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We present a detailed analysis of spin-orbit coupling (SOC) in π-conjugated organic materials
and its effects on spin characteristics including the spin relaxation time, spin diffusion length, and
g factor. While π electrons are responsible for low-energy electrical and optical processes in π-
conjugated organic solids, σ electrons must be explicitly included to properly describe the SOC.
The SOC mixes up- and down-spin states, and in the context of spintronics, can be quantified by an
admixture parameter in the electron and hole polaron states in π-conjugated organics. Molecular
geometry fluctuations such as ring torsion, which are common in soft organic materials and may
depend on sample preparation, are found to have a strong effect on the spin mixing. The SOC-
induced spin mixing leads to spin flips as polarons hop from one molecule to another, giving rise to
spin relaxation and diffusion, which are examined by the time-dependent perturbation theory and
density-matrix theory. The spin relaxation rate is found to be proportional to the carrier hopping
rate, or equivalently, carrier mobility. The spin diffusion length depends on the spin mixing and
hopping distance but is insensitive to the carrier mobility. An applied electric field causes spin drift
and gives rise to upstream and downstream spin diffusion lengths in the hopping-conduction regime.
The SOC influences the g factor of the polaron state and make it deviate from the free-electron value.
The deviation is due to the mixing of different orbitals in the polaron state, which does not include
the spin mixing within a same orbital, and therefore underestimates the SOC strength. In particular,
the g factor is not sensitive to the molecular geometry fluctuations, where the spin mixing within a
same orbital is dominant. The SOCs in tris-(8-hydroxyquinoline) aluminum (Alq3) and in copper
phthalocyanine (CuPc) are particularly strong, due to the orthogonal arrangement of the three
ligands in the former and Cu 3d orbitals in the latter. The theory quantitatively explains the recent
measured spin diffusion lengths in Alq3 from muon spin rotation and in CuPc from spin-polarized
two-photon photoemission.

PACS numbers: 72.80.Le, 71.70.Ej, 72.25.Rb, 76.30.Pk

I. INTRODUCTION

Organic spintronics combines the advantages of
spintronics1 and low-cost fabrication of organic devices
and has advanced rapidly since the discovery of large
magnetoresistance in ferromagnet-organic-ferromagnet
structures.2,3 Weak spin-orbit couplings (SOCs) and hy-
perfine interactions (HFIs) are frequently invoked as one
of major virtues of organic spintronics.4 To date, how-
ever, there is little quantification of these interactions
in individual organic materials, which prevents direct
comparison among different organics and quantitative
understanding of spin relaxation and transport in or-
ganic materials. While the HFI in an organic material in
principle can be directly measured by the nuclear mag-
netic resonance and electron spin resonance (ESR) ex-
periments, the SOC is not directly measurable and its
meaning in the context of organic spintronics is often
unclear. Although all organic materials contain the C
element, which has a relatively small atomic SOC, many
organic materials studied for spintronic applications also
contain heavier elements, such as O in poly[2-methoxy-
5-(2’-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV),
O, N, and Al in tris-(8-hydroxyquinoline) aluminum
(Alq3), S in sexithienyl (T6), and Cu in copper phthalo-
cyanine (CuPc), which have stronger atomic SOCs, as
listed in Table I.5 There is no systematic way available
to estimate different elements’ contributions to the total

TABLE I: Atomic SOC strengths of common elements in or-
ganics.

Element Orbital ξ (cm−1)
C 2p 11
N 2p 76
O 2p 151
Al 3p 112
S 3p 382
Cu 3d 829

SOC in a given organic. Another complication is that
in organic solids the organic molecules or oligomers are
usually packed differently because organics are flexible
and their geometry strongly fluctuates.6 To meaningfully
compare experiments, one needs to know to what extent
the packing or the geometry variation can influence the
SOC. Thus a good SOC measure that is relevant to spin-
tronics and can be systematically evaluated in individual
organics is acutely needed.

Understanding spin relaxation can help harness the
spin degree of freedom effectively in device structures.
While spin relaxation in inorganic metals and semicon-
ductors are well understood, thanks largely to the clas-
sic and rigorous works by Elliott and Yafet (EY)7 and
D’yakonov and Perel’ (DP),8 very few studies of spin re-
laxation in organics were carried out, especially relax-
ation caused by the SOC. Theories developed so far are
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usually primitive, inadequate, and sometimes even in-
valid. Because of the lack of systematic theoretical stud-
ies on organics in literature, theories for crystalline in-
organic semiconductors and for isolated molecules in the
ESR literature9 have been frequently used to estimate
important parameters such as spin lifetimes and spin dif-
fusion lengths in highly disordered organic solids with
little justification. Such a casual use of existing theo-
ries resulted in wildly inconsistent estimates from differ-
ent groups. For example, the spin lifetime estimated for
Alq3 ranges from 10−6 s to 1 s.3,10–12 One must keep in
mind that EY and DP theories were developed for crys-
talline semiconductors and the corresponding expressions
may not be applicable to the organic materials used in
organic spintronic devices, which are dense films of ran-
domly orientated conjugated oligomers or molecules. Nor
can the spin relaxation theories of immobile electrons on
isolate organic molecules9,13 be directly applicable to the
organic solids, for electrons (or, more precisely, polarons
– electrons with local lattice distortions) in the organic
solids are mobile. Thus, it is imperative to establish sys-
tematic and rigorous theories that consistently describe
spin relaxation in organic solids. Experimentally, carrier
spin relaxation times (longitudinal T1 and transverse T2)
in organics can be measured by electrically detected spin
resonance.14

The spin diffusion length poses a constrain on the chan-
nel length of a spintronic device and has recently been
directly measured by muon spin rotation in Alq3

15 and
by spin-polarized two-photon photoemission in CuPc.16

These measurements provide an excellent opportunity to
compare theory with experiment. In literature, the for-
mula Ls =

√
DT1 with Ls and D being the spin diffu-

sion length and carrier diffusion constant, is often used
to argue that the spin diffusion length can be greatly
enhanced if the carrier mobility is improved. This ar-
gument tacitly assumes that D and T1 are independent
of each other, which is questionable, for, fundamentally,
the carrier spin relaxation must be closely related to the
transport properties of the carriers, such as mobility.7,8

In organics devices, the carrier density is usually low
and the electric field can be large. The electric field is
found to significantly affect spin diffusion and spin injec-
tion in inorganic semiconductors.17 The major difference
between inorganic and organic solids is that electrical
transport is via band conduction in the former and car-
rier hopping in the latter. It is interesting to know how
the electric field affects spin diffusion length in the hop-
ping regime. This understanding is crucial to describe
the device characteristics and to manipulate spin by us-
ing the electric field, or equivalently, bias voltage.

HFIs can cause spin relaxation and diffusion as
well.18,19 The HFI implies isotope effects, which are found
in PPV20 but not in Alq3,

21 indicating that the rela-
tive importance of SOC and HFI varies among individ-
ual organic materials. Because of their different natures,
the SOC and HFI will lead to different temperature and
magnetic-field dependences of spin relaxation and diffu-

sion. Therefore it is valuable to establish the correspond-
ing temperature and magnetic-field dependences caused
by the SOC and HFI, which can be used to determine the
dominant spin-relaxation mechanisms experimentally in
individual organics.
The g factors of electron and hole polarons in organic

materials are influenced by the SOC and can be measured
by ESR.9 The measured g factor in disordered organic
solids is an average over random orientations of oligomers
or molecules. Since the g-factor deviation depends on the
SOC, it is natural to ask whether the g-factor deviation
can be used to adequately characterize the SOC in or-
ganics.
Here we present a comprehensive study of the SOC and

address all the issues enumerated above. We also com-
pare our theoretical results with relevant experiments in
literature whenever possible. Some preliminary results
of this work have been reported in a short paper.22 This
article is organized as follows. After the introduction,
we study the SOC and evaluate its strengths in various
organics in Sec. II. Then we use the perturbation and
density-matrix theories and provide rigorous results on
spin relaxation in Sec. III and spin diffusion length in
Sec. IV. We examine the electric-field effect on spin dif-
fusion in the hopping regime in Sec. V. In Sec. VI, we
analyze the g-factor deviation in disordered organic solids
due to the SOC. Finally we summarize our results in Sec.
VII.

II. SPIN-ORBIT COUPLING IN ORGANICS

In π-conjugated organics the electronic structure is de-
rived from sp2 hybridization of the C atoms with the
sp2 orbitals forming σ bonds and pz orbitals forming π
bonds. The electrical transport and optical properties
are essentially controlled by the π electrons, for σ elec-
trons are several eVs away in energy from the valence
electrons. Thus most models for conjugated organics con-
sider only π electrons explicitly, such as the well-known
Su-Schrieffer-Heeger model.23 These π-electron models,
however, become inadequate in studying the SOC be-
cause, by definition, the SOC allows exchange between
orbital and spin angular momenta. By neglecting the
σ orbitals, i.e. the px and py orbitals, the orbital an-
gular momentum is completely quenched and so is the
SOC.24,25 Hence one must explicitly take into account
the σ orbitals when studying the SOC in organics. In
fact, the σ orbitals are also needed to account for the
HFI of the π electrons.26 Without the σ orbitals, the
isotropic HFI of π electrons would be zero.
Similar situation occurs in inorganic semiconductors

like GaAs,27 where the conduction band is formed pri-
marily from the s orbital, which does not have any or-
bital angular momentum or SOC. The finite SOC of
conduction-band electrons comes from the valence band,
which is comprised of p orbitals. Just as one cannot
confine oneself to the s orbitals in studying the SOC in
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semiconductors, one cannot study the SOC from the pure
π-electron models in organics.

