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Following the idea that there exists an optimal bandwidth for maximizing the 

thermoelectric figure of merit (ZT), we conduct detailed calculations in this paper to search 

for the optimal ZT in Bi2Te3/Sb2Te3 quantum dot (QD) nanocomposites (NCs) with Bi2Te3 

QDs uniformly embedded in Sb2Te3 matrix where electron minibands are formed. The 

two-channel transport model, which considers both the miniband transport by the 

quantum-confined carriers and the background transport by the bulk-like carriers, is used for 

electrical transport, while the lattice thermal conductivity is modeled using the modified 

effective medium approximation. Simultaneous decrease of the lattice thermal conductivity 

and the Lorenz number leads to an enhanced ZT in QD NCs when the Seebeck coefficient is 

not dramatically decreased. The optimal structural parameters that result in optimal electronic 

structure for maximizing ZT are found, with the consideration of realistic carrier scattering 

physics including phonon bottleneck effect. The optimal QD size is found to be ~ nm6 , and 

the optimal inter-dot distance depends on the QD size and the doping concentration. For a 
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given QD size, the maximum ZT is determined by the minimum of Lorenz number, which 

occurs when the quantum-confined carrier transport overwhelms the bulk-like carrier 

transport.  

 

Keywords: thermoelectrics, nanocomposites, quantum dot, electronic band structure, Lorenz 

number 
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I. INTRODUCTION 

Thermoelectric (TE) refrigeration and power generation devices that directly convert 

between heat and electricity without a need for low-reliability moving parts or 

environment-damaging working fluids are of great interest for waste heat recovery, solar 

energy utilization, thermal management of electronics, and utility-scale refrigeration.1,2 The 

energy conversion efficiency of TE devices is determined by the dimensionless figure of 

merit (ZT) of the material,3  

                            TS

pe κκ
σ
+

=
2

ZT ,                           (1) 

where σ  is the electrical conductivity, S is the Seebeck coefficient, T is the absolute 

temperature, eκ  is the electronic thermal conductivity, and pκ  is the lattice thermal 

conductivity. Over the past two decades, there have been two main routes exercised to 

enhance ZT. One is to reduce the lattice thermal conductivity through nanostructuring by 

scattering of phonons using interfaces4,5,6,7,8,9,10,11,12 or through filling cage-like atomic 

structures, such as those found in skutterudites and clathrates, with heavy rattling atoms,13,14 

and the other is to optimize the electronic transport properties.15,16,17,18,19 When the optimized 

power factor ( 2Sσ ) of a TE material is reported, the simultaneous change of electronic 

thermal conductivity is often overlooked. Indeed, the optimal value of the Seebeck coefficient 

in good TE materials is rather limited, usually in the range of μV/K230200 − , because only 

the carriers distributed within a few TkB  around the chemical potential contribute to 

transport.20 A more feasible way to enhance power factor should come from the increase of 

the electrical conductivity. However, increasing electrical conductivity usually results in an 

increase of electronic thermal conductivity since these two transport properties are 
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proportional to each other. The power factor and thermal conductivity cannot be separately 

optimized because the electronic thermal conductivity and lattice thermal conductivity are 

usually similar in magnitude in good TE materials.8,9  

 We can rewrite the TE figure of merit ZT in Eq. (1) as:  
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where L is the Lorenz number. It is obvious that both small 
T

L p

σ
κ

+  and large S are 

preferred to obtain large ZT. In Eq. (2), the Lorentz number can be written as:      
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where E is the energy of the carriers, )()()(~)( 2 ENEEvE x τΞ  is the transport distribution 

function (TDF), )(Evx  is the carrier velocity along transport direction, )(Eτ  is the carrier 

relaxation time, )(EN  is the carrier density of states (DOS), μ  is the chemical potential, 

and the bracket  denotes the statistical average weighted by ]/)([ dEEdf−  over all the 

carriers; for example, )(]/)([~)( EdEEdfdEE Ξ−Ξ ∫  where )(Ef  is the equilibrium 

Fermi-Dirac distribution. The Lorenz number is usually a constant of 28 /KW1045.2 Ω× −  for 

degenerate carriers in bulk metals, with a similar value in highly doped semiconductors, as 

dictated by the Wiedemann-Franz Law.21 On the other hand, the Lorenz number has been 

found to be much smaller in low-dimensional materials such as InGaAs/InGaAlAs 

supperlattices22 and Pt nanowires23 due to the change of the doping concentrations and the 

scattering mechanisms.  From the Cauchy-Schwarz inequality 24 

222 )()()()()()()( EEEEEEE ϕφϕφ Ξ≥ΞΞ  with μφ −= EE)(  and 1)( =Eϕ , one can 
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easily find that 0=L  is possible when the equal-sign holds. It is thus attractive to find a 

typical functional form of )(EΞ  that can lead to 0=L  and 0~)( ≠Ξ σE  to maximize 

ZT. 

   In 1996, Mahan and Sofo15 originally pointed out that 0=L  and 0≠σ  could be found 

in an electronic structure with a delta-shaped TDF )(~)( 0EEE −Ξ δ . However, such an 

electronic structure does not exist in any realistic material systems, even though the original 

idea is mathematically rigorous. Recently, we revisited this problem by studying the TE 

transport in a narrow conduction band using the tight-binding model along with a few 

most-used carrier scattering models.25 We found that the optimal ZT cannot be obtained in an 

extremely narrow conduction band with zero energy variation of )(EΞ . However, there 

exists an optimal bandwidth with nonzero energy variance of )(EΞ  for maximizing ZT, but 

such an optimal bandwidth depends strongly on the scattering mechanisms and the lattice 

thermal conductivity.  

