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Recently, properties of collective states of interacting non-abelian anyons have attracted a con-
siderable attention. We study an extension of the ‘golden chain model’, where two- and three-body
interactions are competing. Upon fine-tuning the interaction, the model is integrable. This provides
an additional integrable point of the model, on top of the integrable point, when the three-body
interaction is absent. To solve the model, we construct a new, integrable height model, in the spirit
of the restricted solid-on-solid model solved by Andrews, Baxter and Forrester. The heights in our
model live on both the sites and links of the square lattice. The model is solved by means of the
corner transfer matrix method. We find a connection between local height probabilities and char-
acters of a conformal field theory governing the critical properties at the integrable point. In the
anitferromagnetic regime, the criticality is described by the Zk parafermion conformal field theory,
while the su(2)1×su(2)1×su(2)k−2

su(2)k
coset conformal field theory describes the ferromagnetic regime.

PACS numbers: 05.30.Pr, 05.50.+q, 11.25.Hf, 02.30.Ik

I. INTRODUCTION

The last half decade has seen a big increase in the interest of topological phases of matter. In this paper, we will
study a model which is inspired by the prototype of a topological phase, namely the (fractional) quantum Hall effect.
It has been conjectured that there exist fractional quantum Hall states with excitations which exhibit non-abelian
statistics1. One of the key properties of this type of excitations, called non-abelian anyons, is that a topological state
with a number of non-abelian anyons present, is degenerate. The number of degenerate states is exponential, while
the energy splitting in real systems decays exponentially with the average distance between the non-abelian anyons.

An important question which raises itself is what happens if the anyons are close to one another, such that they
start interacting. To this end, a one-dimensional (1D) model of interacting anyons was constructed in Ref.2, called the
‘golden chain’, because it was based on Fibonacci anyons. The philosophy behind this model was to stay as closely
as possible to a Heisenberg model of interacting spins. In fact, the golden chain is precisely that, a Heisenberg model
with two-body nearest neighbor interactions, but for anyons instead of spins. The phase diagram of such anyonic
Heisenberg models turns out to be rich, even richer than the phase diagrams of the ordinary spin case. We will
not embark on a long discussion of the phase diagrams of these models here, but focus in the next section on one
particular example of interest for the current paper, an extension of the golden chain model with competing two-
and three-body interactions3. We would like to point out that studying the effects of interacting anyons in 1D gives
insight into the fate of interacting anyons in two-dimensional (2D) systems. The interactions between the anyons can
nucleate a new topological liquid, and the collective behavior of the 1D chain describes the boundary between the
original and nucleated topological phases, see Refs.4,5 and Refs.6,7 for related work.

An interesting property of the anyonic chain models is that they exhibit (fine-tuned) points, at which it is possible to
solve the model exactly. Obviously, having access to an exact solution, even though such a solution is only available at
special points, greatly enhances the understanding of the model. The golden chain (with a two-body interaction), and
its cousins which are obtained by replacing the Fibonacci anyons by anyons based on su(2)k, can be mapped onto a
two-dimensional classical statistical mechanics model, namely the restricted solid-on-solid (RSOS) model, introduced
and solved by Andrews, Baxter and Forrester (ABF)8. This RSOS model consists of heights living on the sites of the
square lattice. Plaquettes are weighted depending on the heights of the sites forming the plaquettes. To solve the
model, ABF employed the so-called corner transfer matrix (CTM) method9. It was found that the model exhibits
various ordered phases, separated by critical points. The connection between the critical exponents and conformal
field theory (CFT) was made by Huse10. The anyonic chains correspond to the RSOS model at the critical point, and
are therefor critical themselves, and governed by the same CFT2.

The CTM method allows one to calculate, in the limit of infinite lattice size, the probability for a site in the bulk
to have a particular height. Interestingly, it has been observed that off-critical local height probabilities of integrable
models are intimately related to partition functions of the associated critical theories in a finite box with appropriate
boundary conditions11. Moreover, close to critical points, these height probabilities are given in terms of characters of
a CFT, which describes the critical behavior of the model12. The characters stemming from the height probabilities in
the RSOS model, are for instance given in Ref.13. These characters can be interpreted in terms of fractional exclusion
statistics14, or more specifically, a non-abelian version thereof15,16. In light of the current paper, we would like to point
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out that the height probabilities one obtains for a finite system, correspond to finitized characters. Interestingly, the
opposite ‘ends’ of these finitized characters correspond to the full characters of two different conformal field theories,
in the large size limit. These two different conformal field theories describe the critical properties of different critical
points of the (RSOS) model. In terms of the anyonic chains, these two critical points are related to each other by
changing the overall sign of the interaction.

In this paper, we will examine an integrable point of anyonic chains with competing two- and three-body interaction
terms. To solve the model, we introduce a new statistical mechanics model, which builds on the RSOS model, which
has six different types of plaquettes. In our new model, we will combine four plaquettes of the RSOS model, and shift
two of the plaquette weights, to obtain a non-trivial generalization. Via this procedure, one obtains a model with
sixty-six different types of plaquettes. This composite height model gives rise to the anyonic chain Hamiltonians of
interest, via the usual ‘anisotropic limit’. To solve the model, we will follow the work of ABF, and employ the corner
transfer matrix method to calculate the height probabilities.

A very closely related loop model has been studied in the literature17,18. In fact, the R-matrix, used to construct
the row-to-row transfer matrix, has the same underlying algebraic structure, namely that of the Temperley-Lieb
algebra, and the construction of our 2D model is inspired by the work in Refs.17,18. However, the quantum chain of
that work is defined on a completely different Hilbert space, in comparison to the anyonic chains. In our case, the
Hilbert space does not have a tensor product decomposition, which hinders solving the model by means of the Bethe
Ansatz, which is the method used in Refs.17,18 (in their representation, the Hilbert space does have a tensor product
decomposition). The Hilbert spaces of the anyonic chains exhibit a non-local, topological symmetry, giving rise to a
topological quantum number, which can be used to label the eigenstates of Hamiltonians respecting this symmetry
(see, for instance Refs.2,19). In gapped phases where the ground state breaks this symmetry, one finds additional
degeneracies. This additional structure, which is intimately tied to the non-abelian nature of the anyons, seems to be
absent in the work of Refs.17,18.

The outline of the paper is as follows. In Section II, we briefly introduce the anyonic chain Hamiltonians, starting
with the original golden chain, and its generalization by introducing the three-body interaction. We also briefly discuss
the anyonic chains based on su(2)k anyons. In Section III, we discuss the connection of the golden chain with the
RSOS model. The following Section IV contains the definition of our new, composite height model, which builds on
the RSOS model. The corner transfer matrix method is described in Section V, which leads to the expressions for the
height probabilities. These are used in the Section VI, to obtain information about the various phases of the model.
In Section VII, we calculate off-critical local height probabilities in different phases and show that they are given in
terms of characters of the CFTs, which govern the corresponding critical points. We conclude in Section VIII. In
Appendix A, we explicitly give the different types of plaquettes of the composite height model. Appendix B contains
various limits of the CTM’s, which are used in the main text. Appendix C deals with a certain limit of the plaquettes.
Finally, in Appendix D, we give the details of the connection of the various heigh probabilities with CFT characters.