A. Fictitious atom

For clarity we first consider a fictitious atom in a 2p
state which is subjected to a potential field that lowers
the energy of the pz orbital relative to px and py by ∆,
mimicking the situation that the σ orbitals have a higher
energy than π orbitals. The atomic SOC is HSO = ξl ·
s. The spin quantization axis is assumed to be along
the z-axis and coincide with the pz orbital. From the
perturbation theory, the doubly degenerate eigenstates
with the lowest energy are

|+〉 = |pz ↑〉+ ξ

2∆
|(px + ipy) ↓〉, (2.1)

|−〉 = |pz ↓〉 − ξ

2∆
|(px − ipy) ↑〉. (2.2)

The energy correction due to the SOC, to the second
order of ξ, is

δE = −ξ
2

∆
. (2.3)

The two states remain degenerate as required by the
time-reversal symmetry. We see that the SOC mixes up-
and down-spin in an eigenstate and renders the spin not a

good quantum number. We can define the dimensionless
measure of SOC as the admixture of up- and down-spin
in an eigenstate,

γ2 =
ξ2

2∆2
. (2.4)

This measure reflects not only the atomic SOC (ξ) but
also the π-σ energy splitting ∆. It follows that the larger
energy difference between π and σ orbitals, the smaller
the effective SOC.
In organic solids experimentally studied, the orienta-

tion of individual oligomers or molecules (or, equiva-
lently, orbitals) are random. However, the spin orien-
tation is well defined, determined by either an applied
magnetic field or the magnetization of the ferromagnetic
electrode. Thus in general, the π orbital in an organic
can be oriented along an arbitrary direction (θ1, φ1) with
respect to the spin quantization axis. In this case, the
local π orbital, p′z, and the other two local orbitals can be
expressed as linear combinations of the three p orbitals
for (θ1, φ1) = (0, 0),

p′z = sin θ1 cosφ1px + sin θ1 sinφ1py + cos θ1pz,(2.5)

p′x = cos θ1 cosφ1px + cos θ1 sinφ1py − sin θ1pz,(2.6)

p′y = − sinφ1px + cosφ1py. (2.7)

The eigenstates with the lowest energy, after including
the SOC, are

|+′〉 = |p′z ↑〉+ ξ

2∆

[

− i sin θ1|p′y ↑〉+ eiφ1 |p′x ↓〉+ i cos θ1e
iφ1 |p′y ↓〉

]

, (2.8)

|−′〉 = |p′z ↓〉+ ξ

2∆

[

i sin θ1|p′y ↓〉e−iφ1 |p′x ↑〉+ i cos θ1e
−iφ1 |p′y ↑〉

]

. (2.9)

It is readily to verify that |+′〉 and |−′〉 are orthogonal,
〈+′|−′〉 = 0. And 〈+′|+′〉 = 〈−′|−′〉 = 1 + ξ2/2∆2.
The expectation values of the spin operator σ̂z in these

two states are

p+ = 〈+′|σ̂z |+′〉 = 1− ξ2

2∆2
cos2 θ1, (2.10)

p− = 〈−′|σ̂z |−′〉 = −
(

1− ξ2

2∆2
cos2 θ1

)

. (2.11)

In Appendix A, |+′〉 (|−′〉) is shown to have the maxi-
mal expectation value of σ̂z (−σ̂z) in any linear combina-
tion of |+′〉 and |−′〉, and therefore is the quasi up-spin
(down-spin) state.
Again in Eqs. (2.8) and (2.9) the SOC mixes up-spin

and down-spin in an eigenstate, and its admixture is

γ2↑↓ =
( ξ

2∆

)2 1

2

[

cos2 θ1 + 1
]

. (2.12)

In addition, the SOC also mixes orbitals with a same
spin,

γ2↑↑ =
( ξ

2∆

)2 1

2
sin2 θ1. (2.13)

Since the SOC is an intrinsic material property, which
should not depend on the molecular orientation, a more
suitable SOC measure can be constructed as

γ2 = γ2↑↑ + γ2↑↓ =
ξ2

2∆2
, (2.14)

which is the combination of the orbital mixing and spin
mixing and independent of the molecular orientation.

B. First-principles approach for real molecules

Now we consider real organic molecules. In the con-
text of spintronics, it is the carrier or polaron whose
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spin-dependent properties really matter. Thus we fo-
cus on the highest occupied molecular orbitals (HOMOs)
of negatively charge and positively charged molecule or
oligomer, which correspond to the electron polaron and
hole polaron states. Note the HOMO here is half filled be-
cause of the presence of the carrier (polaron) and should
not be confused with the completely filled HOMO in an
intrinsic molecules. The total Hamiltonian of an organic
molecule can be written as

H = H0 +HSO = H0 +
∑

i

ξili · si, (2.15)

where H0 is the Hamiltonian without the SOC and HSO

is the summation of all atomic SOC contributions. Be-
cause of the generally weak atomic SOC strengths com-
pared to bonding energies, in most first-principles cal-
culations for organic materials, the SOC is completely
neglected and the obtained eigenstates are for H = H0.
In general an eigenstate of H0, which satisfies

H0|ψk〉 = Ek|ψk〉, can be expressed in terms of the
atomic orbitals,

|ψk〉 =
∑

iα

c
(k)
iα |φ(α)i 〉, (2.16)

where k is the index of eigen levels, i is the atom index

and α the orbital index, |φ(α)i 〉 are atomic orbitals at the

ith molecule, and φ(α) = 2s, 2px, 2py, 2pz for O, N, C,

φ(α) = 1s for H, and φ(α) = 3s, 3px, 3py, 3pz for S and
Al. These atomic orbitals are not orthogonal with one
another and the normalization condition is

∑

iα

∑

jα′

c
(k)
iα c

(k)
jα′S

(αα′)
ij = δkk′ , (2.17)

where

S
(αα′)
ij = 〈φ(α)i |φ(α

′)
j 〉 (2.18)

is the overlap integral between atomic orbitals.

Once the HSO is included, for the HOMO, denoted as
|ψ0〉, the eigenstate for the quasi up-spin, according to
the perturbation theory, is

|ψ0+〉 = |ψ0 ↑〉 −
∑

k 6=0σ

〈ψkσ|
∑

i ξili · si|ψ0 ↑〉
Ek − E0

|ψkσ〉

= |ψ0, ↑〉 −
1

2

∑

k 6=0

〈ψk|
∑

i ξiliz|ψ0〉
Ek − E0

|ψk ↑〉 − 1

2

∑

k 6=0

〈ψk|
∑

i ξi(lix + iliy)|ψ0〉
Ek − E0

|ψk ↓〉. (2.19)

Similarly, the eigenstate for the quasi down-spin is

|ψ0−〉 = |ψ0 ↓〉+ 1

2

∑

k 6=0

〈ψk|
∑

i ξiliz|ψ0〉
Ek − E0

|ψk ↓〉 − 1

2

∑

k 6=0

〈ψk|
∑

i ξi(lix − iliy)|ψ0〉
Ek − E0

|ψk ↑〉. (2.20)

Using the relation l̂iqp
i
r = iǫqrsp

i
s, where l̂iq is the q com-

ponent of the angular momentum operator for the ith
atom and ǫqrs is antisymmetric unit tensor of rank three,
we can express the HOMO level as

|ψ0+〉 = |ψ0 ↑〉+
∑

iα

[

aiα|φ(α)i ↑〉+ biα|φ(α)i ↓〉
]

, (2.21)

and the spin admixture can be computed via

γ2 = γ2↑↑ + γ2↑↓ ≡
∑

ij

(a∗iαajα′ + b∗iαbjα′)S
(αα′)
ij . (2.22)

To verify the validity of the above approach, we
consider a benzene molecule and use SIESTA,28 which
will be employed to perform first-principles calculations
throughout this paper, to obtain all |ψk〉. We fix the spin
quantization axis along the z-axis and rotate the benzene

molecule with respect to the C3-C6 axis. Figure 1 plots
γ2↑↑ and γ2↑↓ for the HOMO in both negatively and posi-
tively charged benzene as a function of the rotation angle
θ. We see that γ2↑↓ and γ2↑↑ vary with θ approximately

as ∼ (cos2 θ + 1)/2 and ∼ sin2 θ. The summation, how-
ever, is a constant and independent of θ. Thus spin ad-
mixture γ2 can be reliably evaluated from first-principles
approaches.

C. CuPc

Some π-conjugated organics studied for organic spin-
tronics contain transition-metal ions, whose d electrons
can have a very strong SOC. One representative exam-
ple is copper phthalocyanine (CuPc), where the valence
of Cu is 2+ and the electron configuration is 3d9. To
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FIG. 1: (color online) Spin admixture γ2 as a function of θ for
the electron (upper panel) and hole (lower panel) polarons in
benzene. Circles and squares are the spin-mixing and orbital-
mixing contributions, γ2

↑↓ and γ2

↑↑, respectively. Triangles are
the summation of the two contributions. The dashed line in
the upper panel plots the function of γ2(1 + cos2 θ)/2.

account for strong electron correlations in the 3d or-
bitals, sophisticated corrections must be included in first-
principles calculations, which inevitably obscure the dis-
cussion of the spin mixing. Instead, we use the ligand-
field theory29 to evaluate spin admixture γ2 in CuPc.
CuPc has a planar structure (shown in Fig. 2), which

can be regarded as a cubic structure with a very strong
tetragonal distortion. For a strong ligand such as ph-
thalocyanine, in a cubic structure, the 5-fold degenerate
3d orbital splits into a 3-fold degenerate t2g orbital and a
2-fold degenerate eg orbital. Under a tetragonal distor-
tion, the eg orbitals further split, with dx2−y2 having a
higher energy than dz2 . This situation is very similar to
that of high-Tc superconducting copper oxides.
The 3d9 configuration means a hole in the dx2−y2 or

E′′ orbital. Since the SOC couples 3d orbitals with dif-
ferent magnetic quantum numbers, the polaron states at
dx2−y2 , after taking into account the SOC, become

|E′′+〉 = |dx2−y2 ↑〉+ iξCu

∆1
|dxy ↑〉

+
ξCu√
2∆2

| − 1 ↓〉, (2.23)

|E′′−〉 = |dx2−y2 ↓〉 − iξCu

∆1
|dxy ↓〉

+
ξCu√
2∆2

|1 ↑〉. (2.24)

Here ∆1 and ∆2 are the energy differences between
3dx2−y2 and 3dxy and between 3dx2−y2 and 3dyz. As
shown in Fig. 2, 3dxy and 3dyz have slightly different
energies. |1〉 and | − 1〉 are 3d orbitals with magnetic
quantum number of 1 and −1,

|1〉 = − 1√
2
(dzx+ idyz), |− 1〉 = 1√

2
(dzx− idyz). (2.25)

The covalence bonding between the Cu2+ ion and four
central N atoms in phthalocyanine in CuPc delocalizes
the wave function of an eigenstate from the Cu ion over
to the ligand,

dx2−y2 → ηdx2−y2+
1

2

√

1− η2(σ1−σ2+σ3−σ4). (2.26)

where σi (i = 1, 2, 3, 4) is the atomic orbital of ith N
atom and the linear combination of σi in the parenthesis
has the same symmetry as the dx2−y2 orbital. Here pa-
rameter η measures how much the electron wave function
spreads into the N atoms due to the covalence bonding:
the closer η to 1, the more confined the wave function
to the Cu ion. Since the atomic SOC of N is negligible
compared to that of Cu, the bonding between Cu2+ and
the ligand leads to an effective SOC in CuPc,

ξ̃Cu = η2ξCu. (2.27)

The spin admixture in |E′′〉, with the covalence bond-
ing included, is

γ2 =
( ξ̃Cu

∆1

)2

+
1

2

( ξ̃Cu

∆2

)2

. (2.28)

According to literature,30 ∆1 = 31, 700 cm−1, ∆2 =
29, 000 cm−1, and η2 = 0.79. Using these values, we
obtain the spin admixture parameter in CuPc γ2 =
6.8× 10−4.

