad = −i



Ui(âi − â†i ) +
∑

f

Uf (âf − â†f )



 n̂ (12)

with

Ui = − ~pCTKi
~Ei (13a)

Uf = − ~pCTKf~σf (13b)

where ~Ei is the electric field vector associated with the
incident laser field, ~σf is the polarization vector (unit
vector in the electrical field direction) associated with
the outgoing mode f , and Ki and Kf are local tensors
that depend on the corresponding incoming and outgo-
ing frequencies, relating the incident and outgoing vector
field to the corresponding local fields at the molecule. In
particular, elements of these tensors contain all the in-
formation pertaining to possible local field enhancement
associated with the given junction geometry. As stated
above, in the present paper we assume that these tensors
are known, having been evaluated in a separate calcula-
tion, see e.g. Ref. 15). In using the form (13a) for the
incident field we have expressed its amplitude explicitly,
allowing for the formalism presented below to consider a

steady state driven by an incoming photon mode popu-
lated by one photon.

III. RAMAN SCATTERING: THE

QUASI-CLASSICAL APPROACH

Classically, light scattering is expressed as the radia-
tion emitted by the dipole induced in the system by the
driving fields, and its Raman component is obtained from
the expansion of this induced dipole in the vibrational
coordinate(s).50 The latter are treated as classical mo-
tions within the Born-Oppenheimer approximation, so
that the molecular level energy, driven by the external
(classical) optical field Ei(t) = Ei cos(νit) is

ε0(Qv, t) = ε0(Qv)+Ui cos(νit) = ε0(Qv)+
Ui

2

(

eiνit + e−iνit
)

(14)

where Ui = ~pCT · ~Eloc, ~Eloc being the local electric field
associated with the incoming radiation. Furthermore,
below we will assume that the vibrational deviation from
equilibrium is small enough to allow the lowest order ex-
pansion ε0(Qv) = ε0 + MvQv. The harmonic driving
(14) of the level energy relative to the Fermi energy of
the contacts yields an oscillating level occupation given
by34

n (Qv, t) =

∞
∑

k1,k2=−∞

Jk1

(

Ui

νi

)

Jk2

(

Ui

νi

)∫ ∞

−∞

dE

2π
(15)

eiνi(k1−k2)t
∑

K={L,R} ΓKfK(E)
[

E − ε0 (Qv)− νik1 +
i
2Γ
] [

E − ε0 (Qv)− νik2 −
i
2Γ
]

where Jk(x) is the Bessel functions of the first kind. In
(15), ΓK = 2π|VK |2ρK (K = L,R; |VK |2 = 〈|Vk|

2〉k∈K ≡
∫

dεk|V (εk)|
2ρK(εk)) is the electron escape rate from the

occupied molecular level into the lead K and fK(E) is
Fermi-Dirac distribution. The oscillating component of
the level occupation is obtained from Eq.(15) to linear
order in Ui in the form

n(1)(Qv, t) =
Ui

νi

∑

K={L,R}

∫ ∞

−∞

dE

2π
Re

[

ΓKfK(E)

E − ε0 (Qv)− iΓ/2

(16)

×

(

eiνit
[

E − ε0 (Qv)− νi +
i
2Γ
] −

e−iνit
[

E − ε0 (Qv) + νi +
i
2Γ
]

)]

where we have used Jk(x) ∼ (x/2)k/k! and J−k(x) =
(−1)kJk(x). In our model, the corresponding oscillat-
ing dipole ~p, hence the corresponding polarizability ten-

sor α = ∂~p/∂ ~Ei, are proportional to this average level
population, e.g., ~p(t) = ~pCTn(t). For simplicity we will

henceforth also assume that ~p and ~Ei are parallel to each
other and perpendicular to the substrate surface, and de-
note by α the corresponding non-zero component of the
polarizability tensor.
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In terms of pCT we then have (to linear order in the
external field)

p(Qv, t) = Ei

(

α(Qv, νi)e
iνit + α∗(Qv, νi)e

−iνit
)

(17)

where the polarizability is

α(Qv, νi) =
p2CT

2νi

∑

K

∫ +∞

−∞

dE

2π
ΓKfK(E) (18)

(

1

[E − ε0 − iΓ/2] [E − ε0 − νi + iΓ/2]

−
1

[E − ε0 + iΓ/2] [E − ε0 + νi − iΓ/2]

)

The Raman polarizability is obtained by considering the
term linear in Qv. In the classical limit the Stokes and
anti-Stokes contributions are equal. We obtain

pRaman(t) = Ei

(

αv(νi)e
i(νi±ωv)t + α∗v(νi)e

−i(νi±ωv)t
)

(19)
where

αv(νi) =

(

∂α(Qv, νi)

∂Qv

)

Qv=0

=
p2CTMv

4πνi(Γ + iνi)

∑

K={L,R}

ΓK

[

2Γνi(ε0 − µK)

[(ε0 + νi − µK)2 + (Γ/2)2] [(ε0 − νi − µK)2 + (Γ/2)2]

+ i

(

ε0 + νi − µK

[(ε0 + νi − µK)2 + (Γ/2)2]
(20)

+
ε0 − νi − µK

[(ε0 − νi − µK)2 + (Γ/2)2]

−
2(ε0 − µK)

[(ε0 − µK)2 + (Γ/2)2]

)]

where we have taken T → 0 to perform energy integration
analytically.
From Eq.(19), the total scattered power is35

P =
(νi ± ωv)

4

3c3
|αv(νi)Ei|

2
(21)