II. ANYON CHAINS WITH COMPETING INTERACTIONS

A. The golden chain

The first model of interacting anyons, introduced in Ref.2, was dubbed the ‘golden chain’. In this model, so-called
Fibonacci anyons interact in basically the same way as spins in the Heisenberg spin chain, namely, an energy is
assigned depending on the overall spin state of two interacting particles. In the S = 1/2 Heisenberg chain, the S = 0
state of two neighboring spins is favored for antiferromagnetic interactions, while for ferromagnetic interactions, the
S = 1 channel for neighboring spins is favored.

To explain the interaction of the golden chain, we will first briefly introduce the notion of (Fibonacci) anyons. A
rather extensive introduction on this topic can be found in Ref.20. The Fibonacci anyon model consists of two types
of particles: the ‘trivial’ or vacuum particle 1, and the Fibonacci particle τ . As with ordinary spins, one can combine,
or fuse these particles, and decompose the product. This fusion product is the direct analog of taking tensor products
of spins. Contrary to su(2) spin, there is only a finite number of types of particles. In addition, there is no internal
quantum number, such as sz. The reason for this will become clear shortly.

The rules for combining the anyons in the Fibonacci model are as follows 1 × 1 = 1, 1 × τ = τ and τ × τ = 1 + τ , the
latter being the only non-trivial fusion rule.

Let us take a chain of L τ anyons. To describe the Hilbert space of this system, it is easiest to think in terms of a
so-called fusion chain, as depicted in figure 1.

This fusion chain consists of labelled lines, L incoming lines labelled τ , which represent the Fibonacci anyons that
form the chain. The lines connecting these incoming τ anyons are labelled x0, x1, etc. These labels, which can take
the values 1 and τ , are the ‘degrees of freedom’. The set of consistent labelings (x0, x1, . . . , xL) forms the Hilbert
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τ τ τ τ τ

x0 x1 x2 x3 · · ·
Figure 1: The fusion chain consisting of Fibonacci anyons. Consistent labelings (x0, x1, ..., xL) form the Hilbert space of the
anyonic chain.

space of the chain. For a labeling to be consistent, the fusion rules have to be satisfied at every vertex. This means
that xi+1 has to be in the fusion of xi × τ . This means that one can not have xi = xi+1 = 1, because this would
violate the fusion rule 1 × τ = τ . Apart from the constraint that no two neighboring labels can both take the value
1, the labelings are arbitrary. Because of the constraint, the size of the Hilbert space grows as dL, where d < 2.
It is not so hard to convince oneself that in fact d is the golden ratio, d = ϕ = (1 +

√
5)/2. In the remainder of the

description, we will assume periodic boundary conditions, x0 = xL. In this case, the size of the Hilbert space is given by
dimHL = Fib(L+1)+Fib(L−1), where Fib(n) is the nth Fibonacci number, defined by Fib(n) = Fib(n−1)+Fib(n−2)
and the initial conditions Fib(0) = 0 and Fib(1) = 1. Loosely speaking, one can say that each Fibonacci anyon has
a fractional number of degrees of freedom, namely d, explaining the absence of an internal quantum number. More
importantly, one can not assign a local Hilbert space to each anyon. This is the reason we had to resort to the fusion
chain to describe the Hilbert space, which can not be described as a tensor product of local Hilbert spaces, as is the
case for ordinary spin chains.

We would like to point out that in the description of the Hilbert space, we did not make use of the braid properties
of the Fibonacci anyons. Often, the braid properties are used to define the concept of non-abelian statistics. What
we have done here instead, is to use the fusion properties of the Fibonacci anyons, which make non-abelian statistics
possible. In particular, in order for non-abelian statistics to be possible, one needs a Hilbert space whose dimension
is at least two. This in turn is possible, if one considers particles (anyons) which have multiple fusion channels upon
fusion with another particle, such as τ × τ = 1+ τ . In the construction of interacting anyonic chains, it is the presence
of multiple fusion channels which is the key property of non-abelian statistics which is utilized. One can consider
models in which the explicit, non-abelian braid properties are used to define the Hamiltonian (see for instance20), but
that is not the route will take in the present paper.

We turn our attention to the description of the Hamiltonian. We first concentrate on the Hamiltonian of the original
golden chain model. The interaction between two anyons depends on their overall fusion channel. Favoring the overall
fusion channel of two neighboring anyons to be 1 will be called antiferromagnetic, while favoring the τ channel will
be called ferromagnetic interaction.

In our description of the Hilbert space in terms of a fusion chain, the fusion channel of two neighboring anyons is not
explicit, because the lines associated with these two anyons do not meet in one vertex. One can, however, perform a
local basis transformation, which makes this fusion channel explicit. The matrix describing this basis transformation
is called the F -matrix, which is the direct analog of the 6j-symbols in the case of su(2) spin. These describe the
change of basis between the following two possible ways of describing the Hilbert space of three spins: (S1 ⊗S2)⊗S3

and S1 ⊗ (S2 ⊗ S3). In figure 2, we depict the F -matrix in terms of the fusion-chain pictures.
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Figure 2: The F -matrix elements as a local basis transformation.

After performing this local basis transformation, the fusion channel of the two neighboring anyons is explicit and
it is given by x′i. Based on the value of this label (which can be 1 or τ), we can now assign the energy by projecting
onto the 1 or τ channel. All that is left to do is to perform one more basis transformation, to go back to the original
basis.

To make the model completely explicit, we have to give the values of the F -matrix elements. For the anyon
models based on su(2), there exist explicit formulas for the F -matrices, see for instance Ref.21. We will not go
into the details here, but simply give the results for the F -symbols we need. Note that there is some degree of
freedom in the F -symbols, the explicit form we give fixes this. The F -symbols we need are specified by specifying
the values of (xi−1, xi, xi+1), which can take the values {(1, τ,1), (1, τ, τ), (τ, τ,1), (τ,1, τ), (τ, τ, τ)}. In addition,
we have to specify the degrees of freedom after the basis transformation, (xi−1, x

′
i, xi+1), which can take the values

{(1,1,1); (1, τ, τ); (τ, τ,1); (τ,1, τ), (τ, τ, τ)}. Using this ordering of the states, the F -matrix takes the form (high-
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lighting the block structure)

F =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
1

1

d−1 d−
1
2

d−
1
2 −d−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (1)

The inverse transformation is given by the same matrix, because F = F −1, as is easily checked by using d2 = 1 + d.
We can now easily form the local projection operators P (τ)2−body and P (1)2−body, which project onto the τ and 1 channels,

i.e. give energy to these channels. Hence, P (τ)2−body corresponds to the antiferromagnetic interaction. Explicitly,

these projection matrices take the form P
(τ)
2−body = F ⋅ diag(0,1,1,0,1) ⋅ F and P (1)2−body = F ⋅ diag(1,0,0,1,0) ⋅ F . The

components of these matrices read (F xi−1,τ,τxi+1 )
x̃i

τ
(F xi−1,τ,τxi+1 )

τ

xi
and (F xi−1,τ,τxi+1 )

x̃i

1
(F xi−1,τ,τxi+1 )

1

xi
, respectively. Explicitly

written out, this becomes

P
(1)
2−body =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
0

0

d−2 d−
3
2

d−
3
2 d−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

P
(τ)
2−body =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
1

1

d−1 −d−
3
2

−d−
3
2 d−2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

One can easily check that P (1)2−body + P
(τ)
2−body = 11, where 11 is the identity matrix.