    In this work, we use the findings of Ref. 25 to search for optimal ZT in Bi2Te3/Sb2Te3 

quantum dot (QD) nanocomposites (NCs). In Bi2Te3/Sb2Te3 QD NCs, electronic minibands 

are formed26,27,28,29 due to the hopping mechanism of quantum-confined carriers whose 

bandwidths are tunable through changing the size of QD and the inter-dot distance. However, 

more detailed calculations beyond Ref. 25, including the background transport besides the 

narrow minibands of quantum-confined carriers and the carrier relaxation time that accounts 

for the detailed scattering mechanisms, need to be performed for this realistic material system. 

Regarding to electrical transport, we have recently established a two-channel electrical 

transport model for QD NCs,29 which includes both the transport of quantum-confined 
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carriers and the semi-classical transport of bulk-like carriers. This two-channel transport 

model enables us to study the dependence on the QD size and inter-dot distance (bandwidth 

tunability) of the TE transport properties in QD NCs. Along with the findings of Ref. 25, the 

objective of this work is to study the optimal ZT in Bi2Te3/Sb2Te3 QD NCs in the presence of 

both quantum-confined carrier miniband transport and the background transport by the 

bulk-like carriers.29  

This paper is organized as follows. In Sec. II, we briefly present the two-channel 

electrical transport model for QD NCs, the modified effective medium model for lattice 

thermal conductivity, and the material input parameters for the calculations. In Sec. III, we 

first show the relationship between the structural parameters (size of QD and inter-dot 

distance) and the electronic structure. We then show the dependences of TE transport 

properties on temperature, structural parameters, electronic structure, and chemical potential, 

and the optimal structural parameters for minimizing the Lorenz number and maximizing ZT 

in Bi2Te3/Sb2Te3 QD NCs are identified. Section IV concludes this paper. 

 

II. CARRIER AND PHONON TRANSPORT MODEL 

     As reviewed in Refs. 6 and 29, tremendous work have been done over the past few 

years for modeling quantum effects on both electrical transport and phonon transport in QD 

NCs, with notable contribution from Balandin and co-workers26,27,28,30,31 and Wang and 

co-workers.32,33 Rather than discussing the pros and cons of each individual modeling efforts, 

the objective of this paper is to identify if there exists structural parameter spaces for optimal 

thermoelectric properties in QD NCs. We have thus presented here briefly the two-channel 
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electrical transport model and the modified effective medium approximation model for lattice 

thermal conductivity that we recently developed for the calculation of TE transport properties 

of Bi2Te3/Sb2Te3 QD NCs.29,34 A distinct feature of the two-channel transport model29 from 

the prior works is that both the quantum-confined carriers in minibands and the bulk-like 

carriers are considered while most of the previous works only consider the quantum-confined 

electrons in QD NCs. The effect of minibands on ZT would be strongly affected by presence 

of the bulk-like carriers.   

 Figure 1 shows the Bi2Te3/Sb2Te3 QD NCs with spherical Bi2Te3 QDs uniformly 

embedded in an Sb2Te3 matrix. The QD size is uniform with a diameter of a, and the inter-dot 

distance is D. In QD NCs, some of the electrical carriers could be confined in QDs that form 

minibands, and the other carriers are bulk-like. Both kinds of carriers transport through the 

strongly interacting composite that consists of QDs and the matrix. The behavior of the 

quantum-confined carriers is described by the quantum mechanics model. The overlap of the 

tails of the electron wave functions that extend from the QDs into the matrix determines the 

hopping strength between neighboring QDs. A tight-binding model, together with the Kubo 

formula and the Green’s function method, has been developed to study TE transport of 

quantum-confined carriers. The bulk-like carriers transport through the composite while 

experiencing carrier-interface scattering at the interfaces between the QDs and the matrix 

materials. A Boltzmann transport equation (BTE)-based semi-classical transport model is 

used to describe the multiband transport of bulk-like carriers with both intrinsic carrier 

scatterings and the carrier-interface scattering.  

 In our calculation, we assume that the ab planes of QDs and matrix are parallel and only 
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consider the transport in the direction parallel to these ab planes of the hexagonal V2VI3 

lattices. Then the total electronic transport properties can be obtained by simply combining 

the transport properties of quantum-confined carriers ( QDσ , QDS , and QD,eκ ) with those of 

bulk-like carriers ( Mσ , MS , and M,eκ ) as: 

                             MQD σσσ += ,                              (4a) 

                          )/()( MQDMMQDQD σσσσ ++= SSS ,              (4b) 

                             M,QD, eee κκκ +=  .                           (4c) 

 Both electrons and holes contribute to the electrical transport in narrow band gap bulk 

semiconductors such as Bi2Te3 and Sb2Te3, so the transport of both the lowest conduction 

bands and the highest valence bands are considered in calculating bulk-like carrier transport 

properties. When calculating the transport properties of quantum-confined carriers, we 

consider only a single-type of carrier for a given type of material [electrons only for n-type 

and holes only for p-type] because the carrier concentration decays exponentially with the 

energy difference between the energy level of holes and energy level of electrons, which is 

much larger than the band gap of the Bi2Te3 bulk material. In Sec. II A and II B, we will 

present the calculation of transport properties of quantum-confined carriers and bulk-like 

carriers, respectively. In Sec. II C, the calculation of lattice thermal conductivity will be 

presented, while Sec. II D presents all the material input parameters used in this study. 