(Note that the semiclassical approach assumes νi ≫ ωv

and the Raman polarizability is obtained in terms of νi
only). Eqs. (20) and (21) constitute our main classical
limit results, expressing the charge-transfer contribution
to the Raman scattering, here derived for the response
of the molecular bridge in a (generally biased) molecular
conduction junction. The bias potential enters explicitly
through the chemical potentials µK (K = L,R) in Eq.
(20).
To facilitate comparison with the results of Ref. 30, it is

convenient to consider the scattering function A(νi, νi ±
ωv) defined in Eq.(14) of that paper.36 In the quasiclas-
sical case this function depends only on νi and we de-
note it by Asc(νi). A relationship between this function
and the Raman polarizabilty may be found by comparing

Eqs. (13) and (18) of Ref. 30, and recalling that in 30
case ed = pCT . This leads to

Asc(νi) =
αv(νi)

2p2CTMv

(22)

A comparison of the scattering function A calculated us-
ing (22) and (20), our quantum results from Section IV
and the results of Ref. 30 is provided in Section V.
Note that in evaluating Eqs. (20) and (22) we have

assumed that all the dependence on Qv comes from its
effect on the molecular electronic energy. Other contri-
butions could come from the possible dependence of the
junction transport properties (e.g., the rate parameters
Γ) on Qv through the molecule-metal distance, or from
the dependence on Qv of the metal electronic response.37

IV. QUANTUM CONSIDERATION

As a quantum problem, Raman scattering in the
present model can be evaluated by following the ap-
proach of our previous publications20,21 modified to take
into account the different system-radiation field coupling.
First, we consider the photon flux from the molecule to
an empty accepting mode f . We start from Eq.(25) of
Ref. 21

JM→f = −

∫ +∞

−∞

d(t− t′)Π>
f (t
′ − t)G<(t− t′) (23a)

where Π>
f (t
′− t) is the molecular self-energy due to cou-

pling to the mode f , given, for a free unoccupied mode,
by

Π>
f (t
′ − t) = −i |Uf |

2
e−iνf (t

′−t) (23b)

This leads to

JM→f = i|Uf |
2G<(νf ) (24)

In Eqs. (23a) and (24) G<(t − t′), whose Fourier trans-
form is G<(νf ), is the lesser projection of the two-particle
Green function G defined by the form (11) of the molec-
ular coupling to the electromagnetic field, i.e. a density-
density correlation function given on the Keldysh contour
by

G(τ1, τ2) ≡ −i〈Tc n̂(τ1) n̂(τ2)〉 (25)

where τ1,2 are variables on the Keldysh contour and Tc is
the contour ordering operator. The time evolution in (25)
is defined by the Hamiltonian (1)-(11) and the average
is over an electronic steady-state of the biased junction
in which the interaction with the accepting modes {f} is
absent. Note that Eq.(24) is of second order in the inter-
action with the outgoing modes, so that to this order the
Green function (25) can be evaluated while disregarding
this interaction.
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FIG. 1: (Color online) Diagrams relevant for the charge-
transfer contribution to SERS. Dashed lines represent Green
functions of the free photon modes (pumping and accept-
ing), wavy lines represent Green functions of molecular vi-
bration, directed solid lines indicate electronic single particle
Green functions with arrows indicating electron propagation.
Time labels correspond to the integration variables in Eq.(26).
The four diagrams represent scattering events of particles and
holes, interacting via electromagnetic field and molecular vi-
bration.

Next, regarding the interactions between the molecu-
lar electronic state and the incoming radiation field, Ui,
as well as with the molecular vibration, Mv, as pertur-
bations, we derive (see Appendix A) a perturbative ex-
pression for the Green function (25) within the lowest
relevant order (2nd) in each of these interactions. The
resulting expression in which the time evolutions are de-
fined in terms of the quadratic Hamiltonian (2) may be
expanded using Wicks theorem and expressed as a dia-
grammatic expansion. As discussed in Appendix A, we
focus only on those diagrams that are relevant for the
Raman process under discussion. The results of Ref. 30
provide useful guidelines for identifying these diagrams,
which are displayed in Fig. 1. Substituting the corre-
sponding expressions, Eq.(A2), for the Green function
(25) into (24) we obtain the outgoing Raman flux into an
accepting mode f that results from pumping the molecule

by mode i

Ji→f = |Ui|
2|Uf |

2|Mv|
2

∫ +∞

−∞

d(t− t′)eiνf (t−t
′)

∫

c

dτ1

∫

c

dτ2

∫

c

dτ3

∫

c

dτ4D̃i(τ1, τ2)Dv(τ3, τ4)

[ G(t′, τ4)G(τ4, τ2)G(τ2, t
′) G(t, τ1)G(τ1, τ3)G(τ3, t)

(26a)

+G(t′, τ2)G(τ2, τ4)G(τ4, t
′) G(t, τ3)G(τ3, τ1)G(τ1, t)

(26b)

+G(t′, τ2)G(τ2, τ4)G(τ4, t
′) G(t, τ1)G(τ1, τ3)G(τ3, t)

(26c)

+G(t′, τ4)G(τ4, τ2)G(τ2, t
′) G(t, τ3)G(τ3, τ1)G(τ1, t)]

(26d)

Eq.(26) is the main quantum result of this paper. The
terms (a). . . (d) in this equation correspond to the sim-

ilarly labeled diagrams in Fig. 1. In Eq.(26) D̃i is the

momentum Green function of the pumping mode i

D̃i(τ1, τ2) = −i < TcP̂ (τ1)P̂ (τ2) > (27)

where P̂i ≡ −i(âi− â†i ), Dv is the coordinate Green func-
tion of molecular vibration v