We can now write down the golden chain Hamiltonian as the sum of the projection operators P (τ)2−body,i, H =

J2∑
L
i=1 P

(τ)
2−body,i, where the projector P

(τ)
2−body,i assigns a positive energy if the anyons i and i+1 are in the τ channel. In

the original golden chain paper2, it was shown numerically that this model is critical for either sign of the interaction.
Moreover, the central charge was determined via the entanglement entropy, resulting in c = 7/10 and c = 4/5 for
antiferromagnetic (J2 = 1) and ferromagnetic (J2 = −1) interactions, respectively. Exact diagonalization of the model
showed that for antiferromagnetic interactions, the low-lying part of the spectrum can be described in terms of the
minimal modelM4,5, describing the tri-critical Ising model. The critical model describing the ferromagnetic system
is that of the Z3 parafermions.

It was subsequently realized that the golden chain Hamiltonian can in fact be obtained from an exactly solvable
model, a particular version of the restricted solid-on-solid models8. These models exhibit various ordered phases,
separated by critical points. It is these critical points the golden chain can be mapped to. As a result, one can obtain
information about the critical theory of the golden chain, by studying the critical behavior of the RSOS models. We
will discuss these RSOS models, and their connection to the anyonic chain Hamiltonians in more detail in the next
section.

B. Competing interactions

Having introduced the golden chain Hamiltonian, in which the anyons interact via a two-body nearest-neighbor
interaction, we now consider the effect of introducing a three-body interaction, which was first considered in Ref.3.

It is well known that if one adds a three-body term (with large enough coupling) to the S = 1/2 Heisenberg
antiferromagnet, a gap opens, and one enters the Majumdar-Ghosh (MG) phase22,23. The phase diagram of the
Heisenberg chain with competing nearest-neighbor two- and three-body interactions is rather rich. Similarly, it was
expected that the phase diagram of the golden chain with competing two and three-body interactions is rich as well.
This model was studied in Ref.3, indeed finding an interesting phase diagram (see Fig. 4), which we briefly review
below, after introducing the details of the three-body interaction.

In order to find the fusion channel of three neighboring anyons, we first have to perform two F transformations,
after which this fusion channel is explicit. One can then project onto the desired channel, and go back to the original
basis. This was explained in detail in Ref.20. The schematics of the basis transformation is given in figure 3.

The three-body interaction will depend on four labels (xi−1, xi, xi+1, xi+2). To give the interaction matrix, we use
the following basis {(1, τ, τ,1); (1, τ,1, τ), (1, τ, τ, τ); (τ,1, τ,1), (τ, τ, τ,1); (τ,1, τ, τ), (τ, τ,1, τ), (τ, τ, τ, τ)}. In this
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Figure 3: The F transformations needed for the three-body interaction.

basis, the three-body projectors take the following form

P
(1)
3−body =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0 0
0 0

0 0
0 0

d−2 d−2 −d−
5
2

d−2 d−2 −d−
5
2

−d−
5
2 −d−

5
2 d−3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

P
(τ)
3−body =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1 0
0 1

1 0
0 1

d−1 −d−2 d−
5
2

−d−2 d−1 d−
5
2

d−
5
2 d−

5
2 2d−2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3)

In terms of these projectors, the most general interaction we can write down takes the form

HJ2,J3 =
L

∑
i=1

cos θP
(τ)
2−body,i + sin θP

(τ)
3−body,i . (4)

In this equation, the three-body projectors act on the quadruples (xi−1, xi, xi+1, xi+2), while the two-body projectors
act on triples (xi−1, xi, xi+1). Moreover, we assume periodic boundary conditions, xi+L = xi, and we introduced the
couplings J2 = cos θ and J3 = sin θ.

C. Phase diagram of the J2 − J3 model

We now briefly describe the phase diagram of the J2 − J3 model, as a function of the angle θ. For more details, we
refer to Refs.3,24. The phase diagram of this model is shown in figure 4.

1
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3-state Potts

tetra-critical Ising
(c = 4/5)

tri-critical Ising
(c = 7/10)

tan θ = 1/ϕ

θ = 3π/2

Figure 4: Phase diagram of the J2 − J3 model; J2 = cos θ, J3 = sin θ.

The angle θ = 0 corresponds to the original, two-body golden chain model, which is critical and described by the
tri-critical Ising model. For a finite range of both positive and negative angles, this behavior persists, so we have an
extended range of critical behavior. At the angle given by tan θ = 1/ϕ, with both the two- and three-body interactions
antiferromagnetic, there is a phase transition to a gapped phase. In this gapped phase, the ground state is two-fold
degenerate, with all the ground states occurring at zero momentum. It turns out that at the transition point, which
is described by the Z3 parafermion theory, a non-local symmetry, dubbed topological symmetry, is broken.
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The critical phase around θ = 0 also gives way for a gapped phase if θ is decreased, namely around θ ≈ −0.472π. In
the resulting gapped phase, both the spatial and topological symmetries are broken, giving rise to four (dimerized)
ground states. This phase is the anyonic equivalent of the Majumdar-Ghosh phase in spin-1/2 chains with a purely
three-body interaction. The phase transition from the tri-critical Ising region to the MG-like phase is described by
the tetra-critical Ising model.

The critical behavior at θ = π, the original golden chain with ferromagnetic interactions is described in terms of
the Z3 parafermions (the critical behavior of the 3-state Potts model). This point is part of an extended critical
region, which extends all the way to the gapped phase in the region when both couplings are antiferromagnetic. This
endpoint of that gapped phase is around θ ≈ 0.316π.

The other end point of the extended critical region containing the point θ = π is marked by a first order transition
located at θ ≈ 1.075π to a sliver of an incommensurate region, which quickly gives way to an extended critical region.
This region has low-lying states at momenta K = 0, π/2, π,3π/2, and was therefor dubbed the Z4 phase. This phase
has a transition to the MG phase around θ ≈ 1.38π.

We will close this quick walk through the phase diagram by noting that there are two special points which lie in the
gapped phases, namely at tan θ = ϕ/2 and θ = 3π/2. At these special points, the ground states of the gapped phases
are exactly degenerate (as opposed to exponentially degenerate with system size), and moreover, one can obtain these
ground states explicitly. For more details about the phase diagram and its peculiarities, we refer to Refs.3,24.