When the normal of the CuPc plane is tilted at (θ, φ)
with respect to the spin quantization axis, the quasi up-
and down-spin states become
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FIG. 2: Molecular structure of CuPc and orbital pattern for
a single d electron in a field of tetragonal symmetry.

|E′′+〉 = |dx2−y2 ↑〉+ ξ̃Cu

∆1

(

i cos θ|dxy ↑〉+ i sin θeiφ|dxy ↓〉
)

+
1

2
√
2

ξCu

∆2

(

− sin θ| − 1 ↑〉 − sin θ|1 ↑〉

+ (1 + cos θ)eiφ| − 1 ↓〉 − (1− cos θ)eiφ|1 ↓〉
)

, (2.29)

|E′′−〉 = |dx2−y2 ↓〉+ ξ̃Cu

∆1

(

− i cos θ|dxy ↓〉+ i sin θe−iφ|dxy ↑〉
)

+
1

2
√
2

ξCu

∆2

(

sin θ| − 1 ↓〉+ sin θ|1 ↓〉

+ (1 + cos θ)e−iφ|1 ↑〉 − (1− cos θ)e−iφ| − 1 ↑〉
)

. (2.30)

It is readily verified that the spin admixture for |E′′±〉
in Eqs. (2.29) and (2.30), after including both the spin
and orbital mixings, is identical to that given by Eq.
(2.28). These wave functions will be used to evaluate
spin-conserving and spin-flip hopping rates in Sec. IV.

D. Effect of molecular geometry

Simple π-conjugated organics tend to form planar
structures, such as benzene and polyacetylene. In com-
plex organic molecules, however, geometry hindrance and

bonding constrains can make the structure non-planar.
In addition, organic materials are flexible and the relative
orientation between different parts in a molecule can fluc-
tuate. To capture the essence of this seemingly tedious
effect, we consider two simple cases. One is a molecule
consisting of the two fictitious atoms introduced in Sec.
II.A; and the other is a twisted biphenyl. In the former,
the px orbitals of the two atoms are assumed to be paral-
lel and forming a σ bond, and the π overlaps between py
and pz orbitals in the two atoms depend on the orienta-
tion around the σ bond. In the latter, there is a torsion
angle between the two phenyl rings in biphenyl.
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For the molecule consisting of two fictitious atoms, the
Hamiltonian reads

H = H0 +HSO +Ht, (2.31)

where H0 includes orbital energies and the σ-bonding the
coupling between p′x and p′′x of the two atoms, HSO is the
SOC in the two atoms,

HSO = ξ(l1 · s1 + l2 · s2), (2.32)

and Ht is the spin-independent π-π coupling

Ht =
[

tπ cos(θ2 − θ1)(|p′z ↑〉〈p′′z ↑ |+ |p′y ↑〉〈p′′y ↑ |)
+ tπ sin(θ2 − θ1)(|p′y ↑〉〈p′′z ↑ | − |p′z ↑〉〈p′′y ↑ |)

+ H.c.+ (↓→↑)
]

. (2.33)

Here we have used p′q (p′′q ) (q = x, y, z) to represent or-
bitals in the first (second) atom. If we consider H0+HSO

as the unperturbed Hamiltonian and Ht as a perturba-
tion, the zeroth-order wave functions are |±′〉 and |±′′〉
introduced in Eqs. (2.8) and (2.9). Because of the spatial

symmetry, we construct the basis set based on the even
or odd parity,

|E±〉 =
1√
2
(|±′〉+ |±′′〉), (2.34)

|O±〉 =
1√
2
(|±′〉 − |±′′〉). (2.35)

The nonzero matrix elements of Ht between these basis
functions are

〈E+|Ht|E+〉 = 〈E−|Ht|E−〉 = tπ cos(θ1 − θ2),(2.36)

〈O+|Ht|O+〉 = 〈O−|Ht|O−〉
= −tπ cos(θ1 − θ2), (2.37)

〈E+|Ht|O−〉 = −〈E−|H |O+〉

=
ξtπ
2∆

sin(θ2 − θ1). (2.38)

The nonzero matrix element of 〈E+|Ht|O−〉 is due to the
SOC-induced spin mixing. The eigenstate of the system
with the quasi up-spin is

|+̃〉 = |E+〉 −
ξ

4∆
tan(θ2 − θ1)|O−〉

=
1√
2
(|p′z ↑〉+ |p′′z ↑〉) + ξ

2
√
2∆

[

(−i sin θ1|p′y ↑〉 − i sin θ2|p′′y ↑〉) + (eiφ1 |p′x ↓〉+ eiφ2 |p′′x ↓〉)

+ (i cos θ1e
iφ1 |p′y ↓〉+ i cos θ2e

iφ2 |p′′y ↓〉)− tan(θ2 − θ1)

2
(|p′z ↓〉 − |p′′z ↓〉)

]

, (2.39)

and the spin admixture is

γ2 =
ξ2

2∆2
[1 +

1

8
tan2(θ2 − θ1)]. (2.40)

This expression suggests that the SOC is greatly en-
hanced when the two atoms have different orientations
and π orbitals are not aligned. We notice that the term
proportional to tan2(θ1−θ2) originates from spin mixing
within same orbitals, p′z and p′′z .
We carry out a first-principles calculation as described

in Sec. II.B on biphenyl and display γ2 as a function of
the torsion angle θ ≡ θ2 − θ1 between the two phenyl
rings in Fig. 3. We see a strong enhancement of γ2 as
the torsion angle increases, particularly when the angle
is near π/2, where a “singularity” in the SOC seems to
occur as indicated by Eq. (2.39).
We calculate the spin admixture parameter γ2 of elec-

tron and hole polarons in representative organic ma-
terials and list the obtained values in Table II.31 The
molecular geometry of the polaron states is optimized
in the calculations. Among these organics, benzene,
rubrene, poly(p-phenylene) (PPP), and C60 contain only

C (and H). Others contain additional elements: polyani-
line (PANI) and polypyrrole (PPy) have N; T6 has S;
MEH-PPV has O; Alq3 has N, O, and Al; CuPc has
Cu and N; N,N’-bis(n-hepta uorobutyl)-3,4:9,10-perylene
tetracarboxylic diimide (PTCDI-C4F7), a newly synthe-
sized organic with a high electron mobility,32 has N, O,
and F. The explicit wave functions of Eq. (2.21) for the
polaron states allow us to determine contributions from
individual atoms to the total SOC. The SOC in Alq3 is
particularly strong, even larger than T6 and CuPc, which
is due mainly to the orthogonal arrangement of three lig-
ands, as in the case of biphenyl. This geometry effect also
results in a large SOC in C60, where π orbitals in the 60 C
atoms on a sphere cannot maintain a parallel alignment
with one another. The strong geometry dependence of
the SOC suggests that material morphology and growth
condition may lead to very different SOC strengths in
nominally identical organic solids.
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FIG. 3: (color online) Admixture γ2 as a function of tor-
sion angle θ between the two phenyl rings in biphenyl. Green
(light gray) and red (dark gray) circles are for the electron
and hole polarons, respectively. Filled circles describe the to-
tal spin admixture and open circles describe the spin-mixting
contribution. The smooth line is the analytical result from
Eq. (2.40).

TABLE II: Spin admixture γ2 of the electron and hole po-
larons in representative organics.

Material Electron polaron Hole polaron

benzene 1.32×10−7 5.46×10−8

Alq3 1.07×10−3 7.33×10−5

MEH-PPV 2.64×10−7 3.73×10−6

T6 4.54×10−5 2.53×10−6

rubrene 1.06×10−7 1.02×10−7

PANI 1.34×10−7 2.84×10−7

PPP 1.20×10−7 6.61×10−8

C60 1.12×10−6 1.31×10−6

CuPc 6.80× 10−4 6.80× 10−4

PTCDIC4F7 3.59×10−6 1.63×10−5

PPy 6.80×10−7 7.61×10−8

III. SPIN RELAXATION CAUSED BY SOC

Spin relaxation describes an irreversible decay of spin
polarization due to chaotic environmental fluctuations
and limits the operation speed of a spintronic device.
Spin relaxation usually is characterized by two lifetimes,

T1 and T2, or the longitudinal and transverse spin life-
times, which are introduced phenomenologically in the
Bloch Equation,9

dS

dt
= gµBS ×H0 −

Sxex + Syey

T2
− Sz − S0

T1
ez, (3.1)

where H0 is the applied magnetic field, S0 is the equilib-
rium value of S, and eq (q = x, y, z) is the unit vectors
along the q-axis. For carriers in organic solids, as we will
show later, the two spin relaxation times generally are
equal. In this paper, we focus on carrier (mobile electron)
spin relaxation caused by the SOC in disordered organic
systems where electrical transport is due to polaron hop-
ping, for the materials used for organic spintronics are
usually in the form of dense film. We emphasize that the
existing spin relaxation theories for crystalline solids7,8

and for isolated molecule9,13 are not directly applicable
to this situation.

A. Spin-flip and spin-conserving hoppings

The polaron hopping in organic solids in the presence
of the SOC can be symbolically expressed by the follow-
ing Hamiltonian,

H = H0+HSO+V =
∑

is

Eia
†
isais+HSO+

∑

ijs

〈j|V |i〉a†jsais.