    

A. Transport of quantum-confined carriers     

    The wave functions of the quantum-confined carriers are calculated by solving the 

Schrödinger equation with a periodic cosine-shaped confinement potential29,35 of QD arrays. 
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The minibands of quantum-confined carriers is described by the Hamiltonian of the 

tight-binding model:36 

                ∑ ∑∑ +++ =−−=
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where )'(αα  denotes the position of QDs, iE  denotes the ith energy level due to the 

confinement, )( ,, αα ii cc+  is the creation (annihilation) operator at position α, )( ,, kk ii cc+ is the 

creation (annihilation) operator with momentum ),,( zyx kkk=k , and )( ' αα RR −iJ  is the 

overlap integral between QDs that describes the hopping strength. The dispersion relation of 

the quantum-confined carriers )(kiE  is calculated by the Fourier transformation of the 

operators: 

     )cos()ˆ(2)cos()ˆ(2)cos()ˆ(2)0()( DkzDJDkyDJDkxDJJEE ziyixiiii −−−−=k ,   (6) 

The TE transport properties of the quantum-confined carriers can then be calculated by37,38 
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where jq  is the charge of carrier, ),( hej =  represents electrons and holes, N is the 

degeneracy of the band, and the superscript 2,1,0= . QDΓ  is the transport coefficient for 

quantum-confined carriers. The TDF )(EΞ  can be written 

[ ]∑ ∫ −∂∂=Ξ
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2

3 τδ
π

kkk ,29 where the total relaxation time 

( QD,iτ ) is calculated by using the Mathiessen’s rule ∑=
λ λττ QD,,QD,

11

ii

. QD,,λτ i  is the 

relaxation time of different carrier scattering mechanisms denoted using subscript λ , such as 
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carrier-acoustic phonon scattering and carrier-optical phonon scattering. Fermi’s golden rule 

is used to calculate the relaxation time of various scattering mechanisms for 

quantum-confined carriers. The phonon bottleneck effect on the relaxation time is expected 

for quantum-confined electrons due to the suppression of carrier-phonon scattering according 

to the momentum and energy conservation rules.29  

 

B. Transport of bulk-like carriers 

    A BTE-based model with the relaxation time approximation is used to study the TE 

transport properties of bulk-like carriers.17 We consider the transport of multiband carriers in 

both the lowest conduction bands and the highest valence bands using the Kane model39 
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Here *
M,,⊥jm  ( *

M||,,jm ) is the effective mass of the matrix material perpendicular (parallel) to 

the ab plane of the material, ⊥,jk ( ||,jk ) is the wave vector, gj EE /  is the non-parabolicity 

factor, and gE  is the band gap.  

The transport properties of the bulk-like carriers parallel to the ab plane are then 

calculated from the solutions of the linearized BTE with the relaxation time approximation: 
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where ( ) 3/12*
M||,,

*
M,,

*
M, jjj mmm ⊥= , Bk  is the Boltzmann constant, TkE Bjj /=η , 

TkE BgFe /)(, −= μη , TkBFh /, μη −= , TkE Bgg /=η , and )/1()( gjjj ηηηηγ += , 

respectively. M,jΓ  is the transport coefficient for bulk-like carriers. 

The bulk-like carriers experience carrier-interface scattering besides the intrinsic 

scatterings, all of which have been included in our work through Mathiessen’s rule,17  

                       
M,,' M,,'M,

111

jbjj τττ λ λ

+=∑ ,                        (10) 

where 'λ  denotes the intrinsic carrier scattering mechanisms such as carrier-acoustic 

phonon scattering, carrier-optical phonon scattering, and carrier-impurity scattering. In Ref. 

17, we developed a formula for the relaxation time of carrier-interface scattering as 
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where M,jv ( ,QDjv ) is the carrier velocity in the bulk material of matrix (QD) material, Mχ  

( QDχ ) is the average distance between two successive scattering events in the matrix (QD), 

and jP  is the carrier transmission probability at the interface between the matrix and QDs. 

Physically, Eq. (11) describes the filtering effect of low-energy carrier by interface/boundary 

scattering. The carriers with energy lower than the barrier height at the interface could be 

blocked and the carriers with energy higher than the barrier height can easily transport 

through the interface, with the quantum transmission probability jP . 

 

C. Lattice Thermal Conductivity 

The total thermal conductivity of QD NCs consists of contributions from both electrical 
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carriers ( eκ ) and phonons ( pκ ). The electronic thermal conductivity is calculated by Eq. (4c).  