In this paper, we will mainly concentrate on a special angle, given by tan θ = 1/ϕ, which corresponds to (on the
one hand), the transition between the extended critical region at antiferromagnetic two-body interactions and the
gapped phase obtained by introducing the antiferromagnetic three-body interaction. Upon changing the sign of the
Hamiltonian, one ends up in the extended Z4 critical region. We will show in the next subsection, that by making
use of the integrable structure at θ = 0, one can show that the J2 − J3 model is also integrable at tan θ = 1/ϕ.
We will confirm that the critical point at tan θ = 1/ϕ (with both couplings positive) is indeed described by the Z3

parafermions. In addition, we will show that for both couplings negative, the critical theory describing the model is
that of the Gepner parafermions related to su(3)225. This latter integrable point lies in an extended critical region.
Because there are no relevant operators in the same symmetry sector as the ground state, this whole critical region
will be described by the same critical theory as the one we found at the integrable point.

D. Anyonic chains of su(2)k anyons

In this subsection, we will describe the generalization of the golden chain, where the Fibonacci anyons are replaced
by more general types of anyons. These more general anyons are of the type which is dubbed su(2)k, where k is a
positive integer. For arbitrary k, this anyon theory has k + 1 types of anyons, which can be labelled in terms of an
‘angular momentum’ l, which takes the values l = 0, 1

2
, . . . , k

2
. For our present purposes, we are mainly interested in

the fusion rules of these anyons, and the associated F -symbols, which are necessary to construct the Hamiltonians of
interacting anyons of this type.

The fusion rules of the su(2)k anyons are derived from the tensor products of spin representations of SU(2). These
have to be modified, to take into account that in the anyon model, there is a highest angular momentum. This
generalization reads as follows. The fusion of two anyons of type j1 and j2 is

j1 × j2 =
min(j1+j2,k−j1−j2)

∑
j3=∣j1−j2∣

j3 , (5)

where the sum is either over the integers or half-integers. The only difference between the tensor product rules for
SU(2) spins is the upper bound. In particular, the case of the Fibonacci anyons corresponds to k = 3. In general, this
theory has four anyons, l = 0,1/2,1,3/2, but because k = 3 is odd, one can restrict oneself to the integer subset (see
Ref.20 for details). This integer subset was written as {1, τ} in the previous subsections.

The model one now considers is the model where the constituent anyons are the l = 1
2
anyons of su(2)k. The Hilbert

space consists of all labelings of the fusion tree in figure 1, but with the τ particles replaced by the l = 1
2
anyons, and

at the vertices, the fusion rules in Eq. (5) have to be satisfied. The construction of the interaction matrices, both
for the two-body as well as three-body interactions, is identical to the construction in the Fibonacci case. The only
thing which has to be changed is the F -matrix elements. Symbolically, we can write the elements of the resulting
projection matrices in the same way,

(P
(1)
2−body,i)

xi−1,x̃i,xi+1
xi−1,xi,xi+1

= (F
xi−1, 12 ,

1
2

xi+1 )
x̃i

1
(F

xi−1, 12 ,
1
2

xi+1 )
1

xi
, (6)

(P
(1/2)
3−body,i)

xi−1,x̃i,x̃i+1,xi+2
xi−1,xi,xi+1,xi+2

=∑
x′i

(F
xi−1, 12 ,

1
2

x̃i+1 )
x̃i

x′i
(F

xi−1,x′i,
1
2

xi+2 )
x̃i+1
1/2 (F

xi−1,x′i,
1
2

xi+2 )
1/2
xi+1

(F
xi−1, 12 ,

1
2

xi+1 )
x′i
xi
. (7)
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Here, we wrote the projectors onto the spin-1 and spin-1/2 channels for the two- and three-body interactions respec-
tively. The F -matrices themselves can be obtained from the explicit expressions, which were derived in Ref.21. The
Hamiltonian for general k now reads

HJ2−J3 =∑
i

cos θP
(1)
2−body,i + sin θP

(1/2)
3−body,i , (8)

where the k dependence is hidden in the detailed form of the projectors, and of course in the Hilbert space itself.
The phase diagram of the general k model has the same structure as the phase diagram for k = 3 in Fig. 4. The

extended critical region around θ = 0 is described by the minimal model Mk+1,k+2, the k-critical Ising model. The
critical phase around θ = π is described by the Zk parafermions (we refer to Ref.26 for a description of this CFT). At
angles θ = 0, π, this follows from the integrability of the RSOS model2.

We introduce the notation dk = 2 cos(π/(k + 2)) for the quantum dimension of the spin−1/2 anyon of the su(2)k
anyon model. Below, we will show that the angles given by tan θ = (d2k − 1)/d2k are special, because we can obtain the
critical behavior by mapping the model to a new integrable generalization of the RSOS model. For the resulting θ
in the range 0 ≤ θ ≤ π/2, this integrable point is the transition from the extended critical region to a gapped phase.
From numerics, it was already obtained that this critical behavior is described by the Zk parafermion theory3. Below,
we show that this indeed follows by exactly solving the model. The opposite point lies within the so-called Z4 critical
region, with low-lying states at the momenta K = 0, π/2, π,3π/2. For this critical region, the numerical results were
less clear, but our analysis of the integrable 2D classical statistical mechanics model, which we introduce in this
paper, shows that the conformal field theory description of this phase is in terms of a diagonal coset model, namely
su(2)1×su(2)1×su(2)k−2

su(2)k . For k = 3, this model reduces to the su(3)2 parafermion CFT. Bordering this extended critical
phase is the analog of the Majumdar-Ghosh phase around θ = 3π/2, which also borders the extended critical phase
around θ = 0. The phase transition between the latter two is described by the k + 1-critical Ising model.

III. CONNECTION WITH 2D STATISTICAL MECHANICS MODELS

A. Integrability of the Golden chain model

In the original paper2, it was pointed out that the golden chain Hamiltonian can be solved exactly by mapping it
onto the restricted solid-on-solid model, which was exactly solved by Andrews, Baxter and Forrester8 by means of the
corner transfer matrix method9. In particular, the two-body terms P (1)2−body,i in the Hamiltonian at θ = 0, HJ2=1,J3=0 =

∑
L
i=1 P

(1)
2−body,i, can be related to generators of the Temperley-Lieb algebra e(i), namely e(i) = dk(11 − P

(1)
2−body,i).

The Temperley-Lieb algebra generators satisfy the relations

e2(i) = dk e(i)

e(i)e(i ± 1)e(i) = e(i) (9)
[e(i), e(j)] = 0 for ∣i − j∣ ≥ 2 .