(3.2)
Here Ei is the polaron energy at site i and 〈j|V |i〉 is
the hopping integral from site i to site j facilitated by
the electron-lattice interaction. Both Ei and 〈j|V |i〉 are
independent of spin, s =↑, ↓. To elucidate the effect of
HSO on the hopping process, we first consider hopping
between the two molecules with orientations (θ1, φ1) and
(θ2, φ2). The polaron eigenstates of H0 + HSO are |±′〉
at site 1 and |±′′〉 at site 2. Since the “up”-spin polaron
eigenstate |+′〉 contains a small down-spin component,
the hopping from the polaron eigenstate for spin-up |+′〉
to the eigenstate for spin-down |−′′〉 is finite even though
the polaron hopping Hamiltonian V is spin-independent.
We display all four hopping matrix elements between |±′〉
and |±′′〉,

V+′′+′ = 〈p′′z |V |p′z〉 −
iξ

2∆

(

cos θ1〈p′′z |V |p′y〉 − sin θ2〈p′′y |V |p′z〉
)

, (3.3)

V−′′−′ = 〈p′′z |V |p′z〉+
iξ

2∆

(

cos θ1〈p′′z |V |p′y〉 − sin θ2〈p′′y |V |p′z〉
)

, (3.4)

V−′′+′ =
ξ

2∆

(

ieiφ1 cos θ1〈p′′z |V |p′y〉 − ieiφ2 cos θ2〈p′′y |V |p′z〉+ eiφ1〈p′′z |V |p′x〉+ eiφ2〈p′′x|V |p′z〉
)

, (3.5)

V+′′−′ =
ξ

2∆

(

− ie−iφ1 cos θ1〈p′′z |V |p′y〉+ ie−iφ2 cos θ2〈p′′y |V |p′z〉+ e−iφ1〈p′′z |V |p′x〉+ e−iφ2〈p′′x|V |p′z〉
)

. (3.6)
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Here p′q and p′′q (q = x, y, z) are the local p orbitals in the
first and second atoms and their expressions are displayed
in Eqs. (2.5)-(2.7) with corresponding (θi, φi) (i = 1, 2).
These four complex matrix elements can be described by
a spin-independent scalar, V0, and a real vector V =
(Vx, Vy, Vz)

T ,

(

V+′′+′ V+′′−′

V−′′+′ V−′′−′

)

= V01̂ +
∑

q

σ̂qVq, (3.7)

where σ̂q is the Pauli’s matrix. If we assume that when
the two molecules are aligned, (θ1, φ1) = (θ2, φ2) =
(0, 0), hopping takes place only between same orbitals,
〈p′′q |V |p′q′〉 = v0δqq′ , for randomly orientated molecules,
the spin-conserving hopping, after averaging over the
molecular orientation, is

V 2
0 =

1

3
v20 . (3.8)

And the averaged spin-dependent components are

V 2
x = V 2

y = V 2
z =

( ξ

2∆

)2 4

9
v20 . (3.9)

By defining χ2
q as

χ2
q =

V 2
q

V 2
0

=
2

3
γ2 ≡ χ2, (3.10)

the ratio between spin-flip hopping rate to spin-
conserving one is

w+−

w0
=

|V−′′+′ |2
|V+′′+′ |2

= χ2
x + χ2

y =
4

3
γ2, (3.11)

which, as shown in Appendix B, is invariant under any
SU(2) rotation. Thus each polaron hop involves a small
probability of spin flip, which is characterized by the spin
admixture parameter γ2.

B. Two-site system: Time-dependent perturbation
theory

To demonstrate that the spin flip discussed above is
indeed related to spin relaxation, we consider hopping
from site 1 to site 2 using the time-dependent perturba-
tion theory. In this two-site system, the time-dependent
wavefunction can be written as a sum

|Ψ(t)〉 =
4

∑

k=1

ak(t)e
−iωkt|k〉, (3.12)

where |1(2)〉 = |+′ (−′)〉, |3(4)〉 = |+′′ (−′′)〉, and ~ωk is
the polaron energy of |k〉. The time-dependent coefficient
ak(t) satisfies the following equation33

i~
dak
dt

=
∑

m

Vkm(t)am, (3.13)

where Vkm(t) = Vkme
iωkmt with Vkm being the hopping

matrix element, Vkm = 〈k|V |m〉 and ωkm = ωk − ωm.
The nonzero Vkm are V31 = V ∗

13 = V+′′+′ , V42 = V ∗
24 =

V−′′−′ , V41 = V ∗
41 = V−′′+′ , and V32 = V ∗

23 = V+′′−′ .

Suppose, at t = 0, the electron is at state |+′〉, i.e.,
a
(0)
1 = 1 and a

(0)
k = 0 for k 6= 1. Integrating the above

equations, we obtain

a1(t) = a
(0)
1 = 1, a2(t) = a

(0)
2 = 0, (3.14)

a3(t) = a
(1)
3 (t) = −V+′′+′

eiωt − 1

~ω
, (3.15)

a4(t) = a
(1)
4 (t) = −V−′′+′

eiωt − 1

~ω
, (3.16)

where ~ω is the polaron-energy difference between sites
2 and 1.

The expectation values of spin at t = 0 and t are

sz(0) =
1

2

〈+′|σz |+′〉
〈+′|+′〉 =

1− ξ2

2∆2 cos
2 θ1

2
(

1 + ξ2

2∆2

) , (3.17)

sz(t) =
1

2

〈Ψ(t)|σz |Ψ(t)〉
〈Ψ(t)|Ψ(t)〉 =

1− ξ2

2∆2 cos
2 θ1 +

(

|a3(t)|2 − |a24(t)|2
)(

1− ξ2

2∆2 cos
2 θ2

)

+ C

2
(

1 + |a3(t)|2 + |a4(t)|2
)(

1 + ξ2

2∆2

) , (3.18)

where

C = − ξ2

2∆2
sin θ2 cos θ2

(

a∗3(t)a4(t)e
iφ2 + a∗4(t)a3(t)e

−iφ2

)

. (3.19)
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The change in spin, ∆sz ≡ sz(t)− sz(0), due to the polaron hopping is

∆sz(t) =
|a3(t)|2 ξ2

2∆2 (cos
2 θ1 − cos2 θ2)− |a4(t)|2

[

2− ξ2

2∆2 (cos
2 θ1 + cos2 θ2)

]

+ C

2
(

1 + |a3(t)|2 + |a4(t)|2
)(

1 + ξ2

2∆2

) . (3.20)

Now we examine individual terms in Eq. (3.20). First the
cross term C is negligible because 1) it is in third order of
ξ/∆; 2) 〈+′|V |+′〉 and 〈−′|V |+′〉 can have an arbitrary
phase difference and the time average over their product
will become zero; 3) it is averaged to be zero over the
molecular orientation (θ2, φ2). The term proportional of
|a3(t)|2 in the numerator is also zero after averaging the
relative angle between sites 1 and 2. Hence, to the second
order of ξ/∆,

∆sz(t) = − |a4(t)|2
1 + |a3(t)|2 + |a4(t)|2

≃ −|a4(t)|2, (3.21)

where we have used |a3(t)| ≪ 1 and |a4(t)| ≪ 1, as re-
quired by the validity of perturbation theory. Using the
relation limt→∞ sin2 ωt/πtω2 = δ(ω) together with Eq.
(3.16), we obtain the spin relaxation rate in this two-site
system as

−d∆sz
dt

=
d|a4(t)|2

dt
=

2π

~
|V−′′+′ |2δ(ω), (3.22)

which is identical to the spin-flip rate w+− introduced
earlier. This indicates that spin mixing indeed reduces
the expectation value of spin as a polaron hops. In the
above example, the initial state has a pure up-spin and
therefore only spin flip from up to down, w+−, con-
tributes to spin relaxation. Spin flip from down to up,
w−+, will also contributes to spin relaxation if the ini-
tial state contains down-spin component, which will be
automatically included in a more general density-matrix
theory developed in Sec. III.D.

C. Fluctuating-magnetic field approach

Spin relaxation in the ESR literature is often formu-
lated by regarding the environmental fluctuation as a
time-dependent magnetic field, under which the spin dy-
namics is described by the following equation,

dS

dt
=
gµB

~
S × [H0 + h(t)], (3.23)

where H0 is the applied external field and h(t) is a fluc-
tuating field. The fluctuating field has a temporal corre-
lation time τc, beyond which the fluctuations are consid-
ered unrelated,9

hp(t+ τ)hq(t) = δpqh2qe
−|τ |/τc . (3.24)

Based on the perturbation theory, the spin relaxation
lifetimes T1 and T2 are

1

T1
=

(gµB

~

)2(

h2x + h2y

) τc
1 + ω2

0τ
2
c

, (3.25)

1

T2
=

(gµB

~

)2[

τch2z +
1

2

(

h2x + h2x

) τc
1 + ω2

0τ
2
c

]

, (3.26)

where ~ω0 = gµBH0 is the Zeeman energy.
Here we show that this approach can also be used in

the situation of spin relaxation of polarons. If the refer-
ence system is chosen such that the mobile polaron is at
rest, the polaron hopping between different sites can be
regraded as a temporal variation of the environment, or
a local magnetic field hq,

gµBhq = Vq, (3.27)

and for ω0τc ≪ 1, which is usually satisfied in organics
because their small τc. According to Eqs. (3.25) and
(3.26),

1

T1
=

1

T2
=

1

~2

(

|Vx|2 + |Vy |2
)

τc. (3.28)

We emphasize that 1/τc is not the hopping rate, although
they are related. Since hopping can be considered as a
tunneling process between the two polaron states, which
is large when the two states are in-phase, or correlated,
over a long period time. This can be seen from the Fermi
Golden rule,

w0 =
2π

~
|〈p′′z |V |p′z〉|2ρ(E), (3.29)

where ρ(E) represents the density of states in the final
state, which, after taking into account energy broadening
due to the finite correlation time, is

ρ(E) =
~τ−1

c

π

1

E2 + (~τ−1
c )2

, (3.30)

where E is the energy difference between the initial and
final states. For E ≪ ~/τc,

w0 =
2

~2
|〈p′′z |V |p′z〉|2τc. (3.31)

By substituting τc in Eq. (3.28) with Eqs. (3.31), the
spin relaxation time is

1

T1
=

1

T2
=

8

3
γ2w0 = w+− + w−+. (3.32)

Again the spin relaxation rate is proportional to hopping
rate w0 and spin admixture parameter γ2.
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D. Density-matrix theory

Spin relaxation can be more rigorously discussed by
using the density-matrix theory. The hopping among
polaron eigenstates at different sites can be written as
V̂ =

∑

ij V̂ij , where

V̂ij ≡ 〈i± |V |j±〉 = V 0
ij 1̂ +

∑

q

σ̂qV
q
ij . (3.33)

The spin-polarized carrier density can be expressed in
a similar form, ρ̂ =

∑

i ρ̂i with ρ̂i = ρ0i 1̂ +
∑

q σ̂qρ
q
i ,

ρ0i the equilibrium up- or down-spin carrier density in
the absence of spin polarization, and ρqi magnetization at
site i. The density matrix obeys the following Redfield
equation in the interaction representation9,

dρ̂

dt
= − i

~
[V̂ (t), ρ̂(0)]− 1

~2

∫ ∞

0

dτ [V̂ (t), [V̂ (t− τ), ρ̂(0)]],

(3.34)
where ρ̂(0) is the density matrix at t = 0.
To study spin relaxation of carriers, it is useful to in-

troduce the spin-dependent electrochemical potentials,
which deviate from the Fermi level in the presence of
spin polarization of carriers. Spin-dependent electro-
chemical potentials suggest that up- and down-spin car-
riers are distinguishable and can reach their own quasi-
equilibrium states, which are justified when the spin life-
time is long. While the (spin-polarized) carrier density
and the (spin-polarized) electrochemical potential are
closely related, the electrochemical varies much slower
in space than the carrier density, which can fluctuate at
the small scale of the Debye length, and is therefore ad-
vantageous in describing transport. For the Boltzmann
distribution,34

ρqi = ρ0iµ
q
i /kBT, (3.35)

where kB is the Boltzmann constant and T the tem-
perature, and µq

i is the splitting in spin-polarized elec-
trochemical potentials along the q-axis. As the spin-
polarized chemical density, the spin-polarized electro-
chemical potential can be written as µ̂i = µ0

i 1̂+
∑

q σ̂qµ
q
i .