Dv(τ3, τ4) = −i < TcQ̂v(τ)Q̂v(τ
′) > (28)

where Q̂v ≡ v̂ + v̂†, and G is the single-particle electron
Green function

G(τ, τ ′) = −i〈Tc d̂(τ) d̂
†(τ ′)〉 (29)

Note that the contour variables τ1, τ2, τ3, τ4 in Eq.(26)
are yet to be projected. From all possible projections we
are interested only in the rates, i.e. τ1 and τ2 as well as
τ3 and τ4 have to be on opposite branches of the Keldysh
contour.38 These projections involve the projected Green
functions G, D̃i and Dv that enter Eq.(26) that take
the following forms in the lowest order approximation
employed here:
(a) In the spirit of the perturbation expansion employed

above, the Green function D̃i for the pumping mode can
be taken for a free incoming photon, namely39

D̃>,<
i (t1 − t2) = −ie±iνi(t1−t2) (30)

(b) Similarly, on the simplest level of description, the vi-
brational mode Green functionDv of the molecular vibra-
tion can be taken as the non-interacting phonon Green
function whose lesser and greater projections are (in en-
ergy space)40

D(0)>
v (ω) =− 2πi (Nvδ(ω + ωv) + [Nv + 1]δ(ω − ωv))

(31a)

D(0)<
v (ω) =− 2πi (Nvδ(ω − ωv) + [Nv + 1]δ(ω + ωv))

(31b)

where Nv = NBE(ωv) is the thermal Bose-Einstein pop-
ulation of the molecular vibration.
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(c) Finally, on the same level of description, the single-
electron Green function G can be replaced by G(0) – the
electronic Green function of the resonant electronic level
model (disregarding electron-phonon coupling). The
lesser and greater projections of this function are (in en-
ergy space)40

G(0)>(E) =− i

∑

K=L,R ΓK(E)[1 − fK(E)]

(E − ε0)2 + (Γ(E)/2)2
(32a)

G(0)<(E) =i

∑

K=L,R ΓK(E)fK(E)

(E − ε0)2 + (Γ(E)/2)2
(32b)

In Eqs.(32) fK(E) is the Fermi-Dirac distribution,

ΓK(E) = 2π
∑

k∈K

|Vk|
2δ(E − εk) (33)

is the electron escape rate to contact K (K = L,R), and
Γ(E) = ΓL(E)+ΓR(E). In the wide band approximation
employed below ΓK is taken to be energy-independent.

This lowest order approximation is the same as that
employed in Ref. 30. Indeed, as discussed below, the
above choice of Green functions D̃i, Dv and G together
with the equilibrium condition (µL = µR) and zero tem-
perature assumption, reproduces the results of Ref. 30.

Details of the calculation in which Eq.(26) is projected
onto real time axes using Eqs. (30)-(33) are presented
in Appendix B. To facilitate comparison with the zero
temperature equilibrium result of Ref. 30 we note that
in that paper the scattering flux equivalent to (26) is
obtained in the form (cf. Eqs. (11)-(15) of Ref. 30)

Ji→f = 2π |H ′|
2
δ (Ei − Ef ) (34)

with51

H ′ = MvE
2p2CTA (νi, νf ) (35)

where the scattering amplitude A(νi, νf )
36 is given as a

sum, A =
∑6

i=1 Ai, of different contributions associated
with different orderings by which the different interac-
tions V̂M and V̂rad, Eqs. (7) and (11), enter in the pertur-
bative calculation and also with the different electronic
processes (electron or hole exchange between molecule
and substrate) involved (see Ref. 30 and appendix B for
details). Note that in Ref. 30 no distinction is made be-
tween the incident and the local field, therefore in com-
paring results the tensors K in Eqs. (13) should be set
to unities. With this provision, we show in appendix B
that Eq.(26) yields the Stokes scattering flux in the form
(34), (35) where A is given by

A =

6
∑

i=1

Ai (36)

where

A1 ≡ A(−ωv, νf ) (37a)

A2 ≡ A(−ωv,−νi) (37b)

A3 ≡ A(νi, ωv) (37c)

A4 ≡ A(−νf , ωv) (37d)

A5 ≡ A(νi, νf ) (37e)

A6 ≡ A(−νf ,−νi) (37f)

and

A(x, y) =i

∫ +∞

−∞

dE1

2π

∫ +∞

−∞

dE2

2π

∫ +∞

−∞

dE3

2π
(38)

[

G(0)<(E1)
G(0)>(E2)

E2 − E1 + x− iδ

G(0)>(E3)

E3 − E1 + y − iδ

+ G(0)>(E1)
G(0)<(E2)

E1 − E2 + x− iδ

G(0)<(E3)

E1 − E3 + y − iδ

]

which provide the generalization to non-equilibrium (bi-
ased junction) and finite temperature of the result of
Ref. 30. It is easily seen to give the latter results in
the zero temperature equilibrium limit.
We conclude this section by noting that this calculation

could be carried on a more advanced level by taking into
account the mutual influence of vibrational and electronic
degrees of freedom in the current-carrying junction. This
is often described in the self-consistent Born approxima-
tion (SCBA),40 where these mutual effects are accounted
for by including, in the self-energy Π of the molecular vi-
brational mode, the contribution due to coupling to the
tunneling electron