Due to phonon scattering at the QD-matrix interfaces, the lattice thermal conductivity of QD 

NCs could be remarkably reduced when the size of QD or the inter-dot distance is smaller 

than the phonon mean free paths (MFPs) of the constituent materials.5,6,10,11,12 Furthermore, 

quantum effects on phonons might further change the lattice thermal conductivity, such as the 

changes in phonon relaxation time and the phonon dispersion and the resonance phonon 

scattering, as explore by Balandin and co-workers30,31 and Wang and co-workers.32,33 Arguing 

that the wavelength of dominant heat-carrying phonons in semiconductor at room 

temperature is only 1-5 nanometers.40 Phonon BTE-based models which assume incoherent 

phonon transport for lattice thermal conductivity was developed by Yang and Chen.10,11,12 To 

avoid the tedious simulations, the modified effective medium approximation (EMA) model 

based on the phonon-BTE model34,41 is recently developed to calculate the lattice thermal 

conductivity of NCs under the framework of the EMA but with modified lattice thermal 

conductivity of the matrix and the QDs that takes into account the phonon-interface 

scattering.34 We note that currently there are no unanimous understanding on the relative 

contributions of quantum effects and classical size effects on lattice thermal conductivity on 

quantum structures such as superlattices and QD NCs and no well-accepted models for 

calculating the thermal conductivity of these structures accounting both effects.42 We have 

thus used the modified EMA model at hand to calculate the lattice thermal conductivity of 

QD NCs with different QD sizes and inter-dot distances. A slight over-estimate or 

under-estimate on the lattice thermal conductivity of QD NCs will not change the conclusions 

of this work. In our calculation, the bulk phonon properties including the lattice thermal 
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conductivity, the heat capacity, the phonon group velocity, and the phonon MFPs of both 

constituent materials are required as input parameters for modified EMA.34,41 

 

D. Material Input Parameters. 

Before we start to study the TE transport of Bi2Te3/Sb2Te3 QD NCs, it is necessary to 

obtain the material input parameters of the constituent materials. We first compare the 

calculated electrical conductivity and Seebeck coefficient in bulk form of both p-type Bi2Te3 

and p-type Sb2Te3 by using the BTE-based transport model of bulk-like carriers described in 

Sec II.B (by omitting the interface-scattering of carriers) with the experimental data reported 

in Ref. 43 as shown in Figs. 2(a) and 2(b) to obtain the input parameters. In our calculation, 

the highest two valence bands and the lowest two conduction bands of bulk Bi2Te3 and bulk 

Sb2Te3 are considered since both Bi2Te3 and Sb2Te3 are narrow bandgap semiconductors in 

which both electrons and holes contribute to the bulk-like carrier transport. Due to the 

negligible band edge offset and the similarity of the effective masses of the two conduction 

bands,44,45 we approximate the two conduction bands as degenerate and choose N=12 in the 

calculation to account for the six pockets of carriers in each band.17,44 Similar assumption is 

also made for the two valence bands. The fitting parameters such as the effective masses of 

electrons and holes, the energy of longitudinal optical phonon ω , the deformation potential 

constant ϕ , the mass density ρ , the static (high-frequency) permittivity sε ( ∞ε ), the sound 

velocity c, and the band gap gE  of Bi2Te3 are shown in Table I, and the fitting parameters of 

Sb2Te3 are shown in Table II. Both sets of parameters are in good agreement with the data in 

the literature.44,45 In our fitting, we scan the values of the effective mass and the band gap to 
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match the calculated electrical conductivity and Seebeck coefficient with the experimental 

data while keeping the other involved parameters to be the same or close to the values in 

literatures. The experimental doping concentrations 01.1 pp =  in Bi2Te3
46 and 07.8 pp =  

in Sb2Te3
47

 are used in the data fitting, where 319
0 cm/10=p  throughout the paper.  

Although the model established in this paper can be used to calculate the transport 

properties in both n-type and p-type QD NCs, we have limited the discussion in this paper to 

p-type materials because the material input parameters we have obtained are based on 

experimental values of p-type materials. As noted earlier, due to the large energy differences 

between minibands, we consider only a single type of quantum-confined carriers, i.e. holes 

only for p-type QD NCs. Using the hole effective mass of Bi2Te3, we obtained (see Table I) 

and the energy level of holes iE , we can calculate the overlap integral )( ' αα RR −iJ  in Eq. 

(5) for the given cosine-shaped confinement potential.29 We choose the height of the 

confinement potential to be 0.25 eV and choose the valence band offset between QDs and 

matrix to be 0.08 eV in our calculations. We note that it is really difficult to determine the 

height of the confinement potential in practice since it depends on the band offset between 

QDs and matrix materials, the band bending due to depletion effect near the interface, and the 

surface charge trapping at the interface. The valence band offset between QDs and matrix 

materials is the summation of the difference of the band gap (0.13-0.14 eV of Bi2Te3 and 

0.21-0.28eV of Sb2Te3 at room temperature45) and electron affinity (4.125-4.525 eV of 

Bi2Te3
48 and 4.15eV of Sb2Te3

49). We choose the difference of band gap to be 0.08 eV, and 

the difference of affinity to be 0.  