The matrix form is necessary when a common spin quan-
tization axis in a system cannot be defined, e.g., when
spin precession occurs. As a result, Eq. (3.34) can be
rewritten as

∑

i

ρ0i
dµq

i

dt
=

2

~2

∑

ijrqsαβ

(α|σ̂q |β)(β|[[σ̂r , σ̂q], σ̂s]|α)

× Lij
qq(ω)ρ

0
jµ

s
j , (3.36)

where α and β represent spin and α(β) =↑ (↓), ~ω is the
energy difference between sites i and j, and

Lij
qq(ω) =

∫ +∞

0

V q
ji(t)V

q
ij(t+ τ)e−iωτdτ. (3.37)

The spin-conserving hopping rate can be also expressed
in terms of the temporal correlation function,13

w0
ij =

1

~2

∫ +∞

0

V ji
0 (t+ τ)V ij

0 (t)ei(Ej−Ei)τ/~dτ, (3.38)

and Lij
qq(ω) = χ2w0

ij according to Eq. (3.10). Equation
(3.36) is then reduced to

ρ0i
dµq

i

dt
=

∑

j

[(1−χ2)ρ0jw
0
jiµ

q
j − (1+χ2)ρ0iw

0
ijµ

q
i ]. (3.39)

In the absence of electric field, the detailed balance re-
quires ρ0iw

0
ij = ρ0jw

0
ji, and the above equation is further

simplified,

ρ0i
kBT

dµq
i

dt
=

∑

j

Z−1
ij [(1 − χ2)µq

j − (1 + χ2)µq
i ], (3.40)

where Z−1
ij = ρ0iw

0
ij/kBT = ρ0jw

0
ji/kBT .

To determine the carrier spin relaxation time, we track
the time evolution of a spatially homogeneous spin po-
larization, µq. In this case, Eq. (3.40) reads

dµq

dt
= −

2χ2µqkBT
∑

ij Z
−1
ij

∑

i ρ
0
i

≡ −µq/T1, (3.41)

and the spin relaxation rate is

1

T1
=

8γ2

3

kBT
∑

ij Z
−1
ij

∑

i ρ
0
i

. (3.42)

Since, fundamentally, carrier spin relaxation should be
closely related to carrier’s motion, we establish the re-
lation between the spin lifetime and electrical transport
properties in organics. According to the Einstein rela-
tion, the diffusion constant D and the mobility ν are
related by ν = eD/kBT . Using the Kubo formula for
mobility, the diffusion constant of the system is expressed
as35

D =
kBT

3

∑

q

∫ ∞

0

dte−δt

∫ 1/kBT

0

dλ〈vq(−iλ)vq(t)〉,

(3.43)
where 〈 〉 denotes the average with the weighting func-
tional exp[−(H0+HSO)/kBT ], and δ = 0+ is introduced
to ensure the above expression is convergent as t → ∞.
The velocity operator v can be obtained from

v =
i

~
[H,R] ≡ i

~
[H0 +HSO + V,R], (3.44)

where R =
∑

iRia
†
iai is the polaron position operator.

For localized polarons in the hopping regime, the veloc-
ity operator has nonzero matrix elements only between
different sites,

〈j|v|i〉 = i

~
〈j|V |i〉(Rj −Ri). (3.45)
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Here we neglect all spin-flip terms because they are pro-
portional to the small spin admixture parameter γ. The
DC diffusion constant, in the limit of |Ei − Ej | ≪ ~/τc

D =
1

3

1

Z

∑

i

e−Ei/kBT
∑

j

∑

q

|V 0
ij |2R2

ijρij(E), (3.46)

where Z =
∑

i e
−Ei/kBT . After averaging over the molec-

ular orientations, Eq. (3.46) reduces to

D =
1

6

∑

i ρ
0
iw

0
ijR̄

2

∑

i ρ
0
i

, (3.47)

where R̄ is the average hopping distance. Comparing Eq.
(3.47) with Eq. (3.42), we obtain

T−1
1 = T−1

2 =
8

3
γ2

∑

i ρ
0
iw

0
ij

∑

i ρ
0
i

=
16γ2D

R̄2
. (3.48)

According to Eq. (3.48) and the Einstein relation,
T1 ∝ D−1 ∝ ν−1, i.e., the higher mobility the shorter
spin relaxation time. It is interesting to compare the
above theory with the EY mechanism in crystalline semi-
conductors. While the EY mechanism is is also due to
the SOC-induced spin mixing, the disorientation of spin
occurs in the process of momentum scattering instead of
carrier hopping. Consequently the spin relaxation rate
1/T1 in the EY mechanism is proportional to the mo-
mentum scattering rate 1/τp (τp is the carrier mean free
time). Since in a crystal, the carrier mobility can be writ-
ten as ν = eτp/m

∗ (m∗ is the carrier’s effective mass),
the experimental signature of the EY mechanism in crys-
talline semiconductors is T1 ∝ ν, i.e., the spin relaxation
time is longer for a higher mobility.7 The opposite mobil-
ity dependences of the spin lifetime in crystalline semi-
conductors and in disordered organic solids are due to the
distinct carrier transport mechanisms: band conduction
in the former, where phonon scattering reduces τp and
carrier mobility, and hopping conduction in the latter,
where phonons facilitate electron hopping and enhances

carrier mobility.
Based on the above discussion, we expect that the

spin lifetime will decrease with temperature as the mobil-
ity generally increases with temperature in the hopping
regime. The magnetic field effect should be weak as it
does not affect the spin mixing due to the SOC.

IV. SPIN DIFFUSION LENGTH

The spin diffusion length, which measures how far
a spin imbalance can traverse in the material, plays a
central role in spintronics because it limits the channel
length of spintronic devices. To determine the spin dif-
fusion length in organics, we examine the spatial depen-
dence of spin polarization in a steady state (dµq

i /dt = 0)
from Eq. (3.40). By expanding µq

i over distance,

µq(rj) = µq(ri) +Rji · ∇µq(ri) +
1

2
RjiRji : ∇∇µq(ri),

(4.1)

where Rji = Rj −Ri, and summing over i, Eq. (3.40) is
reduced to

∑

ij

Z−1
ij [−2χ2µq(rj) +

1

6
R2

ij∇2µq(rj)] = 0. (4.2)

Comparing it with the definition of spin diffusion length
Ls,

(∇2 − L−2
s )µq(r) = 0, (4.3)

we find

Ls =
1

4γ

√

√

√

√

∑

ij Z
−1
ij R

2
ij

∑

ij Z
−1
ij

≡ 1

4γ
R̄. (4.4)

This remarkably simple expression suggests that the spin
diffusion length in organic solids is essentially determined
by the spin admixture and average hopping distance
and does not depend on the carrier mobility. Hence in
contrast to the common assumption, the spin diffusion
length cannot be significantly increased by improving the
carrier mobility in organics if the SOC is the main source
of spin relaxation.
Recently spin diffusion lengths were directly measured

by muon spin rotation in Alq3 at low temperatures15 and
by spin polarized two-photon photoemission in CuPc at
room temperature.16 These experiments provide valuable
information on spin transport and allow a direct compar-
ison with theory. Here we analyze the two systems using
the above theory.

A. Spin diffusion in Alq3

According to the muon experiment, the spin diffusion
length decreases as temperature increases and levels off
when the temperature is above 80 K, as shown in Fig.
4. Here we show that the experimental data can be
consistently explained by our theory after noticing that
polarons can take advantage of variable-range hopping
(VRH) at low temperatures.
In disordered systems, VRH is frequently observed at

low temperatures.36 The origin of VRH is that the hop-
ping probability depends on two factors: the electron
wave-function overlap, which decays exponentially over
the hopping distance, and the energy difference between
hopping sites, which tends to be small when the hop-
ping distance is large. The competition between the
two factors results in a temperature-dependent average
hopping distance. The signature of the VRH is that
the conductivity of the material has a temperature de-
pendence of exp−(T/T0)

1/4. When the Coulomb in-
teraction is important, the temperature dependence be-
comes exp−(T/T0)

1/2.37 The average hopping distance
is R̄ ∼ T−1/4,36 or R̄ ∼ T−1/2 for the strong Coulomb
interaction case. The VRH has been observed in organic
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solids38 and biological systems.40 Thus the experimen-
tally measured spin diffusion length in Alq3 is consistent
with Eq. (4.4) in the VRH regime.
To provide a detailed understanding of spin diffusion

in Alq3, we solve transport equations Eq. (3.40) in a
32×32×32 cubic lattice, where each lattice site repre-
sents an Alq3 molecule. A spin imbalance is injected
into the lattice at the edge plane of x = 0, and at the
other edge plane x = 31a (a is the lattice constant), the
spin imbalance is set zero. To avoid possible boundary
effects, we artificially increase γ2 from 0.00107 listed in
Table II to 0.0375 and multiply the numerically obtained
diffusion length by (0.0375/0.0107)1/2 to compare with
experiment. The lattice constant is chosen to be 11.6
Å, similar to the size of the Alq3 molecule. We assume
the hopping rate between sites i and j has the following
Efros-Shklovskii form,37

w0
ij = ν0 exp

[

− 2Rij/ℓ− (Ei − Ej − EC/Rij)/2kBT
]

,

(4.5)
where EC is the Coulomb gap, and ℓ is the polaron de-
localization length and their values are set EC = 0.3 eV
and ℓ = 0.64 Å−1 in the calculations. We assume that
the polaron energy fluctuations are negligible compared
to the Coulomb gap, |Ei−Ej | ≪ EC , and are set zero. In
the numerical calculations, we allow polarons to hop be-
tween any two sites, and therefore VRH is automatically
included in the model. The spin imbalance is found to
exponentially decay over distance, µq(x) ∼ e−x/Ls , and
the extracted spin-diffusion length is plotted in Fig. 4.
We also show in Fig. 4 the averaged hopping distance
R̄ defined in Eq. (4.4). We see an excellent agreement
between the experiment and theory as well as a close cor-
relation between the hopping distance and spin diffusion
length. The leveled spin diffusion length occurs when
the hopping distance reaches the lattice constant a, the
minimal hopping distance possible, as the temperature
increases.
Thus we expect the spin diffusion length in organics

should decrease with temperature relatively slowly, fol-
lowing Ls ∼ T−1/2 or Ls ∼ T−1/4.