The action of the Temperley-Lieb generators on the local degrees of freedom labeling the states in the Hilbert space
can be written, following Pasquier27, as

e(i)∣xi−1, xi, xi+1⟩ =∑
x′i

(e(i)xi+1xi−1)
x′i
xi
∣xi−1, x

′
i, xi+1⟩ (10)

(e(i)xi+1xi−1)
x′i
xi
= δxi−1,xi+1

¿
Á
ÁÀ

S0,xiS0,x′i

S0,xi−1S0,xi+1
, (11)

where Si,j are the elements of the modular S-matrix of the su(2)k conformal field theory, which are labeled by
i, j = 0,1/2, . . . , k/2, corresponding to the different type of anyons in su(2)k theory. Explicitly, one has

Si,j =

√
2

k + 2
sin(

(2i + 1)(2j + 1)π

k + 2
). (12)

We can write down plaquette weights, or R-matrix elements of the corresponding 2D classical statistical mechanics
model, in terms of the e(i) and the identity operator 11 as follows

Ri(u)
x⃗′
x⃗ = (

sin( π
k+2 − u)

sin( π
k+2)

11x⃗
′
x⃗ +

sin(u)

sin( π
k+2)

e(i)x⃗
′
x⃗ ) ≡ (∏

j≠i
δx′j ,xj)W (xi−1, x

′
i, xi+1, xi) (13)
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l1 l2

l3l4

Figure 5: The plaquette weight W (l1, l2, l3, l4), which in the anisotropic limit (u → 0) gives rise to the two-body Hamiltonian
HJ2=1,J3=0.

e(i)x⃗
′
x⃗ = (∏

j≠i
δx′j ,xj)(e(i)

xi+1
xi−1)

x′i
xi

11x⃗
′
x⃗ =∏

j

δx′j ,xj .

The subscript i on the R-matrix labels the plaquette on which it acts, while the argument u is the so-called fugacity,
and W (xi−1, x

′
i, xi+1, xi) gives the weight of an elementary plaquette shown in Fig. 5. The above R-matrix can be

shown to satisfy the Yang-Baxter equation:

Rj(u)Rj+1(u + v)Rj(v) = Rj+1(v)Rj(u + v)Rj+1(u) , (14)

by making use of the Temperley-Lieb algebra relations for the e(i) in Eq. (9).
From the R-matrix, one can construct the ‘two-row’ transfer matrix (see Fig. 6)

T (u) =∏
j

R2j+1(u)∏
j

R2j(u) , (15)

which has a role of a discrete time-evolution operator for the corresponding 1D quantum system. The time-evolution
operator acts on a Hilbert space, which is spanned by vectors (..., l2j−1, l2j , l2j+1,...). For the Golden chain model, this
Hilbert space coincides with that given in Fig. 1. We note that in making the connection between the 2D statistical
mechanics model and the 1D quantum Hamiltonian, we have rotated the plaquettes by 45 degrees, or the time runs
from the south-west to north-east corner of the plaquette. In addition, we consider a ‘two-row’ transfer matrix, in
order that in one discrete time step, all heights can evolve. This allows for the possibility to obtain a translationally
invariant Hamiltonian. The following calculation shows that this is indeed the case.

If Ri(u) satisfies the Yang-Baxter equation, it follows that the T ’s at different parameters u commute, allowing one
to construct a Hamiltonian which can be solved exactly. In particular, one writes T (u) = e−uH+o(u2), which gives rise
to the Hamiltonian

H = −
d lnT (u)

du
∣
u=0 = −∑

i

1

Ri(u = 0)

dRi(u)

du
∣
u=0 . (16)

Applying this construction to the R-matrix defined above, one obtains

H =
2

tan(π/(k + 2))
∑
i

(
1

2
−

1

dk
e(i)) =

2

tan(π/(k + 2))
∑
i

(P
(1)
2−body,i −

1

2
) , (17)

l02j

l02j+1l02j�1

l2j�1 l2j+1

l2j

R2j

R2j+1

Figure 6: ‘Two-row’ transfer matrix, which plays a role of the discrete time-evolution operator for the corresponding 1D
quantum system. The transfer matrix acts on the Hilbert space spanned by vectors (..., l2j−1, l2j , l2j+1,...). (Imaginary) time
runs vertically.
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l l � 1

l + 1 l

↵l

l

l � 1

l + 1

l

↵l

l

l � 1

l + 1

l

�l

ll � 1

l + 1l

�l

l

l + 1l

l + 1

�l
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l

�l
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Figure 7: Six height configurations occurring in the RSOS model.

which is, up to a positive scale factor and an overall shift, equal to the golden chain Hamiltonian, HJ2=1,J3=0.
We now focus our attention on the RSOS model we referred to at the beginning of this section. The model consists

of height variables (simply called ‘heights’) located at the vertices of the square lattice. The heights can take the
values l = 1,2, . . . , r− 1, where r is an arbitrary integer. We already noted that the heights correspond to the different
type of anyons, 0,1/2, . . . , k/2, where k = r − 2. The connection with the anyon Hamiltonian becomes complete by
following identification: r ≡ k + 2, and li ≡ 2xi + 1, where li is the value of the height at the vertex i.

The heights have to satisfy the constraint that they differ by one if they are nearest neighbors. Weights are assigned
to the different types of plaquettes, which we introduce below.

This model can be solved for a two-parameter family of weights, namely for the parameter u, and an additional
parameter p. This parameter p is the parameter which drives a phase transition, located at p = 0. The golden chain
is related to the RSOS model at this critical point.

We now briefly describe the weights of the RSOS model in terms of the parameters1 η (which is related to r,
see below), u and p. There are six different arrangements of heights around a plaquette, as shown in Fig. 7. The
corresponding weights are given in terms of elliptic functions as follows

αl(u) =
h(2η − u)

h(2η)
βl(u) =

h(u)

h(2η)

[h(wl−1)h(wl+1)]
1/2

h(wl)
(18)

γl(u) =
h(wl + u)

h(wl)
δl(u) =

h(wl − u)

h(wl)
,

where wl = 2ηl. The function h(u) is given in terms of elliptic theta functions, with argument u and modulus k̃ =m2,
namely h(u) =H(u)Θ(u). The functions H(u) and Θ(u) can be expressed in terms of the theta functions θ1 and θ4,
in particular, H(u) = θ1(

uπ
2K(m) , p) and Θ(u) = θ4(

uπ
2K(m) , p), where K(m) is the complete elliptic integral of the first

kind. The parameter η is given in terms of K and r, namely η =K/r. Furthermore, p can be expressed in terms of m
as p = exp [−πK ′(m)/K(m)], where K ′(m) =K(1−m). Using the product expansions of the elliptic theta functions,
one can write

h(u) = 2p1/4 sin(
πu

2K(m)
)

∞
∏
n=1

(1 − 2pn cos(
πu

K(m)
) + p2n)(1 − p2n)2 . (19)

Note that we suppressed the dependence of the weights in Eq. (18) on p. We refer to chapter 15 of the book9, where
the properties of the elliptic functions used in this paper are analyzed. It was shown in Ref.8 that the weights given
in Eq. (18) satisfy the Yang-Baxter equation for all u and p.

Two phase transitions (in different regimes for u) occur for p = 0, which implies that m = 0. These two critical
points correspond to the integrable point of the golden chain model with tan θ = 0 (i.e. the angles θ = 0, π of the
J2 − J3 model). Thus, to relate the weights in Eq. (18) at the critical point to the plaquette weights obtained from
the golden chain model, we take the limit limp→0 h(u1)/h(u2) = sin(u1)/ sin(u2), where we used that K(0) = π/2.