For calculating the temperature-dependent thermal conductivity of QD NCs, we need 
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temperature-dependent input parameters. Table III shows the input phonon parameters of the 

constituent materials such as phonon MFP, phonon group velocity ( gv ),lattice thermal 

conductivity ( bulk,pκ ), and specific heat ( vc ) at room temperature (300K) for the calculation 

of lattice thermal conductivity in QD NCs. The phonon group velocity and specific heat are 

taken from Ref. 50 and the bulk lattice thermal conductivity is taken from Ref. 51. We 

approximate the temperature-dependent bulk lattice thermal conductivity by 

TT pp K/300)K300(/)( bulk,bulk, =κκ , in consistence with the experimental observation that 

thermal conductivity is inversely proportional to the temperature when K50>T .52 Since 

the temperatures we consider in this paper (150K-450K) are close to or higher than the Debye 

temperatures of Bi2Te3 (164.9K) and Sb2Te3 (160K),45 we have neglected the 

temperature-dependences of phonon group velocity and specific heat.53  

 

III. RESULTS AND DISCUSSIONS 

A. Electronic Minibands and Phonon Bottleneck Effect in Carrier Scattering 

In QD NCs, electronic minibands are formed due to the hopping mechanism of 

quantum-confined carriers. The locations and the bandwidths of the minibands in QD NCs 

can be tuned by changing the structural parameters, QD size and the inter-dot distance.  

Figure 3a shows the carrier DOS of minibands for different QD size a and inter-dot distance 

D in comparison with the DOS of bulk Sb2Te3. The bandwidth of electronic minibands of a 

QD NC with nm)5.8 nm,6(),( =Da  is 0.065 eV, which is narrower than the 0.1 eV 

bandwidth of a QD NC with nm)8 nm,6(),( =Da . The bandwidth decreases when the 

inter-dot distance increases for fixed QD size.  
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Figure 3(a) also shows the dependence of the chemical potential ( μ ) on the doping 

concentration (p), in comparison with the DOS of the miniband in QD NCs with different a 

and D at room temperature. The doping concentration can be used to shift the chemical 

potential to be below or above the center of the minibands. For low doping concentration, in 

which the chemical potential is lower than the center of the minibands, ( μ<E ), 

dEEdf /)(−  in Eq. (7d) increases when the doping concentration increases. A positive QDS  

and an increasing QDσ  are expected with the increasing of doping concentration. For high 

doping concentration, in which the chemical potential is larger than the center of the 

miniband ( μ>E ), a negative QDS  and a decreasing QDσ  are expected since dEEdf /)(−  

in Eq. (7d) decreases when the doping concentration increases. 

Figure 3(b) shows the dependence of bandwidth of quantum-confined carrier minibands 

on D-a for nm6=a , nm7 , and nm8 . The miniband width monotonically decreases when 

the inter-dot distance increases because of the reduction of hopping strength. Smaller a leads 

to larger miniband width because more of the electron wave function tail extends into the 

matrix.  

Figure 3(c) shows the relaxation time of the lowest miniband of quantum-confined 

carriers (left Y-axis) and the relaxation time of the bulk-like holes (right Y-axis) in QD NCs 

with different a and D in comparison with the carrier relaxation time in bulk Sb2Te3 material. 

As expected, due to the low-energy carrier filtering effect, the relaxation time of bulk-like 

carriers is reduced compared to that of the bulk material.17 However, the relaxation time of 

quantum-confined carriers could be prolonged for over two orders of magnitude at the upper 

edge of the minibands due to the phonon bottleneck effect in carrier-phonon scattering.29 The 
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competition between the contributions of quantum-confined and bulk-like carriers will dictate 

the electrical conductivity in QD NCs. 

It should be noted that there are two limitations when using the tight-binding model for 

the quantum-confined carriers: 1) the center of miniband )0(ii JE −  in Eq. (6), which 

increases when decreasing a, should be smaller than the confinement potential for the 

electron wave function to be confined in QDs.29 This means that there is a lower limit of a for 

a given confinement potential to make sure that the solution of the Schrödinger equation 

exists. In our calculation, this lower limit is about nm6=a . In other words, when nm6<a , 

there exist no quantum-confined carriers in the QDs; 2) The overlap of the electron wave 

functions between QDs should be close to zero to satisfy the orthogonality of the electron 

wave functions in the tight-binding model. This second limitation results in a lower limit of 

D-a to be 1.5 nm since the overlap of the electron wave function increases when inter-dot 

distance decreases.  

 

B. TE Transport Properties 

In this section we present the dependences of TE transport properties on temperature, 

doping concentration, and structural parameters (size and inter-dot distance), with the aim of 

searching for the optimal ZT in Bi2Te3/Sb2Te3 QD NCs. 

Figure 4 shows the temperature dependences of electrical conductivity, Seebeck 

coefficient, Lorenz number, lattice thermal conductivity, and ZT for different a and D while 

fixing the doping concentration at 05.0 pp = , which is close to the optimal doping 

concentration for QD NCs. 54  Figure 4(a) shows that the electrical conductivity is 
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significantly higher in QD NCs with )nm8,nm6(),( =Da , )nm5.8,nm6( , and 

)nm9,nm7(  than that in bulk Sb2Te3, due to the phonon bottleneck effect29 in the phonon 

scattering of the quantum-confined carriers. When D becomes smaller, a larger electrical 

conductivity is expected due to a much stronger hopping strength between QDs. In a QD NC 

with large inter-dot distance )nm10,nm6(),( =Da , the electrical conductivity is reduced 

rather than increased because of the filtering effect of the low-energy bulk-like carriers while 

the contribution of quantum-confined carriers is not important due to the small hopping 

strength between QDs. However, the electrical conductivity in a QD NC with small size of 