Πel(τ, τ ′) ≡ −i|Mv|
2G(τ, τ ′)G(τ ′, τ) (39)

and in the electron self-energy Σ, a term due to coupling
to this mode

Σph(τ, τ ′) ≡ i|Mv|
2Dv(τ, τ

′)G(τ, τ ′) (40)

and evaluating the vibrational and electronic Green func-
tions, Dv and G, respectively, as self-consistent solutions
of the coupled Dyson equations

Dv(τ, τ
′) =D(0)

v (τ, τ ′) +

∫

c

dτ1

∫

c

dτ2 D
(0)
v (τ, τ1) (41)

×
(

Πph(τ1, τ2) + Πel(τ1, τ2)
)

Dv(τ2, τ
′)

G(τ, τ ′) =G(0)(τ, τ ′) +

∫

c

dτ1

∫

c

dτ2 G
(0)(τ, τ1) (42)

× Σph(τ1, τ2)G(τ2, τ
′)

(Note that our choice of G(0), taken to include the
molecule-lead coupling, leaves Σph as the only contri-
bution to the self-energy). The lesser and greater pro-

jections of the Green functions D
(0)
v and G(0) are given

by Eqs. (31)-(32). Πph is the phonon self-energy due to
coupling to the thermal boson bath

Πph(τ, τ ′) ≡
∑

β

|Wβ |
2Dβ(τ, τ

′) (43)
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where Dβ(τ, τ
′) = −i〈Tc Q̂β(τ) Q̂β(τ

′)〉0 is coordinate

free phonon Green function for mode β of this bath. Πph

is associated with the vibrational relaxation rate

γ(ω) ≡ −2ImΠr(|ω|) =
∑

β

|Wβ |
2δ(ω − ωβ) (44)

which, in a wide band approximation similar to that
taken above for the electronic escape rate, may be taken
constant when ωv ≫ γ(ωv). For details of the SCBA
implementation see e.g. Ref. 41.
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(b)

FIG. 2: (Color online) Absolute value of the total Stokes scat-
tering amplitude vs. gate voltage calculated at Vsd = 0 within
(a) the quasi-classical approach, Eqs. (20), (22) and (b) the
quantum calculation, Eqs. (34)–(38). Shown are results for
ΓL,R = 0.25 (solid line, red), 0.5 (dashed line, blue), 1.0 (dash-
dotted line, green), and 2.0 eV (dotted line, black). See text
for other parameters.

V. RESULTS AND DISCUSSION

In this section we present numerical calculations of the
charge-transfer contribution to the Raman signal, based
on the quantum results Eqs. (34)–(38), and the quasiclas-
sical calculation, Eqs. (20), (22). Unless otherwise stated,
the parameters used in these calculations are T = 300K,
ΓL = ΓR = 0.25 eV, ωv = 0.2 eV, M = 0.1 eV and
γ = 10−4 eV. The bias was applied symmetrically, i.e.

µL,R = EF ± |e|Vsd/2, and the Fermi energy was chosen
as the energy origin, EF = 0. The frequency of incoming
photon is taken νi = 2 eV and the outgoing frequency is
taken to represent the Stokes peak, νf = νi−ωv = 1.8 eV.
Under our control is the bias voltage, Vsd itself, and in
principle also the gate potential that determines the posi-
tion ε0 of the molecular level relative to the Fermi energy.
All calculations were performed on an energy grid of step
10−3 eV, spanning the region from −10 to 10eV.

Figure 2 shows the Stokes scattering amplitude
|A(νi, νf = νi − ωv)| calculated from Eqs. (34)–(38) in
the quantum case and (20), (22) in the quasiclassical ap-
proximation, for an equilibrium system, Vsd = 0. The
results can be compared to those presented in Fig. 2 of
Ref. 30 (note, however, that our calculations are done
at T = 300K). It shows the absolute value of the to-
tal Stokes scattering amplitude vs. position, ε0, of the
molecular level relative to the Fermi energy, obtained
from the quasi-classical approximation, Eqs. (20), (22),
and the quantum approach, Eqs. (34)–(38). The follow-
ing points should be noted: (a) Good agreement with
the result of Ref. 30 is obtained in this equilibrium case.
(b) The symmetric character of the curve about ε0 = EF

is due to the particle-hole symmetry of our model, i.e.,
particle transport contribution to scattering amplitude
(first term in Eq.(38)), is equivalent to the hole trans-
port contribution (second term in Eq.(38)) for a molecu-
lar level positioned symmetrically above and below Fermi
energy, respectively. (c) Destructive interference between
the electron and hole scattering processes leads to sup-
pression of Raman signal at ε0 = EF . (d) The signal
also drops when |ε0−EF | exceeds the incident frequency
νi, since electron transfer between metal and molecule
cannot be affected (an consequently no molecule-contact
dipole excitation can be created) in this far off-resonant
regime. (e) The quasi-classical calculation provides an
excellent approximation to the quantum result in this
case.