Using this limit, one finds, at the critical point, that

αl =
sin( π

k+2 − u)

sin( π
k+2)

βl =
sin(u)

sin( π
k+2)

[sin( (l−1)π
k+2 ) sin( (l+1)π

k+2 )]1/2

sin( lπ
k+2)

(20)

γl =
sin( lπ

k+2 + u)

sin( lπ
k+2)

δl =
sin( lπ

k+2 − u)

sin( lπ
k+2)

,

1 The parameter u is related to v in Ref.8 by u = η − v.
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which are identical to those obtained from Eq. (13).
The last statement can be verified by considering the explicit form of the R-matrix in Eq. (13). The α type

plaquettes are obtained from the first term in Eq. (13), when xi−1 ≠ xi+1. The β plaquettes are the ‘off-diagonal’
terms, with xi ≠ x′i, which can occur if xi−1 = xi+1. Only the second term in Eq. (13) contributes to these plaquettes.
Finally, the plaquettes of type γ and δ (which are diagonal, but also have xi−1 = xi+1) receive contributions from both
terms in Eq. (13).

Details of the connection between the critical behavior of the golden chain can be found in the original paper2.
For details of the various phases of the RSOS model, we refer to Refs.8 and10. Approaching the critical point p = 0
from the positive p side, one finds that the observables of the model, such as the height probabilities (see below), are
given in terms of the tri-critical Ising model for u > 0, and the three-state Potts model for u < 0. This establishes the
observed critical behavior of the golden chain model2. In general, i.e. for arbitrary k, this generalizes to the k-critical
Ising model for antiferromagnetic interactions (u > 0), and the Zk parafermions for ferromagnetic (u < 0) interactions.

IV. CONSTRUCTION OF A NEW COMPOSITE HEIGHT MODEL

A. R-matrix for the composite model

To identify a new integrable model, which corresponds to different parameter regimes of the generalized golden
chain model (J2 − J3 model), we will use the ideas put forward in two papers by Ikhlef et al.17,18. In these papers, a
model closely related to the anyonic chains is studied. Namely, the underlying algebraic structure, the Temperley-Lieb
algebra, is the same, but a different representation is chosen. We consider the ‘anyonic representation’ (see Eq. (11)),
while Refs.17,18 consider a spin-1/2-type representation. An important consequence of this difference in representation
is that we were forced to use the corner transfer matrix method solve the model, as opposed to the Bethe Ansatz
method28, which was used in Refs.17,18.

Below, we will introduce a new height model, which at its critical point reduces to the anyonic chain at the integrable
point. However, we will also study the ordered phases of our new height model.

It was put forward in Ref.17, that one can use the R-matrix in Eq. (13) to construct a composite R-matrix R̃,
which also satisfies the Yang-Baxter equation2. The composite R-matrix one has to consider takes the following form

R̃j(u,φ) = R2j+1(u − φ)R2j(u)R2j+2(u)R2j+1(u + φ) , (21)

where we introduced an additional parameter φ, ranging over 0 ≤ φ ≤ π/2. It can easily be shown that the R-matrix
(21) satisfies the Yang-Baxter equation. The only ingredient needed to show this is that the original R-matrix satisfies
the Yang-Baxter equation itself. In what follows, we focus on the case φ = π/2, but we stress that the R-matrix in Eq.
(21) satisfies the Yang-Baxter equation for all values of φ. At φ = π/2, the composite R-matrix leads to particularly
interesting points of the J2 − J3 Hamiltonian, namely the critical point between the ‘Haldane gap’ phase and the
extended AFM critical region. The opposite point (considered in Refs.17,18 in the different representation) lies within
the Z4 critical region.

We now describe in some detail how to obtain the Hamiltonian of the J2 − J3 model, by taking the ‘anisotropic
limit’. We start by expanding the composite matrix R̃i(u,φ) explicitly (using the notation γ = π/(k+2) and ei = e(i)),

sin4
(γ)R̃i(u,φ) = − (sin(γ − u)2 sin(φ + γ − u) sin(φ − γ + u))11

− (sin(u) sin(γ − u) sin(φ + γ − u) sin(φ − γ + u))(e2i + e2i+2)

+
1

2
sin(u) sin(γ − u)(1 + 2 cos(2φ) − cos(2γ) − cos(2(γ − u)) − cos(2u))e2i+1

+ (sin(u) sin(γ − u) sin(φ − u) sin(φ − γ + u))(e2ie2i+1 + e2i+2e2i+1)

+ (sin(u) sin(γ − u) sin(φ + u) sin(φ + γ − u))(e2i+1e2i + e2i+1e2i+2)

− sin(u)2 sin(φ + γ − u) sin(φ − γ + u)e2ie2i+2

+ sin(u)2 sin(φ − u) sin(φ − γ + u)e2ie2i+2e2i+1

+ sin(u)2 sin(φ + u) sin(φ + γ − u)e2i+1e2ie2i+2

− sin(u)2 sin(φ + u) sin(φ − u)e2i+1e2ie2i+2e2i+1

. (22)

2 This way of constructing a composite R-matrix reminds of the techniques to construct higher spin, or ‘fused’ models, see Refs.12,29
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We note that the coefficients of the terms e2ie2i+1e2i+2 and e2i+2e2i+1e2i are zero.
As we explained in the previous section, one can construct a Hamiltonian related to this R-matrix via the ‘two-row’

transfer matrix T (u) = ∏j R2j+1(u)∏j R2j(u) = e
−uH+o(u2), by taking the anisotropic limit, Eq. (16). Applying this

procedure to the composite R-matrix R̃i(u,φ), one sees that in the ‘two-row’ transfer matrix, see Fig. 6, one has to
change R to R̃. Consequently, it is not obvious that the procedure yields a translationally invariant Hamiltonian.
Applying the procedure, one obtains

H =∑
i

(
2 cos(2γ) − cos(2φ) − 1

2 sin(γ + φ) sin(γ − φ)
)11 −

1

sin(γ)
(ei + ei+1)

+
sin(φ)

sin(γ) sin(φ + γ) sin(φ − γ)
(sin(φ) cos(γ)(eiei+1 + ei+1ei) + (−1)i cos(φ) sin(γ)(eiei+1 − ei+1ei))

(23)

To make the connection with the anyonic chain, we focus on the case φ = π/2, which gives (after dropping the irrelevant
constant)

H =
2

sin(2γ)
∑
i

− cos(γ)(ei + ei+1) + (eiei+1 + eiei+1) . (24)

We note that for φ = 0, we obtain the original golden chain model H = −∑i ei. In the case that 0 < φ < π/2, the
term (eiei+1 − ei+1ei) has a non-zero coefficient, which gives rise to a non-hermitian Hamiltonian, and breaks the
translational invariance.