QD, nm5.5=a , is even smaller than the bulk value since there is no miniband formed when 

nm6<a . Figure 4(b) shows that the Seebeck coefficient in QD NCs with 

)nm8,nm6(),( =Da  and )nm5.8,nm6(  is always above μV/K200 . Significant 

enhancement is shown for a QD NC with )nm8,nm6(),( =Da  at K225<T  and for a 

QD NC with )nm5.8,nm6(),( =Da  at K270<T ; the Seebeck coefficient is even larger 

than that in Sb2Te3 bulk material. Such an enhancement of Seebeck coefficient at low 

temperature comes from the sharp DOS of the miniband that is located TkB3~5.2  away 

from the chemical potential. Figures 4(a) and 4(b) together demonstrate simultaneous 

enhancement of the electrical conductivity and the Seebeck coefficient in a QD NC with 

)nm8,nm6(),( =Da  at K225<T  and in a QD NC with )nm5.8,nm6(),( =Da  at 

K270<T , comparing to bulk Sb2Te3. 

As we discussed in Sec. I, smaller Lorenz number TL e σκ /=  is preferred for 

maximizing ZT. Figure 4(c) shows that the Lorenz numbers in QD NCs with 

)nm8,nm6(),( =Da , )nm5.8,nm6( , and )nm9,nm7(  are between 
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288 /KW105.1~103.0 Ω×× −− , smaller than that in bulk Sb2Te3 material, 

288 /KW1005.2~108.1 Ω×× −− , due to the dominance of the quantum-confined carrier 

transport channel in QD NCs. It is also shown that the Lorenz number in a QD NC with 

)nm5.8,nm6(),( =Da  is smaller than both the )nm8,nm6(  and )nm10,nm6(  cases 

when K350<T . Clearly there exists a minimum of Lorenz number when we change the 

inter-dot distance for a fixed QD size, due to the competition between the bulk-like carrier 

transport channel and the quantum-confined carrier transport channel. For bulk-like carriers, 

Te MM, /σκ  could be larger than the Lorenz number in bulk Sb2Te3 material due to the change 

of the energy dependence of scattering mechanisms induced by the low-energy carrier 

filtering effect.17 For quantum-confined carriers, the decrease of inter-dot distance for a fixed 

QD size results in an increase of the bandwidth, which in turn increases Te QDQD, /σκ . 

Therefore, the minimum of the Lorenz number occurs when the contribution of the 

quantum-confined carrier transport channel overcomes the contribution of the bulk-like 

carrier transport channel. The presence of bulk-like carriers would significantly change the 

effect of minibands on the TE transport. 

Figure 4(d) shows the significantly reduced lattice thermal conductivity in QD NCs due 

to phonon scattering at the interface between QDs and matrix. At room temperature, the 

lattice thermal conductivity can be reduced from 1.7W/mK in bulk material to 0.4-0.7W/mK 

in QD NCs. As expected, smaller a or D results in lower lattice thermal conductivity. Figure 

4(e) shows an enhanced ZT when the reduction of denominator in Eq. (2) ( TL p σκ /+ ) 

overwhelms the slight decrease of the Seebeck coefficient in numerator shown in Fig. 4(b). 

The maxima of enhanced ZT are found to be ~7.6 at K450>T  in a QD NC with 
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)nm8,nm6(),( =Da , to be ~3.5 at K300=T  for )nm5.8,nm6(),( =Da , and to be ~3.9 

at K380=T  for )nm9,nm7(),( =Da . The ZT values in QD NCs with small size of QD 

)nm5.7,nm5.5(),( =Da  and large inter-dot distance )nm10,nm6(),( =Da  are close to 

the ZT in bulk Sb2Te3 because the transport by quantum-confined carriers is small.  

Figure 5 shows the dependences of TE transport properties on the doping concentration 

(p) in QD NCs for different a and D at K300=T . Figure 5(a) shows that there is an 

optimum doping for electrical conductivity in QD NCs with )nm8,nm6(),( =Da , 

)nm5.8,nm6( , and )nm9,nm7( . In contrast, the electrical conductivity monotonically 

increases with the doping concentration in bulk Sb2Te3 and in QD NCs with small size of QD 

)nm5.7,nm5.5(),( =Da  or with large inter-dot distance )nm10,nm6(),( =Da . These 

different dependences of electrical conductivity on the doping concentration come from the 

shift of chemical potential when the doping concentrations change, as shown in Fig. 3(a). The 

total electrical conductivity MQD σσσ += : 1) for QDs with )nm8,nm6(),( =Da  

increases first and then decreases since the quantum-confined carriers dominate the transport; 

2) for QDs with )nm5.7,nm5.5(),( =Da  and )nm10,nm6(  always increases since the 

bulk-like carriers dominate the transport; 3) for QDs with )nm5.8,nm6(),( =Da  and 

)nm9,nm7(  increases first and then decreases at the low doping concentration since the 

quantum-confined carriers dominate the transport at low doping concentration, but increases 

again since the bulk-like carriers dominate the transport for high doping concentration. The 

shift of the chemical potential when the doping concentration changes as shown in Fig. 3(a) 

could also result in a sign change of Seebeck coefficient. Figure 5(b) shows that the Seebeck 

coefficient decreases with the increase of doping concentration until reaching a negative 
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minimum value and then increasing for )nm5.8,nm6(),( =Da , )nm5.8,nm6( , and 

)nm9,nm7(  cases, and is always positive for )nm5.7,nm5.5(),( =Da  and 

)nm10,nm6( . The total Seebeck coefficient σσσ /)( MMQDQD SSS +=  is positive for low 

doping concentrations and could be negative at high doping concentrations because the 

quantum-confined carriers with negative Seebeck coefficient dominate the transport.  