Figure 3 demonstrates the generalization of the pre-
vious results to the non-equilibrium (biased) junction.
Shown is absolute value of the total Stokes scatter-
ing amplitude |A| vs. the applied bias, calculated for
ε0 = 1.8 V within the quasi-classical and the quantum
schemes. Consider first the results of the quantum calcu-
lation. Similar to the equilibrium case, the Stokes scat-
tering amplitude has a non-monotonic dependence on the
energy difference between the molecular level and the
leads chemical potential(s), which changes with the bias
potential. Again, the signal drops at the far off-resonance
regime. In particular, for the ΓL,R = 0.25 eV case (solid
line, red), the peak at Vsd = 0 (ε0 − EF = νi − ωv)
corresponds to opening of a scattering channel, when an
electron starting at EF −ωv is scattered by the molecule
and ends just above the Fermi energy. A second peak is
at Vsd = 3.2 V (ε0 − µL = ωv). Here a metal electron
of energy near µL is scattered by the molecule and ends
near the molecular level. We could not identify a sim-
ple origin for the third peak. We note in passing that
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FIG. 3: (Color online) Absolute value of the total Stokes
scattering amplitude, Eq.(36)-(38) vs. bias calculated at
ε0 − EF = 1.8V within (a) the quasi-classical approach,
Eqs. (20), (22), and (b) the quantum calculation, Eqs. (34)–
(38). Shown are results for ΓL,R = 0.25 (solid line, red),
0.5 (dashed line, blue), 1 (dash-dotted line, green), and 2eV
(dotted line, black). Other parameters are as in Fig. 2.

at equilibrium (e.g., for a molecule adsorbed on a single
metal substrate) the dependence of the Raman signal on
the electrode potential (which, for the equilibrium case,
can be expressed by ε0) has been an indicator for the
electron-transfer (“chemical”) contribution to the Raman
enhancement. The dependence on bias potential seen
here can serve a similar purpose.

Turning now to the quasi-classical calculation, it again
agrees with the quantum result provided that the molec-
ular level is outside the window between the Fermi ener-
gies of the two contacts (Vsd < 3.6 V for ε0 = 1.8 eV).
Above this threshold, marked deviations are seen. The
reason for this difference is that the quasi-classical cal-
culation disregards the blocking of scattering channels
by electron exclusion when molecular level(s) start to be
populated. Indeed, the quasiclassical approach is essen-
tially a scattering-based theory, and the inadequacy of
scattering theory in describing inelastic effects in non-
equilibrium electronic transport junctions is a familiar
observation.42,43

Figure 4 shows the dependence of the total Stokes scat-

1.5 2 2.5 3i (eV)
2 4 6 8

Vsd (V)

0

0.05

0.1

0.15

0.2

0.25

0.3

|A
|(

eV
-2

)

FIG. 4: (Color online) Absolute value of the total Stokes scat-
tering amplitude, Eqs. (34)–(38), vs. bias Vsd and the incom-
ing frequency νi calculated for ε0 −EF = 1.8 eV. See text for
other parameters.

tering amplitude calculated from Eqs. (34)–(38), on both
the frequency of the pumping mode and the bias po-
tential. The calculation is done for ε0 = 1.8 eV and
ΓL,R = 0.25 eV within the model assumptions, Eqs. (31)-
(32). The structure in the bias dependence of the Stokes
amplitude for fixed νi was discussed above. For Vsd = 0,
the amplitude as function of νi naturally peaks around
the molecular level position, indicating the opening of a
channel for electron scattering that starts atEF . This be-
havior was demonstrated also in Fig. 3 of Ref. 30. Devia-
tion from this peak structure at higher bias sets in when
the lead chemical potential come into resonance with the
molecular level (at Vsd = 3.6 V) opening the channel for
electron scattering that is responsible for second peak in
Fig. 3. Viewed with respect to the incoming frequency
νi, contributions from the initial, intermediate, and final
states for electron scattering are most pronounced in the
region of maximum local molecular density of states, that
is close to ε0, which is reflected in the scattering ampli-
tude (hence the scattering flux) dependence on the bias
voltage (for a more detailed discussion of this lineshape
structure see Refs. 44,45).

The calculations presented above are based on the low-
est order approximation, Eqs. (31)-(32). In this level of
approximation, the electron-vibration coupling which is
responsible for the Raman shift, is disregarded in the
expressions for single-particle Green functions. Fig. 5
shows results obtained when the electron-vibration in-
teraction is treated within the self-consistent Born ap-
proximation, Eqs. (39)-(42). For simplicity, we treat
the vibrational degree of freedom in the quasiparticle
approximation,39 whereupon hybridization of the molec-
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FIG. 5: (Color online) Absolute value of the total (a) Stokes
and (b) anti-Stokes amplitudes, plotted against the bias volt-
age Vsd for a molecular level near ε0 − EF = 1.8 V. Shown
are non-interacting (dashed line, blue) and SCBA (solid line,
red) results. See text for other parameters.

ular vibration with states of boson bath is disregarded,
while the average vibrational population is influenced by
the electronic flux. In turn, the electron Green function is
affected by the heated vibration. For details of the SCBA
implementation in the quasi-particle approximation see
e.g. Ref. 46. Figure 5 shows the absolute values of
Stokes and anti-Stokes scattering amplitudes as functions
of bias. The lowest order result (dashed line) is compared
to the SCBA (solid line). We see that for our (reason-
able) choice of molecular and junction parameters, incor-
porating electron-vibration interaction does not make an
essential difference in the Stokes signal below the thresh-
old for resonance transmission (here, Vsd = 3.6 V). The
reason for this is that heating of the molecular vibration
in this regime is inefficient. Above this threshold, how-
ever, the Stokes signal calculated within the SCBA is
markedly different from the low-order result. The influ-
ence of this correction on anti-Stokes scattering is even
more pronounced. The latter is proportional to the av-
erage vibrational mode population, and even inefficient
heating makes an important contribution to this signal.