B. Spin diffusion in CuPc

The spin diffusion length in CuPc at room temperature
has been measured by the spin-polarized two-photon pho-
toemission. It is found that the polaron mean free path is
about 1 nm and the spin diffusion length, or the spin-flip
length, is about 10 nm. To explain the experiment, we
must examine the hopping among 3d orbitals.
CuPc has an electronic configuration of 3d9, which is

equivalent of one hole in a completely filled 3d shell. In
the hole representation, the electron or hole polaron oc-
cupies |E′′〉 in each molecule and hopping takes place
between these states at different sites.
If we denote the hopping matrix element between

aligned 3d orbitals as V0, the spin-conserving hopping
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FIG. 4: (color online) Spin diffusion length as a function of
temperature in Alq3. Circles are experimental values and the
squares are theoretical values obtained by solving Eq. (3.40)
in steady-state on a 32× 32× 32 lattice with the lattice con-
stant a = 11.5 Å. The average hopping distances are repre-
sented by triangles.

averaged over random orientations of the molecules is

|〈E′′ +′′ |V |E′′+′〉|2 = |〈d′′x2−y2 |V |d′x2−y2〉|2

=
1

4
(|D(2)

22 |2 + |D(2)
2−2|2 + |D(2)

−22|2 + |D(2)
−2−2|2)V 2

0

=
1

5
V 2
0 . (4.6)

Here D
(2)
mm′ is the Wigner D-matrix33 for j = 2 required

to transform dm in one rotation frame to dm′ in another
and its average over molecular orientations is explained
in Appendix C. The spin-flip hopping matrix element can
be written as

〈E′′ −′′ |V |E′′+′〉 = ξ̃Cu

∆1

(

− i sin θ′′eiφ
′′〈d′′x2−y2 |V |d′xy〉

+ i sin θ′eiφ
′〈d′′xy|V |d′′x2−y2〉

)

+

√
2

2

ξCu

∆2

(

cos2
θ′′

2
eiφ

′′〈d′′x2−y2 |V |d′′xy〉

+ cos2
θ′

2
eiφ

′〈1′′|V |d′x2−y2〉

− sin2
θ′′

2
eiφ

′′〈d′x2−y2 |V |1′′〉 − sin2
θ′

2
eiφ

′〈−1′′|V |d′′x2−y2〉
)

,

and the hopping rate, after averaging over molecular ori-
entations, is

|〈E′′ −′′ |V |E′′+′〉|2 =
2

5

[( ξ̃Cu

∆1

)2

+
1

2

( ξ̃Cu

∆2

)2]

V 2
0 . (4.7)

Thus the ratio of the spin-flip hopping to the spin-
conserving one is

|〈E′′ −′′ |V |E′′+′〉|2
|〈E′′ +′′ |V |E′′+′〉|2

=
4

3
γ2. (4.8)
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Since the mean free path, beyond which the carrier
transport is incoherent, in CuPc films is about l = 1 nm,
which is comparable to the size of the molecule (1.4 nm),
we can regard l as the hopping distance and obtain the
spin diffusion length,

Ls =
R̄

4γ
=

l

4γ
= 9.6 nm, (4.9)

which is in excellent agreement with experimental value,
Ls = 10 nm.

Table III summarizes our calculated spin diffusion
lengths for different materials, where DO-PPV refers to
poly(2,5-dioctyloxy-1,4-phenylenevinylene). We assume
that the hopping takes place between nearest neighbors
and thus the spin diffusion lengths correspond to their
high-temperature values. The average hopping distance
is estimated from R̄ = Ω1/3, where Ω is the molecular
volume in the corresponding molecular crystal based on
the X-ray data in literature. Experimentally the spin
diffusion length is directly measured only in Alq3 and in
CuPc. More frequently, the spin diffusion length in or-
ganics is extracted from the magnetoresistance (MR) in
organic spin-valve (OSV) structures and involves some
uncertainties, depending on the fitting expressions used.
These indirect measurements yield Ls = 70 nm in T6

at room temperature,2 45 nm in Alq3 at 11K,3 and 13
nm in rubrene at 0.45 K.38 The values for T6 and Alq3
are in good agreement with the theoretical estimates but
the rubrene value is much smaller than what the theory
predicts. Apart from the experimental uncertainties, it
is possible that the HFI, which is not included in these
calculations, is important in rubrene.

We emphasize that a longer spin diffusion does not
necessarily translate to a larger MR in an OSV. Exper-
imentally, the measured MR values in OSVs with Alq3
scatter over a broad range for different electrodes and
temperatures.3,15 Although a consistent picture of the
MR in OSVs is not yet available, it is fair to say that
the MR may be more sensitive to the spin injection effi-
ciency than the spin diffusion length. In fact, in inorganic
systems, spin injection into a metal is generally more ef-
ficient than into a semiconductor, although the spin dif-
fusion length in a semiconductor is much longer than in
a metal.1 In general, spin injection depend on many ma-
terial properties in a device, including magnetizations of
the ferromagnets and electrical transport properties of
the organic. Since electrical transport in an organic may
strongly depend on the material thickness (for example,
its resistance increases nonlinearly with the thickness),
it is possible that a pronounced MR only appears in an
OSV with the channel length much shorter than the spin
diffusion length. This may explain the much longer es-
timated spin diffusion length of C60 in Table III than
the channel length of C60-based OSVs that show sizable
MR.39

TABLE III: Spin diffusion lengths of the electron and hole
polarons in various organics at room temperature.

Material hopping distance (Å) electron (nm) hole (nm)
benzene 4.9 337 524
Alq3 14.8 11.2 60

DO-PPV 10.1 491 131
T6 12.8 47 201

rubrene 14.1 1083 1103
CuPc 10 10 10
PPP 5.9 426 574
C60 20.0 472 437

PTCDIC4F7 11.3 149 70
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FIG. 5: (color online) Averaged spin imbalance in the y-z
plane as a function of x in a 32 × 32 × 32 cubic lattice for
different electric fields. The spin imbalance is injected at x =
0 and the electric field is along the x-axis. Solid lines, from top
to bottom, correspond to Ea = −0.006, −0.003, 0, −0.003,
and 0.006 V. T = 110 K and γ2 = 0.0375. Other parameters
are the same as in Fig. 4.

V. ELECTRICAL-FIELD EFFECTS ON SPIN
DIFFUSION

Most organic materials in spintronic devices are un-
doped and do not have carriers on their own. All carri-
ers in an organic device are therefore injected from the
electrodes. Thus the electric field in organic devices is
in general significant. In addition, the MR in OSVs is
found to be very sensitive to the bias voltage, suggesting
a strong electric-field effect on spin transport. Since the
MR in OSVs is pronounced only at relatively low volt-
ages (≤ 1 V),2,3,15,38,39 we focus on how spin diffusion is
affected by a small to moderate electric field.

While the distribution of the carrier density in an
organic device structure can be very inhomogeneous,
the electrochemical potential varies slowly in space. In
fact, in equilibrium, the electrochemical potential (Fermi
level) is a constant throughout the device. Similarly,
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FIG. 6: (color online) Spin diffusion length as a function of
electric field. Black and red (gray) circles are upstream and
downstream spin diffusion lengths extracted from numerical
solutions of Eq. (5.2). Black and red (gray) dashed lines plot
Eqs. (5.5) and (5.6). Blue triangles are the average hopping
distance as a function of electric field. Other parameters are
the same as in Fig. 5.

the splitting in the spin polarized electrochemical po-
tentials, which describes spin imbalance of carriers, does
not change as significantly as the spin-polarized carrier
density in device structures and is largely independent
of charge transport, which is controlled by the spin-
independent electrochemical potential µ0 introduced in
Sec. III.D. Thus the effect of electric field can be con-
veniently studied by Eq. (3.39) without explicitly con-
sidering the charge transport. An electric field tilts the
polaron energy difference between two sites, and for elec-
tron polarons, the hopping probability from site i to site
j in the presence of an electric field E can be written as

w̃0
ij = w0

ije
eE·(Ri−Rj)/2kBT ≡ w0

ije
eE·Rij/2kBT , (5.1)

where e is the absolute value of the electron charge. The
presence of an electric field renders ρ0i w̃

0
ij 6= ρ0j w̃

0
ji, and

in the steady-state, Eq. (3.39) becomes

0 =
∑

j

[(1− χ2)ρ0j w̃
0
jiµ

q
j − (1 + χ2)ρ0i w̃

0
ijµ

q
i ]. (5.2)

By expanding the exponential in Eq. (5.1) for the field
with eER̄/kBT < 1 and using Eq. (4.1), the spin imbal-
ance satisfies the following equation,

0 =
∑

j

[−2χ2µq
i −

qR2
ij

6kBT
E · ∇µq

i +
1

6
R2

ij∇2µq
i ], (5.3)

or, equivalently,

∇2µq − q

kBT
E · ∇µq − 16γ2

µq

R̄2
= 0, (5.4)

which resembles the spin drift-diffusion equation ob-
tained in inorganic semiconductors. The electric field

gives rise to a spin-drift term in Eq. (5.4), which leads
to the down- and upstream spin diffusion lengths,

Ld

a
=

[

− q|E|a
2kBT

+

√

( q|E|a
2kBT

)2

+
16γ2a2

R̄2

]−1

,(5.5)

Lu

a
=

[

q|E|a
2kBT

+

√

( q|E|a
2kBT

)2

+
16γ2a2

R̄2

]−1

. (5.6)

For a more detailed understanding, we numerically
solve Eq. (5.2) using the hopping probability of Eq.
(5.1) in the 32 × 32 × 32 cubic lattice. The spin im-
balance also decays exponentially over the distance with
the decay rate strongly depending on the magnitude and
direction of the electric field, as shown in Fig. 5. The
extracted spin diffusion lengths, shown in Fig. 6, confirm
that the presence of electric field results in the upstream
and downstream diffusion lengths. The numerical results
are similar to the analytical results of Eqs. (5.5) and
(5.6), and their quantitative difference is due mainly to
the small field approximation used in deriving Eq. (5.3).
The field-dependent spin diffusion is not caused by the

change in hopping distance, which is negligible and de-
pends slightly on the absolute value of electric field, as
shown in Fig. 6. Rather, it is due to the electric field
induced drift. The electric-field effect on spin diffusion
suggests that a bias voltage can strongly modify the spin
transport behavior and must be included to understand
the MR in OSVs.