Figure 5(c) shows that the Lorenz numbers in QD NCs with )nm8,nm6(),( =Da , 

)nm5.8,nm6( , and )nm9,nm7(  are between 288 /KW107.0~103.0 Ω×× −− , much 

smaller than in Sb2Te3 bulk material, 288 /KW104.2~108.1 Ω×× −− , for low doping 

concentration ( 04 pp < ) when the quantum-confined carriers dominate the transport. For 

larger doping concentration, the Lorenz numbers become closer to the bulk values when the 

bulk-like carriers become important. When the QD size is too small or the inter-dot distance 

is too large, the Lorenz numbers in QD NCs could be even larger than in Sb2Te3 bulk material, 

as shown in the cases of  )nm5.7,nm5.5(),( =Da   and )nm10,nm6(),( =Da .  

Figure 5(d) shows the doping concentration of ZT in QD NCs with 

)nm8,nm6(),( =Da , )nm5.8,nm6( , and )nm9,nm7( . The maximum ZT reaches ~6.8 

when the doping concentration is 02.0 p  and reaches ~1.2 when the doping concentration is 

010 p  in a QD NC with )nm8,nm6(),( =Da . The former maximum ZT comes from the 

simultaneous reduction of Lorenz number and the lattice thermal conductivity. The latter ZT 

is much smaller than the former one because its Seebeck coefficient is much smaller due to 

cancellation between the negative QDS  and the positive MS , and because the Lorentz 

number at high doping concentration is not significantly lower than its bulk value. In addition, 

the optimal doping concentration changes from 02.0 p  to 0p  when inter-dot distance 
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increases from 8 nm to 10 nm and nm6=a .  

It was shown that the Lorenz number in a QD NC with )nm8,nm6(),( =Da  is 

smaller than in both the )nm5.8,nm6(),( =Da  and )nm10,nm6(  cases when 

K350<T  for 05.0 pp =  in Fig. 4(c) and for 04 pp <  at K300=T  in Fig. 5(c). To 

search for the optimal structural parameters to minimize the Lorenz number, Figure 6(a) 

shows the bandwidth dependences of the Lorenz number and TL p σκ /+  for different size 

of QD at nm6=a  and nm7  in comparison with the Sb2Te3 bulk material when 

K300=T  and 05.0 pp = . When the bandwidth is close to zero, which means that the 

bulk-like carriers are dominant, slight increases of Lorenz number is found. The minimum of 

the Lorenz number is found at a bandwidth of Tk B4.2  for both the nm6=a  and 

nm7=a  cases. However, the minimum of TL p σκ /+  is shifted to a bandwidth of 

Tk B2.3  for nm6=a  and to Tk B4.4  for nm7=a . 

The minimum of Lorenz number which comes from the competition between the 

quantum-confined carriers and bulk-like carriers strongly affect ZT. Figures 6(b) and 6(c) 

show the dependence of ZT on the bandwidth and inter-dot distance for different QD size and 

doping concentrations at K300=T . The maxima of ZT are found: 1) when the bandwidth 

equals to Tk B9.3  (D-a equals to nm2 ) for nm6=a  and 05.0 pp = ; 2) when the 

bandwidth equals to Tk B2.3  (D-a equals to nm3.2 ) for nm6=a  and 0pp = ; 3) when 

the bandwidth equals to Tk B1.3  (D-a equals to nm7.1 ) for nm7=a  and 05.0 pp = . 

These maxima of ZT with bandwidth are consistent with the minimum of TL p σκ /+  

shown in Fig. 6(a). Figure 6(d) shows ZT as a function of the chemical potential for different 

inter-dot distances at K300=T  when nm6=a . We find that the optimal ZT shifts to 
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higher chemical potential, and the value of ZT decreases when the inter-dot distance 

increases.  

In Fig. 6 we clearly show that there exist optimal structural parameters that result in 

optimal bandwidth to maximize ZT in Bi2Te3/Sb2Te3 QD NCs. When QD size nm6=a  and 

D-a is around nm2 , the ZT reaches its maximum due to the minimization of the Lorentz 

number and the reduction of the lattice thermal conductivity.  

 

VI. CONCLUSIONS 

From the existence of an optimal bandwidth in a narrow conduction band for 

maximizing the thermoelectric figure of merit, we performed detailed calculations in this 

paper to search for the optimal ZT in Bi2Te3/Sb2Te3 quantum dot nanocomposites with Bi2Te3 

QDs uniformly embedded in a Sb2Te3 matrix. A two-channel electrical transport model that 

includes both the narrow miniband transport by the quantum-confined carriers and the 

background transport by the bulk-like carriers was used to calculate the electrical transport 

properties in QD NCs, and the modified effective medium approximation model was used for 

the phonon transport. Simultaneous decrease of the lattice thermal conductivity and the 

Lorenz number leads to an enhanced ZT in QD NCs when the Seebeck coefficient is slightly 

decreased. The optimal structural parameters that induce an optimal electronic structure to 

maximize ZT with the consideration of the detailed scattering physics, including phonon 

bottleneck effect, are found in this composite material system. The optimal QD size was 

found to be nm6  while the optimal inter-dot distance depends on the QD size and the 

doping concentration. For a fixed QD size, the maximum ZT is obtained at the minimum of 



 24

Lorenz number, which occurs when the quantum-confined carrier transport overwhelms the 

background transport from the bulk-like carriers. 