VI. CONCLUSION

We have presented a model for the charge-transfer con-
tribution to SERS in a molecular junction. This model
is a non-equilibrium finite temperature generalization of
an approach describing SERS for a molecule chemisorbed
on metal surface.30 Physically, this contribution to light
scattering stems from the oscillating dipole induced in the
system by charge transfer from the metal(s). In addition
to the mechanism considered in 30, whereupon this dipole
reflects the time dependent polarization at the metal-
molecule interface, we have identified another potential
origin for this scattering mechanism - the dependence of
the molecular permanent dipole on its charging state. We
have presented a quasiclassical treatment of this problem
as well as a fully quantum NEGF approach. Both repro-
duce the results of Ref. 30 when used in the appropriate
limit – zero temperature equilibrium situation, treated at
the lowest order in the molecular electronic-vibrational
interaction. The quasiclassical approach was shown to
provide a reliable approximation for the full quantum re-
sult within its expected range of validity – in the weak
junction-radiation field coupling considered here, and the
far off resonance tunneling case where the molecular level
occupation is not affected by its coupling to the leads.
We have also used the self-consistent Born approxima-
tion to account for the electron-vibration interaction on
the molecule, and found the effect of this correction to be
small in the low bias regime, while becoming dominant
for the anti-stokes component of the scattered radiation
above the resonance conduction threshold.

Our results provide a framework for describing the
charge transfer (“chemical”) contribution to Raman scat-
tering from a molecular junction. They supplement our
previous studies20,21,47,48 that focus on the effect of the
biased junction environment on Raman scattering that
originates in the molecule itself. Two points regarding
both mechanisms are noteworthy:
(a) Both mechanisms are affected, in different ways, by
charge transfer between the metal substrate and the
molecule, however in the process that originates in the
molecule, charge transfer from the metal substrate(s), in
particular in biased and/or gated junctions, modifies a
molecular process that exists also away from the metal.
In contrast, for the so-called chemical mechanism charge
transfer is essential – the corresponding contribution van-
ishes when it is disallowed. It is therefore important only
in direct proximity to the metal surface. Since in molecu-
lar conduction junctions we naturally consider molecules
in such close proximity, both mechanisms are potentially
important.
(b) Both mechanisms reflect the properties of the lo-
cal electromagnetic field and are therefore affected by
the electromagnetic enhancement mechanism in the same
way. The main difference between them arises from the
additional enhancement that takes place when certain
resonance conditions are obeyed. In standard molecular
Raman scattering resonance implies matching between
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the incident photon and the molecular excitation energy.
In the charge transfer mechanism, the closest we come
to resonance is when the incident photon bridges the gap
between the vicinity of the substrate Fermi energy (where
an electron-hole pair is created or destroyed in the Raman
Stokes or anti-Stokes process) and a relevant molecular
level. Experimentally this is reflected in the bias and gate
potential dependence of such resonance condition. Note
that in a biased junction two such Fermi energies can con-
tribute. This is the origin of the non-monotonic behavior
of the scattering signal with bias and gate potentials, and
with the incident mode frequency, as discussed above.
Finally we note that as a simple model for the behavior

of a molecular junction under illumination we have fol-
lowed previous works that model this effect by assuming
that the electromagnetic field affects oscillations in the
molecular energy position relative to the metal(s) Fermi
energy. Alternatively, this effect may be represented as
an oscillating bias potential. Both models yield qualita-
tively similar results and comparison between them will
be presented elsewhere.
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Appendix A: Perturbative evaluation of the

density-density correlation function

To evaluate the non-equilibrium charge-transfer as-
sisted Raman scattering from Eq.(24) we follow the lines
of Ref. 21. Guided by the zero temperature equilibrium
calculation of Ref. 30, we focus on terms that correspond
to three scattering events undergone by the tunneling
electron: one each with the incoming and outgoing pho-
tons, and one with the molecular vibration. Such terms
should contain each of the corresponding interactions at
the second order of perturbation theory. Eq.(24) is al-
ready of the second order in the coupling to the outgoing
photon (through the corresponding self-energy), thus the
two-particle Green function (25) should be written to sec-
ond order in both the coupling to the incoming photon
and to the molecular vibration. The required expression
is obtained in a standard way expanding the contour evo-
lution operator in the interaction representation to fourth

t3 t1 t

t4 t2 t’

t1 t t3

t2 t4 t’

(a)

(b)

FIG. 6: (Color online) Examples of projections on the
Keldysh contour

order in perturbation V̂ = M(v̂ + v̂†)n̂− iUi(âi − â†i ).

G(τ, τ ′) ≈
(−i)5

4!

∫

c

dτ1

∫

c

dτ2

∫

c

dτ3

∫

c

dτ4 (A1)

×
〈

Tc n̂(τ) n̂(τ
′) V̂ (τ1) V̂ (τ2) V̂ (τ3) V̂ (τ4)

〉

and keeping terms that are of the second order in each of
the couplings M and Ui. Time evolution in (A1) is under
Hamiltonian (1) without coupling to molecular vibration
(7) and optical field (11).