VI. g FACTOR IN ORGANIC MATERIALS

The SOC also affects the spin resonance frequency of
the polaron state and makes the g-factor deviate from the
free electron value of ge = 2.0023. Since the g-factor de-
viation can be measured by ESR, the SOC in individual
organics in principle can be characterized by the g-factor
deviation. Thus it is also useful to understand the rela-
tion between the g-factor deviation and spin admixture
γ2.
The g-factor is defined via the Zeeman energy split-

ting between up-spin and down-spin states under a given
magnetic field, B,

HZ = µBB · g · S, (6.1)

where the effective g-factor g is a tensor. The Zeeman
energy contains contribution from both the orbital and
spin angular momenta,

HZ = µBB · (L+ geS). (6.2)

By comparing the two Hamiltonians in the eigen-state
basis set, the g-factor tensor gpq and its deviation from
the free-electron value, δgpq ≡ gpq − geδpq, can be ob-
tained.
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A. The fictitious atom and molecule

First we evaluate the g-factor change due to the SOC
in the fictitious atom introduced in Sec. II.A with its
π orbital oriented along (θ, φ). The eigenstates of π-
electrons, after including the SOC, are |+′〉 and |−′〉 in
Eqs. (2.8) and (2.9). Note that orbitals p′q there are
defined in the local coordinates of the atom (p′z is the π
orbital), which differ by a rotation from the laboratory
coordinates in which Hamiltonian (6.2) is defined. While
one can use Eqs. (2.5)-(2.7) to express p′q in terms of

pq in the laboratory coordinates, a more efficient and
elegant way is to use equalities of rotation operators on
the angular momentum operators. For example,

e−iφLzLxe
iφLz = Lx cosφ+ Ly sinφ, (6.3)

e−iφLzLye
iφLz = −Lx sinφ+ Ly cosφ. (6.4)

This approach becomes particularly useful when dealing
with orbitals with a high angular momentum like 3d or-
bitals. The calculated matrix elements of Hamiltonian
(6.2) between |±′〉 are

µ−1
B 〈+′|HZ |+′〉 = −µ−1

B 〈−′|HZ |−′〉

=
ge
2
Bz +

ξ

∆
(− sin2 θBz + sin θ cos θ cosφBx + sin θ cos θ sinφ), (6.5)

µ−1
B 〈+′|HZ |−′〉 = µ−1

B 〈−′|HZ |+′〉∗

=
ge
2
(Bx − iBy) +

ξ

∆
e−iφ[sin θ cos θBz − (i sinφ+ cos2 θ cosφ)Bx + (i cosφ− cos2 θ sinφ)By](6.6)

Comparing the above matrix with Hamiltonian (6.1) in
the 2× 2 spin space,

HZ =
µB

2

∑

pq

Bpgpqσ̂q (6.7)

we obtain all components of the g-factor tensor,

gxx = ge −
2ξ

∆
(cos2 θ cos2 φ+ sin2 φ), (6.8)

gyy = ge −
2ξ

∆
(cos2 θ sin2 φ+ cos2 φ), (6.9)

gzz = ge −
2ξ

∆
sin2 θ, (6.10)

gxy = gyx =
2ξ

∆
(1− cos2 θ) sin φ cosφ, (6.11)

gxz = gzx =
2ξ

∆
sin θ cos θ cosφ, (6.12)

gyz = gzy =
2ξ

∆
sin θ cos θ sinφ. (6.13)

In disordered organic solids, the molecules are oriented
randomly, and therefore the experimentally measured g-
factor from ESR should be an ensemble average over
different molecular orientations. Since the direction of
an applied magnetic field in ESR is well defined, say
along the z-axis, the measured g-factor deviation would
be δgzz. From Eqs. (6.7)-(6.9), the g-factor deviations,
after the orientation average, are

δgzz = δgxx = δgyy = − 4ξ

3∆
. (6.14)

It is desirable to obtain the averaged g-factor deviation
from an invariant quantity of the g-factor tensor, which

would allow a theoretical determination of the averaged
g-factor deviation by studying a molecule with a single
orientation. We find two invariances from Eqs. (6.7)-
(6.12),

δg ≡ 1

3
(δgxx + δgyy + δgzz) = − 4ξ

3∆
, (6.15)

|δg| ≡
√

∑

pq

g2pq =
2
√
2ξ

∆
, (6.16)

which are independent to the molecular orientation with
the ratio of their magnitudes being

√
2/3. In particular,

δg is identical to the ensemble averaged δgqq.

We see that both δg and |δg| are proportional to the
spin admixture γ introduced earlier. Thus in principle
they can be used to measure the SOC. However, by in-
specting Hamiltonian (6.2), it is clear that the g-factor
deviation comes from mixing between different orbitals.
It does not include contribution from the spin mixing
within a same orbital and therefore may underestimate
the spin mixing effect. This is readily seen in the molecule
consisting two fictitious atoms studied in Sec. II.D. For
the eigenstates of the two-atom molecule, |±̃〉 in Eq.
(2.39), the matrix elements of the Zeeman energy, to the
first order of ξ/∆, is

〈±̃|L+geS|±̃〉 = 1

2
(〈±′|l1+ges1|±′〉+〈±′′|l2+ges2|±′′〉).

(6.17)
Equation (6.16) suggests that the g-factor deviation δg
in this molecule would be the same as that in an isolated
atom. The large spin mixing of the eigenstate Eq. (2.39)
will not be reflected in the g-factor deviation, because
it occurs mainly within a same orbital. Therefore the
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g-factor deviation is not well suited to characterize the
spin mixing in organics.

B. CuPc

The polaron in CuPc occupies the dx2−y2 (E′′) state,
which mixes with dxy and dzx and dyz via the SOC, as
expressed in Eqs. (2.29)-(2.30). The matrix elements of
Hamiltonian (6.2) in the space spanned by the eigenstates
|E′′±〉 are

µ−1
B 〈E′′ + |HZ |E′′+〉 = −µ−1

B 〈E′′ − |HZ |E′′−〉

=
ge
2
Bz +

(4ξ̃Cu

∆1
cos2 θ +

ξ̃Cu

∆2
sin2 θ

)

Bz

+
(4ξ̃Cu

∆1
− ξ̃Cu

∆2

)

sin θ cos θ cosφBx

+
(4ξ̃Cu

∆1
− ξ̃Cu

∆2

)

sin θ cos θ sinφBy, (6.18)

µ−1
B 〈E′′ + |HZ |E′′−〉 = µ−1

B 〈E′′ − |HZ |E′′+〉∗

=
ge
2
(Bx − iBy) + e−iφ

(4ξ̃Cu

∆1
− ξ̃Cu

∆2

)

sin θ cos θBz

+ e−iφ
[4ξ̃Cu

∆1
sin2 θ cosφ+

ξ̃Cu

∆2
(cos2 θ cosφ+ i sinφ)

]

Bx

+ e−iφ
[4ξ̃Cu

∆1
sin2 θ sinφ

+
ξ̃Cu

∆2
(cos2 θ sinφ− i cosφ)

]

By. (6.19)

We obtain the g-factor deviation due to the SOC,

δgzz =
8ξ̃Cu

∆1
cos2 θ +

2ξ̃Cu

∆2
sin2 θ, (6.20)

δgxx =
8ξ̃Cu

∆1
sin2 θ cos2 φ

+
2ξ̃Cu

∆2
(sin2 φ+ cos2 θ cos2 φ), (6.21)

δgyy =
8ξ̃Cu

∆1
sin2 θ sin2 φ

+
2ξ̃Cu

∆2
(cos2 φ+ cos2 θ sin2 φ), (6.22)

δgxy = δgyx

=
(8ξ̃Cu

∆1
− 2ξ̃Cu

∆2

)

sin2 θ sinφ cosφ, (6.23)

δgxz = δgzx

=
(8ξ̃Cu

∆1
− 2ξ̃Cu

∆2

)

sin θ cos θ cosφ, (6.24)

δgyz = δgzy

=
(8ξ̃Cu

∆1
− 2ξ̃Cu

∆2

)

sin θ cos θ sinφ. (6.25)

Again δg and |δg| defined earlier are invariant with re-
spect of any orientation change,

δg =
8ξ̃Cu

3∆1
+

4ξ̃Cu

3∆2
, (6.26)

|δg| =

√

(8ξ̃Cu

∆1

)2

+ 2
(2ξ̃Cu

∆2

)2

. (6.27)

In crystalline CuPc, when the magnetic field is along
the normal of the molecular plane, the g-factor change is

δgzz =
8ξCu

∆1
. (6.28)

When the magnetic field is in the molecular plane, the
g-factor change is

δgxx = δgyy =
2ξCu

∆2
. (6.29)

The experimental values are δgzz = 0.164 and δgxx =
0.05.30

For disordered CuPc films, the averaged g-factor devi-
ations are

δgzz = δgxx = δgyy = δg ≃ 0.088, (6.30)

and |δg| ≃ 0.174.