 

ACKNOWLEDGMENTS 

    We would like to thank Mr. Xiaobo Li and Dr. Jose Ordonez-Miranda for their 

assistance with the lattice thermal conductivity calculations. This work is supported by 

DARPA (Contract N66001-10-C-4002, managed by Dr. Thomas Kenny and Dr. Avi 

Bar-Cohen) and NSF (Grant No. CBET 0846561). 



 25

Table I. Parameters used to calculate the carrier transport coefficients for Bi2Te3.  

 

PARAMETERS VALUE PARAMETERS VALUE 

)( 0
*

QD, mmh  0.08a ω (meV) 13b 

c (km/s) 2.95a ϕ (eV) 15c 

ρ (g/cm3) 7.86a )( 0εε s
d 168e 

)( 0εε∞
d 50f 

gE (meV) 130g 

a in Ref. 45. 

b 6.2~14.9 in Ref. 45. 

c 9.5 in Ref. 45, 35~40 in Ref. 44. 

d ε0 is the permittivity of free space. 

e 75~290 in Ref. 45. 

f 50~85 in Ref. 45. 

g Ref. 45, room temperature.
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Table II. Parameters used to calculate the carrier transport coefficients for Sb2Te3.  

 

PARAMETERS VALUE PARAMETERS VALUE 

*
M,hm  ( 0m ) 0.057a ω (meV) 13b 

*
M,em  ( 0m ) 0.057 ϕ (eV) 15 

c (km/s) 2.9a )( 0εε s
c 168d 

ρ (g/cm3) 6.505a )( 0εε∞
c 30e 

gE (meV) 210f   

a in Ref. 45. 

b 9.6~20.9 in Ref. 45. 

c ε0 is the permittivity of free space. 

d 36.5~168 in Ref. 45. 

e 29.5~53 in Ref. 45. 

f Ref. 45, room temperature. 
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Table III. Parameters at room temperature used to calculate the lattice thermal conductivity of 

QD NCs. 

 

MATERIAL bulk,pκ ( W/mK ) vc 106(J/ m3K) gv ( m/s) MFP (nm) 

Bi2Te3 1.55 0.5 212 43.7 
Sb2Te3 1.7 0.53 200 48 
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FIGURE CAPTIONS 

FIG 1. (Color online) Schematic diagram of the Bi2Te3/ Sb2Te3 QD NCs with spherical Bi2Te3 

QDs with size a uniformly embedded in Sb2Te3 matrix material with inter-dot distance D.  

 

FIG 2. (Color online) (a) Electrical conductivity and (b) Seebeck coefficient, of p-type Bi2Te3 

and p-type Sb2Te3 bulk materials plotted as a function of temperature in comparison with the 

experimental data reported in Ref. 43. The doping concentration of Bi2Te3 is 01.1 pp =  and 

that of Sb2Te3 is 07.8 pp = , where 319
0 cm/10=p . 

 

FIG 3. (Color online) (a) The DOS (left Y-axis) of electronic minibands in QD NCs with 

different size of QD and different inter-dot distance, and the DOS of bulk Sb2Te3 material. 

The relationship of the doping concentration (p, right Y-axis) and the chemical potential ( μ ) 

is also plotted for comparison. (b) Bandwidth of quantum-confined carrier miniband ( bW ) 

plotted as a function of inter-dot distance for different size of QD with nm6=a , nm7 , and 

nm8 . (c) Relaxation time of the lowest miniband of quantum-confined carriers ( QD,1τ , left 

Y-axis) and bulk-like holes ( Mh,τ , right Y-axis) in QD NCs with )nm8,nm6(),( =Da , 

)nm5.8,nm6( , and )nm9,nm7( , in comparison with the carrier relaxation time in bulk 

Sb2Te3 bulk material. 

 

FIG 4. (Color online) Temperature dependence of (a) electrical conductivity, (b) Seebeck 

coefficient, (c) Lorenz number, (d) lattice thermal conductivity, and (e) ZT, for  

Bi2Te3/Sb2Te3 QD NCs with different QD size a and inter-dot distance D when 05.0 pp = . 
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Calculated transport properties for p-type Sb2Te3 bulk material are also presented for 

comparison. 

 

FIG 5. (Color online) The dependence of (a) electrical conductivity, (b) Seebeck coefficient, 

(c) Lorenz number, and (d) ZT, on the doping concentration for Sb2Te3/Bi2Te3 QD NCs with 

nm6=a  and different inter-dot distance D at K300=T . Calculated transport properties 

for p-type Sb2Te3 bulk material are also presented for comparison. 

 

FIG 6. (Color online) (a) Lorenz number (L, left Y-axis) and TL p σκ /+  (right Y-axis) 

plotted as a function of the electronic miniband width for QD NCs with different size a of 

QDs in comparison with the bulk Sb2Te3 value when K300=T  and 05.0 pp = . (b) 

Bandwidth dependence and (c) D-a dependence of ZT for QD NCs with different size of QD 

and different doping concentration at K300=T . (d) The dependence of ZT on the chemical 

potential for QD NCs with nm6=a  and different inter-dot distances at K300=T . 
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