The resulting expression is evaluated by employing
Wick’s theorem. This procedure produces a set of dia-
grams, which roughly can be separated into three groups:
1. renormalization of electron propagator(s) due to cou-
pling to external fields, 2. polarization of the environ-
ment due to presence of excess charge, and 3. electron
scattering due to interaction with photons and phonons.
In terms of the Bethe-Salpeter equation49 (two-particle
propagator) the first category is characterized by dia-
grams where at least one of the fields interacts with only
one of the particles. At our (low order) level of descrip-
tion, the second category is characterized by a polariza-
tion bubble renormalized by the interaction with the ex-
ternal fields. Raman scattering is described by diagrams
of the third category. These diagrams are presented in
Fig. 1. They describe electron-hole (a,b) and electron-
electron (c,d) scatterings (see below). Their sum is given
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by

G(τ, τ ′) = −i|Ui|
2|Mv|

2 (A2)
∫

c

dτ1

∫

c

dτ2

∫

c

dτ3

∫

c

dτ4D̃i(τ1, τ2)Dv(τ3, τ4)

[ G(t′, τ4)G(τ4, τ2)G(τ2, t
′) G(t, τ1)G(τ1, τ3)G(τ3, t)

+G(t′, τ2)G(τ2, τ4)G(τ4, t
′) G(t, τ3)G(τ3, τ1)G(τ1, t)

+G(t′, τ2)G(τ2, τ4)G(τ4, t
′) G(t, τ1)G(τ1, τ3)G(τ3, t)

+G(t′, τ4)G(τ4, τ2)G(τ2, t
′) G(t, τ3)G(τ3, τ1)G(τ1, t)]

Substituting this into (24) leads to (26).

Appendix B: The zero temperature equilibrium case

Here we outline the evaluation of the non-equilibrium
Raman flux, Eq.(26) and show that the resulting expres-
sion reduces to the results of Ref. 30 in the equilibrium
zero temperature limit. In Ref. 30, the scattering flux
equivalent to (26), is given (cf. Eqs. (11)-(15) in that

paper) in the form Ji→f = 2π |H ′|
2
δ (Ei − Ef ) where

H ′ = McE
2p2CTA (νi, νf ) and A =

∑6
i=1 Ai. These con-

tributions correspond to six sequences of occurrences of
the following three events: (a) absorption from the pump-
ing mode i, (b) emission into the accepting mode f , and
(c) vibrational excitation resulting from the electron in-
teraction with the molecular vibration v

A1 ≡ A(−ωv, νf ) (â†f → âi → v̂†) (B1a)

A2 ≡ A(−ωv,−νi) (âi → â†f → v̂†) (B1b)

A3 ≡ A(νi, ωv) (v̂† → â†f → âi) (B1c)

A4 ≡ A(−νf , ωv) (v̂† → âi → â†f ) (B1d)

A5 ≡ A(νi, νf) (â†f → v̂† → âi) (B1e)

A6 ≡ A(−νf ,−νi) (âi → v̂† → â†f ) (B1f)

where the expressions in parentheses indicate the event

sequence, for example, â†f → âi → v̂† shows creation
of the final photon preceding the absorption of the ini-
tial photon with the creation of the vibrational quantum
trailing both. Each of these amplitudes is a sum of two
terms corresponding to electron and hole electron trans-
port (see Eq.(15) of Ref. 30)

A(x, y) ≡

∫ EF

−∞

dEρ0(E)

∫ +∞

EF

dE′
ρ0(E

′)

E′ − E + x− iδ

×

∫ +∞

EF

dE′′
ρ0(E

′′)

E′′ − E + y − iδ

−

∫ +∞

EF

dEρ0(E)

∫ EF

−∞

dE′
ρ0(E

′)

E − E′ + x− iδ

×

∫ EF

−∞

dE′′
ρ0(E

′′)

E − E′′ + y − iδ
(B2)

where

ρ0(E) =
1

2π

Γ

(E − ε0)2 + (Γ/2)2
(B3)

is the local electron density of states and EF is the Fermi
energy of the metal substrate. For example, using (B2)
in (B1a) one gets scattering amplitude for a process with
2 intermediate states characterized by energies E′′ and
E′ and incoming energy ±E for electron/hole. The first
and second terms in Eq.(B2) correspond to electron and
hole transport, respectively.
In our calculation, the evaluation of the Raman flux

(26) leads to a sum of products Contributions to the Ra-
man scattering flux in our scheme result from of two am-
plitudes At1

s1
and At2

s2
(bubble diagrams in Fig. 1). Here

s1, s2 = {1, 2, 3, 4, 5, 6} is one of the sequences of scat-
tering events defined in Eq.(B1 and t1,2 = {1, 2} is one
of the types (electron or hole) of transport. The cor-
responding contribution to the squared amplitude that
enters into the Raman flux T(s2,t2)←(s1,t1) ≡

[

At2
s2

]∗
At1

s1
,

is calculated by taking the following steps

1. Choose two sequences s1 and s2, from Eqs.(B1),
and two types t1 and t2 that correspond to the two
terms in Eq.(B2). Note that both the sequences
and types may be the same, that is s1 = s2 and/or
t1 = t2 are allowed.This choice fully characterizes
a particular contribution to the overall transition
probability. In what follows we will refer a partic-
ular choice (s, t) as a ‘process’.

2. For a term of the first type (particle transport)
choose a counter-clockwise bubble, see e.g. right
bubble in Fig. 1a. For a term of second type (hole
transport) choose a clockwise bubble, see e.g. right
bubble in Fig. 1b. Note that in Fig. 1 and in
Eq.(26) τ1 (τ2), t (t

′), and τ3 (τ4) are reserved for
the pumping mode i, accepting mode f , and vi-
bration v on the bubble corresponding to the first
(second) process.

3. Draw a bubble representing the first process on the
right and a bubble representing the second process
on the left, and connect them by lines representing
the Green functions of the external optical fields
and the vibration. The GF of the pumping mode
i connects τ1 and τ2, that of the accepting mode
f connects t and t′, and the Green function for
the molecular vibration connects between τ3 and
τ4. Note that under complex conjugation the bub-
ble of the second process changes its original di-
rection (clockwise becomes counter-clockwise and
vice versa). The resulting diagrams (one of the four
types presented in Fig. 1) has to be projected (see
below) to get the expression corresponding to this
contribution to the transition probability.