C. Real organic materials

Using the polaron eigenstates from first-rinciples, Eqs.
(2.19) and (2.20), we can calculate the g-factor deviation
in representative organics via

δgpq = −2
∑

k 6=0

〈ψ0|
∑

i ξilip|ψk〉〈ψk|
∑

j ljp|ψ0〉
Ek − E0

, (6.31)

and determine δg and |δg|.
To test this approach, we first examine δgpq for the

electron and hole polaron states in benzene as a function
of the molecular orientation θ and display the results in
Fig. 7. It is shows that while δgqq depends on the molec-

ular orientation, both δg and |δg| are independent of θ

and the ratio of their magnitudes is close to
√
2/3 as

predicted from Eqs. (6.15) and (6.16). Thus one can
reliably estimate the g-factor deviation in a disordered
organic material from first-principles calculations.
We also study the g-factor deviation as a function of

torsion angle in a twisted biphenyl. We see from Fig.
8 that the averaged δg is virtually independent of the
torsion angle θ except at the angle where the singularity
in SOC takes place. The overall change in δgqq over the
entire range of θ is very small compared to the change in
γ2, as suggested in Eq. (6.17).
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FIG. 7: (color online) g-factor deviation as a function of θ for
the electron (upper panel) and hole (lower panel) polarons in
benzene. θ is defined as in Fig. 1. Diamonds, up-triangles,
and down-triagngles correspond to δgzz, δgxx, and δgyy. Cir-

cles and squares represent δg and |δg|, respectively.
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FIG. 8: (color online) g-factor as a function of the torsion an-
gle in twisted biphenyl for the electron (upper panel) and hole
(lower panel) polarons. Diamonds, up-triangles, and down-
triagngles correspond to δgzz, δgxx, and δgyy. Circles and

squares represent δg and |δg|, respectively.
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TABLE IV: g-factors deviation δg and |δg| for the electron and hole polarons in various organics. The experimental values are
for organics in the form of disordered films.

Material electron δg (|δg|) exp (g − ge) hole δg (|δg|) exp (g − ge)

benzene 0.00035 (0.00078) 0.000541 0.0005 (0.0012) 0.000242

Alq3 0.00075 (0.00347) 0.000943 0.0017 (0.0032) 0.001943

MEH-PPV 0.00046 (0.00100) 0.000544 0.0013 (0.0036)
T6 0.0026 (0.0057) 0.00645 0.00078 (0.00174) 0.000846

PANI 0.00039 (0.00086) 0.00065 (0.0014)
PPP 0.00044 (0.00098) 0.00045 (0.0011)
C60 0.00041 (0.00074) -0.0009847 0.00043 (0.00099) 0.000348

rubrene 0.00045 (0.00093) 0.00048 (0.00096) 0.003449

CuPc 0.088 (0.174) 0.088 (0.174)
PTCDIC4F7 0.0013 (0.0025) 0.00015 (0.0010)

PPy 0.00036 (0.00077) 0.00043 (0.0010)

We then carry out first-principles calculations on real organic molecules. The theoretical values of the disordered

organics and the corresponding experimental values in literature are listed in Table IV. For Alq3, the obtained g-
factor deviation is an average over the HOMO and HOMO±1 levels for the electron (hole) polaron because the two
levels are almost degenerate in energy. The agreement between theory and experiment is overall good with a relative
large discrepancy in rubrene than in other materials. The agreement for Alq3 is particularly encouraging, for the
experimental data of Alq3 are measured in device structures under working conditions.43 The g-factor changes due to
the SOC in organics are generally small, and similar in amplitude except those involving transition metal ions like Cu,
where the g-factor deviation is large. It is worth pointing out that the g-factor deviation in Alq3 is minute compared
to its large spin admixture γ2. This contrast confirms that g-factor underestimates the SOC and therefore is not a
good measure of the spin mixing in π-conjugated organics.

VII. SUMMARY

We present a comprehensive study of the SOC in π-
conjugated organic materials and its effects on the spin
relaxation time, spin diffusion length, and g-factor. To
adequately describe the SOC in π-conjugated organics,
one must explicitly include σ orbitals in addition to π
orbitals. The major effect of the SOC in π-conjugated
organics is that it mixes up- and down-spin states, and
in the context of spintronics, can be characterized by an
admixture parameter in the electron and hole polaron
states. The admixture parameters in individual organics
can be systematically evaluated from first-principles cal-
culations. Among commonly used π-conjugated organics
for spintronic application, the spin admixture parame-
ters can differ by orders of magnitude just like in in-
organic materials, indicating that caution must be taken
when making general statements on the SOC in organics.
Molecular geometry fluctuations, which depend on sam-
ple preparation, are found to have a strong effect on the
spin mixing. This may explain that many spin-dependent
experiments in organic materials are not always repro-
ducible by different groups.
The spin mixing due to the SOC effects spin flips as

polarons hop from one molecule to another, giving rise
to spin relaxation and diffusion. Thus, in disordered or-
ganic solids, the spin lifetime would become longer if the
carrier mobility is reduced, which is opposite to the EY
spin relaxation mechanism in crystalline semiconductors
and metals, where the spin lifetime is proportional to the

materials mobility, although the EY mechanism also orig-
inates from the SOC-induced spin mixing. Another inter-
esting finding is that the spin diffusion length in organics
is largely independent of the carrier mobility and essen-
tially controlled by the spin admixture parameter, sug-
gesting that the spin diffusion length cannot be greatly
enhanced by improving the carrier mobility.
An electric field can significantly affect spin transport

in the hopping regime, leading to upstream and down-
stream spin diffusion lengths. This effect can be used to
control spin transport in organic spintronic devices and
may be responsible to the ubiquitous strong bias depen-
dence of MR observed in OSVs.
The presence of SOC modifies the g-factor of the po-

laron states from its free-electron value. The g-factor
deviation in organics, however, includes only the spin
mixing at different orbitals and therefore tends to under-
estimate the SOC in organics. In particular, the g-factor
deviation is not sensitive to the molecular geometry fluc-
tuations, which mainly affect the spin mixing within a
same orbital.
The SOCs in Alq3 and in CuPc are particularly strong,

due to the orthogonal arrangement of the three ligands
in the former and Cu 3d orbitals in the latter. The spin
diffusion lengths in these systems are directly measured
by muon spin rotations for Alq3 and spin-polarized two-
photon photoemission for CuPc. Both experiments are
quantitatively explained by the SOC-induced spin diffu-
sion.
The other important interaction that influences elec-
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tron spins in organics is the HFI. The relative impor-
tance of the SOC and HFI in organics may vary from
material to material, as indicated by the presence and
absence of the isotope effect in various organics. A quan-
titative study of the HFI and its effect on spin-dependent
properties in organics would help understand the relative
importance of SOC and HFI in individual organic mate-
rials and design organic spintronic structures exploiting
these interactions.
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Appendix A: Quasi up- and down-spin states

Here we show that |+′〉 in Eq. (2.8) has the maximal expectation value of the spin operator σ̂z . An arbitrary linear
combination of |+′〉 and |−′〉 can be generally written as

|θ〉 = cos
θ

2
|+′〉+ sin

θ

2
e−iφ|−′〉, (A1)

and the spin expectation value is

pθ ≡ 〈θ|σ̂z |θ〉 = cos θ
(

1− ξ2

2∆2
cos2 θ1

)

+ sin θ cos(φ1 − φ)
(

− ξ2

2∆2
sin θ1 cos θ1

)

, (A2)

where we have used the matrix elements

〈+′|σ̂z |−′〉 = 〈−′|σ̂z|+′〉∗ = − ξ2

2∆2
sin θ1 cos θ1e

iφ1 . (A3)

To find the maximum of pθ, we determine θ and φ by solving ∂pθ/∂φ = ∂pθ/∂θ = 0. We obtain

φ = φ1, tan θ =
− ξ2

2∆2 sin θ1 cos θ1

1− ξ2

2∆2 cos2 θ1
≃ − ξ2

2∆2
sin θ1 cos θ1, (A4)

and the corresponding maximum of pθ is

pθ = cos θ
(

1− ξ2

2∆2
cos2 θ1

)

+ sin θ
(

− ξ2

2∆2
sin θ1 cos θ1

)

, (A5)

which, to the second-order of ξ/∆, is

pθ = 1− ξ2

2∆2
cos2 θ1 ≡ p+. (A6)

Similarly, p− is the largest spin expectation value along the −z direction. Thus one can regard |+′〉 (|−′〉) as the
quasi up- (down-) spin state.

Appendix B: SU(2) invariance of spin-flip hopping rate

The spin-flip hopping rate is independent of any linear combination, or equivalently, an SU(2) rotation of the
eigenstate |±〉. We denote the four eigenstates, |±′〉 and |±′′〉, after a rotation, become (1′, 2′) in the first molecule
and (1′′, 2′′) in the other. The new hopping matrix becomes

(

V1′′1′ V1′′2′
V2′′1′ V2′′2′

)

=

(

cos θ
2 sin θ

2e
iφ

− sin θ
2e

−iφ cos θ
2

)(

V+′′+′ V+′′−′

V−′′+′ V−′′−′

)(

cos θ
2 − sin θ

2e
iφ

sin θ
2e

−iφ cos θ
2 .

)

(B1)

The new splin-flip hopping probability is

|V1′′2′ |2 = cos4
θ

2
|V+′′−′ |2 + sin4

θ

2
|V−′′+′ |2 + sin2

θ

2
cos2

θ

2
|V+′′+′ − V−′′−′ |2

= |V+′′−′ |2, (B2)

where we have used |V+′′+′ − V−′′−′ |2 = 2|V+′′−′ |2 = 4V 2
z .
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Appendix C: Average over molecular orientations for 3d orbitals

The spin-flip hopping matrix element between 3d orbitals of two different sites can be expressed in terms of the

rotational matrix D
(2)
mm′(α̃, β̃, γ̃), where α̃,β̃,γ̃ are three Euler angles. For example, the hopping matrix element

between dz2 at two different site is

〈d′′z2 |V |d′z2〉 = D
(2)
00 (α̃, β̃, γ̃)V0. (C1)

Using the properties of D
(2)
mm′ ,33

D
(2)∗
m1m2

(α̃, β̃, γ̃)D
(2)
n1n2

(α̃, β̃, γ̃) = δm1n1
δm2n2

|D(2)
m1m2

(α̃, β̃, γ̃)|2 = δm1n1
δm2n2

1

5
, (C2)

we obtain,

|〈d′x2−y2 |V |d′′xy〉|2 =
V 2
0

4

(

|D(2)
22 |2 + |D(2)

2−2|2 + |D(2)
−22|2 + |D(2)

−2−2|2
)

=
1

5
V 2
0 , (C3)

|〈−1′|V |d′′x2−y2〉|2 =
V 2
0

2

(

|D(2)
−12|2 + |D(2)

−1−2|2
)

=
1

5
V 2
0 , (C4)

|〈d′xy|V |1′′〉|2 =
V 2
0

2

(

|D(2)
21 |2 + |D(2)

−21|2
)

=
1

5
V 2
0 . (C5)
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48 W. Kempiński, L. Piekara-Sady, E.A. Katz, A.I. Shames,
and S. Shtutina, Solid State Commun. 114, 173 (2000).

49 M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson
and V. Podzorov, Nature Mater. 7, 84 (2008).