To relate the Hamiltonian we just obtained from the composite R-matrix to that of the J2 − J3 model, we write
the two- and three-body projectors appearing in the J2 − J3 anyonic Hamiltonian in terms of the Temperely-Lieb
generators ei. In general, the projectors of p ‘spin-1/2’ particles onto the ‘spin-p/2’ channel, can be written in terms
of the ei. Explicitly, for two and three particles, one has (see also30,31)

P
(1)
2−body,i = 11 −

1

dk
ei ,

P
(3/2)
3−body,i = 11 −

dk
d2k − 1

(ei + ei+1) +
1

d2k − 1
(eiei+1 + ei+1ei) , (25)

where we remind the reader that dk = 2 cos(π/(k + 2)). In the anyonic spin chain the three-body interaction was
written in terms of the projector onto the spin-1/2 channel, which reads

P
(1/2)
3−body,i =

dk
d2k − 1

(ei + ei+1) −
1

d2k − 1
(eiei+1 + ei+1ei) . (26)

We can now write the J2 − J3 model in two different ways, namely

HJ2−J3 =∑
i

cos(θ)P
(1)
2−body,i + sin(θ)P

(1/2)
3−body,i , (27)

He =∑
i

cos(θe)(ei + ei+1) + sin(θe)(eiei+1 + ei+1ei) . (28)

By making use of the projectors in Eq. (25), we find the following relation between the angles θ and θe

tan θ =
(d2k − 1) tan θe

2dk(1 + dk tan θe)
tan θe =

(d2k − 1) − 2d2k tan θ

2dk tan θ
. (29)

The angle θe for which the model is integrable, θe,int, can be read off from Eq. (24), and is given by tan θe,int =
−1/ cosγ = −2/dk. This corresponds to the angle θint in the J2 − J3 model

tan θint =
d2k − 1

d2k
(30)

In particular, in the case u > 0, we find that the corresponding angle θ is given by θ = arctan((d2k − 1)/d2k) + π, i.e.
when both the two- and three-body interactions are ferromagnetic. When u < 0, we have θ = arctan((d2k − 1)/d2k), and
both interactions are antiferromagnetic.
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B. Constructing the composite height model

As we described in the previous section for the original golden chain model, we have to consider a more general
two-dimensional height model, in order to obtain the critical behavior of the J2 − J3 model at the integrable points.
The plaquettes of this new integrable height model, which we introduce below, reduce to the composite R-matrix
described above at the critical point p = 0.

From the construction of the R-matrix, we know how to construct the plaquette-weights for the composite 2D
classical statistical mechanics model from those of the RSOS model described in the previous section. The new
plaquettes consist of four plaquettes in the original RSOS model, as depicted in figure 8. The model again lives on the
square lattice, where both the vertices as well as the middle of the links have a height variable. Two neighboring heights
have to differ by one, as in the original model. One can think of these plaquettes as composite plaquettes, whose
weights depend on the four original plaquettes forming the composite one. The original plaquettes each contribute to
the weight of the composite plaquette, but two of the plaquettes have an appropriate ‘shift’, as in the construction of
the composite R-matrix (see Eq. (21)).

l6 l5l7

l8

l1 l2

l4

l3

l6 l5l7

l8

l1 l2

l4

l3

l

+

�
=

X

l

Figure 8: The plaquette weight W̃ (l1, l2, l3, l4, l5, l6, l7, l8) for the composite model in terms of the weights of the RSOS model.

Using the six different types of plaquettes of the RSOS model, it turns out that one can construct 66 different
types of composite plaquettes, which are given in Appendix A. Not all the weights of these plaquettes are different.
Moreover, they satisfy certain symmetries, in the same way as the original RSOS model. The actual number of different
plaquettes depends on the parameter r, which determines the number of allowed heights, via li = 1,2, . . . , r − 1.

The composite weights W̃ (see Fig. (8)) in term of the RSOS weights have the following form:

W̃ (l2j−1, l
′
2j , l

′
2j+1, l

′
2j+2, l2j+3, l2j+2, l2j+1, l2j) = (31)

∑
l

W −
(l2j , l, l2j+2, l2j+1)W (l2j−1, l

′
2j , l, l2j)W (l, l′2j+2, l2j+3, l2j+2)W

+
(l′2j , l

′
2j+1, l

′
2j+2, l),

where W ±(u) =W (u ±K) are the weights of the shifted plaquettes (see Fig. 8). We note that each of the plaquettes
forming the composite plaquette is of type αl, βl, γl, δl, with the appropriate values of l, namely

W (l + 1, l, l − 1, l) =W (l − 1, l, l + 1, l) = αl(u) ,

W (l, l − 1, l, l + 1) =W (l + 1, l, l − 1, l) = βl(u) , (32)
W (l, l + 1, l, l + 1) = γl(u) ,

W (l, l − 1, l, l − 1) = δl(u) ,

where the explicit expressions of these weights, in terms of the parameters u and p, are given in Eq. (18).
Taking into account the quasi-periodic properties of h(u), we have chosen the shift φ to equal K. Again, similar to

the RSOS model, we will be interested in p → 0 (critical) limit and note that in this limit, φ = K = π/2. Due to the
symmetry properties of elliptic functions we only need to consider the region 2η −K < u < 2η +K, which naturally
breaks into two domains according to the sign of u (cf. Ref.8):

D1 ∶ 0 < u < 2η +K = (2 + r)η , (33)
D2 ∶ 2η −K = (2 − r)η < u < 0 . (34)

The different signs of the fugacity correspond to ferro- (D1) and antiferromagnetic (D2) regimes, which in the
anisotropic limit give rise to the integrable point of the generalized J2 − J3 model, for both signs of the interac-
tion.
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We have now completely specified our new height model. We employ the corner transfer matrix method, which
is described in the next section, to solve it. The main interest is to calculate local height probabilities in different
domains for general p, e.i. away from criticality. It has been observed that these off-critical (p ≠ 0) local height
probabilities of an integrable lattice model can be mapped to partition functions of the corresponding critical theory
(p = 0) in a finite box with appropriate boundary conditions11. This mapping is realized if one properly relates p,
which plays the role of temperature, to the finite size L of the critical system. In addition, it has been realized that the
local critical probabilities can be written using characters of the underling CFT12. Relying on these observations, we
identify CFTs describing critical theories of the generalized anyon model (p = 0) in subsequent sections. In particular,
we calculate the off-critical local height probabilities and relate them to characters of a CFT, which governs the critical
properties of the generalized anyon model (as well as the generalized RSOS model at p = 0).

V. CORNER TRANSFER MATRIX METHOD AND LOCAL WEIGHT PROBABILITIES

A. Definition of corner transfer matrices

To exactly solve the generalized model, we use the corner transfer matrix method in analogy to the solution of
the RSOS model by Andrews, Baxter and Forrester8. Here we give a short account of the method and turn the
interested reader to literature for more details9,32. The object of interest is the local height probability Pa, which is
the probability for a site to have height a. This height probability is given by

Pa =
1

Z
∑

configurations
(Sa ∏

plaquettes
W̃ (lj1 , lj2 , lj3 , lj4 , lj5 , lj6 , lj7 , lj8)) , (35)

where product is over all plaquettes (faces) of the lattice and sum runs over all allowed 2D height configurations, and

(Sa)l,l′ = δ(l1, a)
m

∏
i=1
δ(li, l

′
i) . (36)

The size of the system is parametrized by m, which should not be confused with the m related to the modulus m2 = k̃
of the theta-functions which appeared in section III. The meaning of the indices l, l′ of the matrix S will become clear
shortly.