4. On the upper (time-ordered) branch of the Keldysh
contour set the times in order of the sequence of
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events of the first process. On the lower (anti-time-
ordering) branch of the Keldysh contour set the
times in order of the sequence of events of the sec-
ond process. (see Fig. 6). Connect the correspond-
ing times by optical and vibration Green function
lines. This is the projection of the diagram ob-
tained in the previous step. Note that t and t′ are
fixed.

5. Taking the Fourier transforms of the resulting dia-
gram projection yields the result of Ref. 30 for this
contribution to the transition probability.

In what follows we show some examples that illustrate
this procedure.
Transition probability for electron transport via
the Eq.(B1d) sequence. Here the two processes are
identical. Focusing on particle (electron) transport dic-
tates choosing counter-clock-wise bubble for both pro-
cesses. Drawing conjugated (direction is reversed) bubble
for the second process on the left and original (counter-
clock-wise) bubble for the first process on the right (as
in Fig. 1) and connecting times on the bubbles leads to
the diagram shown in Fig. 1a. Ordering the times on the
Keldysh contour in accordance with the sequence (B1d),
leads to projection shown in Fig. 6a. The diagram pro-
jection will be

|Ui|
2|Uf |

2|M |2
∫ +∞

−∞

d(t− t′)eiνf (t−t
′)

∫ t

−∞

dt1

∫ t′

−∞

dt2

×

∫ t1

−∞

dt3

∫ t2

−∞

dt4 D̃
<
i (t1 − t2)D

(0)<
v (t3 − t4) (B4)

×G(0)<(t′ − t4)G
(0)>(t4 − t2)G

(0)>(t2 − t′)

×G(0)>(t− t1)G
(0)>(t1 − t3)G

(0)<(t3 − t)

Note that Ref. 30 considers zero-temperature situation
only, i.e. Nv = 0.
After Fourier transform and evaluation of the integrals

one gets52

− 2πδ(νf + ωv − νi)|Ui|
2|Uf |

2|M |2

×

∣

∣

∣

∣

∫ +∞

−∞

dE1

2π

∫ +∞

−∞

dE2

2π

∫ +∞

−∞

dE3

2π
(B5)

G(0)<(E1)G
(0)>(E2)G

(0)>(E3)

[E2 − E1 − νf − iδ][E3 − E1 + ωv − iδ]

∣

∣

∣

∣

2

which is a generalization of the contribution to the Ra-
man flux that arises from the sequence represented by the
last term of Eq.(14) of Ref. 30 of the type represented by
the first term in Eq.(15) of that paper.
Interference between electron and hole transport
via the Eq.(B1d) sequence. Here the two processes
are different by type of transport, while they share the
same sequence of events. Different type of transport
for the first process dictates choosing opposite (clock-
wise) bubble. As a result one gets the diagram shown in
Fig. 1d. Since the sequence is the same as in the previous

example, the projection is still given by Fig. 6a. This re-
sults comes from the same sequence (last term in Eq.(14)
of Ref. 30) but interference between the two types (two
terms in Eq.(15) of Ref. 30) is considered. Writing down
the diagram projection and evaluating integrals is done
in complete analogy with the previous case.
Interference between hole transport via the
Eq.(B1f) sequence and electron transport via the
Eq.(B1b) sequence. Here both sequences and types of
the processes are different. Making appropriate choices
one gets diagram shown in Fig.1a. Sequences of the pro-
cess are ordered on the Keldysh contour as shown in
Fig.6b. The diagram projection will be

|Ui|
2|Uf |

2|M |2
∫ +∞

−∞

d(t− t′)eiνf (t−t
′)

∫ t

−∞

dt1

∫ t′

−∞

dt4

×

∫ +∞

t

dt3

∫ t4

−∞

dt2 D̃
<
i (t1 − t2)D

(0)<
v (t3 − t4) (B6)

×G(0)<(t′ − t4)G
(0)<(t4 − t2)G

(0)>(t2 − t′)

×G(0)>(t− t1)G
(0)<(t1 − t3)G

(0)>(t3 − t)

Evaluation of the integrals is straightforward. The result
corresponds to contribution to the total transition prob-
ability coming from first and fourth terms in Eq.(14) of
Ref. 30 of the type that corresponds to the second and
first terms in Eq.(15) respectively, of that paper.
It is easy to see that non-equilibrium version of the

model of Ref. 30, obtained from the formalism of Sec-
tion IV in the lowest order of electron-vibration inter-
action and disregarding anti-Stokes processes (valid at
low T ) are obtained from the results of Ref. 30 by the
following substitutions

∫ EF

−∞

dE ρ0(E) . . . →− i

∫ +∞

−∞

dE

2π
G(0)<(E) . . . (B7)

∫ +∞

EF

dE ρ0(E) . . . → i

∫ +∞

−∞

dE

2π
G(0)>(E) . . . (B8)

This becomes an identity at T = 0 and equilibrium. Ex-
plicitly, this results in expressions (34)–(38) for the scat-
tering flux. This approach allows to get Stokes signal at
non-equilibrium with reasonable accuracy. For a more
general description one has to follow the self-consistent
procedure of Eqs. (41)-(42), and use the resulting full
Green functions in projections of Eq.(26).
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