The partition function Z, which is given by

Z = ∑
configurations

∏
plaquettes

W̃ (lj1 , lj2 , lj3 , lj4 , lj5 , lj6 , lj7 , lj8) , (37)

can be expressed as

Z = Tr(ABCD) , (38)

by introducing corner transfer matrices A,B,C,D, corresponding to lower-right, upper-right, upper-left and lower-left
quadrants of the lattice (see Fig. (9), and text below for the precise definition of A,B,C,D). These corner transfer
matrices are analogs of the row-to-row transfer matrix T , but instead of adding a row to the lattice, they add a whole
corner.

Finally, the local height probability can be written as

Pa = Tr(SaABCD)/Tr(ABCD) . (39)

We now have to introduce the notion of ground states, which will be used extensively in the subsequent analysis.
Ground states are those configurations of heights, which maximize the summand (or minimize the “energy”) in Eq.
(37). These ground states depend on u in a way that in different domains of u (D1 and D2) different ground state
types exist and they change discontinuously across the boundary between different domains (u = 0). These different
ground states determine different critical behavior in corresponding domains as we shall show below.

The corner transfer matrices can be expressed using local plaquette (face) transfer matrices

(Uj)l,l′ = W̃ (l2j−1, l
′
2j , l

′
2j+1, l

′
2j+2, l2j+3, l2j+2, l2j+1, l2j)

m

∏
i=1≠2j,2j+1,2j+2

δ(li, l
′
i) , (40)
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Figure 9: Corner transfer matrix A for finite m, constructed using the composite plaquettes. Heights b, c, d, e are the boundary
heights fixed by a ground state pattern chosen.

(Vj)l,l′ = W̃ (l′2j+1, l
′
2j+2, l2j+3, l2j+2, l2j+1, l2j , l2j−1, l

′
2j)

m

∏
i=1≠2j,2j+1,2j+2

δ(li, l
′
i) . (41)

Here j = 1, ..., (m+1)/2, with m odd, and lm+1, l
′
m+1, lm+2, l

′
m+2, lm+3, l

′
m+3, lm+4 are boundary heights, which should be

fixed to proper ground state values corresponding to a considered domain of u. The matrix Uj (Vj) adds a plaquette
to the lattice in the NE-SW (NW-SE) direction.

Using the definitions in Eqs. (40,41), the corner transfer matrix A can be expressed as

A = F1F2...F(m+1)/2 , (42)

where

Fj = U(m+1)/2U(m−1)/2...Uj . (43)

The corner transfer matrix A (see Fig. 9) has rows and columns, which are labeled by the values of the boundary
heights, collected in the vectors l = (l1, l2, . . . , lm) and l′ = (l′1, l

′
2, . . . , l

′
m), where l′1 = l1 = a, because these heights

correspond to the same, central height. In addition, we will use boundary conditions, such that the heights on the
four outermost diagonals are fixed to be b, c, d, e, respectively.

The corner transfer matrices B,C,D are expressed similarly to A by replacing Uj with Vj , UTj and V
T
j , respectively.

In general, properties of the corner transfer matrices will depend on symmetries of weights as well as those of ground
states. In what follows, we will be interested in infinite lattice limit, m→∞.
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B. Corner transfer matrices as exponentials.

From the Yang-Baxter equation for weights (see Eq. (14)) follows a very important property of corner transfer
matrices. In the limit where the lattice size goes to infinity we can write (symbolically) that

lim
m→∞

BC = lim
n→∞

Tn, (44)

where T is the row-to-row transfer matrix and n is the number of rows, covering a half plane in the limit n→∞.
We should note that the above relation is not valid for finite m and n, since different boundary conditions are

used to calculate left- and right-hand sides of the equation (in fact, even the shapes of the lattices differ). However,
in the large m,n limit this difference becomes negligible. The Yang-Baxter equation ensures that the row-to-row
transfer matrices with different fugacities commute and, hence, the product B(u)C(v) depends only on the difference
u− v (modulus the overall multiplicative factor). Similar equations that involve other corner transfer matrices can be
obtained by rotating the lattice in steps of π/2. Using these properties one can show that the corner transfer matrices
have the following form (dropping irrelevant multiplicative factors)9:

A(u) = Q1M1e
−uHQ−1

2 , (45)
B(u) = Q2M2e

uHQ−1
3 ,

C(u) = Q3M3e
−uHQ−1

4 ,

D(u) = Q4M4e
uHQ−1

1 ,

where the matrices H,Q1,⋯,Q4,M1,⋯,M4 are independent of u and can be chosen to commute with S1,⋯, Sr−1. In
addition, the matrices H,M1,⋯,M4 are diagonal.

Using the identity (see Appendix B)

A(0) = Q1M1Q
−1
2 = 11 , (46)

we immediately see that

A(u) = Q2e
−uHQ−1

2 , (47)

which implies that the diagonal form of the corner transfer matrix A can be written as an exponential. From Eqs.
(39,45) we immediately see that

Pa = Tr(SaM1M2M3M4)/Tr(M1M2M3M4) . (48)

To calculate M1M2M3M4 we need to consider different domains of u separately to find different limiting properties
of the corner transfer matrices. Here we summarize the properties of the corner matrices near the boundaries of
domains D1 and D2 (see Appendix B for details), which are required for the calculation. In the domain D1, in the
u→ 0 limit we find (upon dropping an irrelevant multiplicative factor)

A(u = 0) = C(u = 0) = 11, (49)

while in the u→ (2 + r)η limit, we have

B(u = (2 + r)η) =D(u = (2 + r)η) = Ṽ 1, (50)

where we have defined

(Ṽ 1)l,l′ = [h(2ηl1)]
1/2δ(l, l′). (51)

Using the above limits for corner transfer matrices we can write that

A(u = 0)B(u = (2 + r)η)C(u = 0)D(u = (2 + r)η) = Ṽ 2
1. (52)
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Substituting Eq. (45) in the above equation we get the following result for the product of the matrices M1M2M3M4,
which appear in the expression for the height probability in Eq. (48)

M1M2M3M4e
2(2+r)ηH

= Ṽ 2
1 (53)

In the domain D2, we can show that

A(u = 0)B(u = (2 − r)η)C(u = 0)D(u = (2 − r)η) = Ṽ 2
1 (54)

and

M1M2M3M4e
2(2−r)ηH

= Ṽ 2
1. (55)

Taking into account relations in Eqs. (53) and (55), the local height probability can be written as

Pa = Tr(SaṼ
2
1e
−2tηH

)/Tr(Ṽ 2
1e
−2tηH

), (56)

where

t = {
2 + r u ∈ D1

2 − r u ∈ D2
. (57)

C. Diagonal form of the corner transfer matrix A.

What is left to do is to find the diagonal form of the corner transfer matrix A and the matrix H, which is the most
involved part of the calculation. The corner transfer matrices in Eq. (45) should satisfy quasi-periodic conditions
as do the weights, with the period 2iK ′, which implies that elements of H are integer multiples of π/K ′, Hl,l′ =

πN(l)δ(l, l′)/K ′. Similar to the solution of the RSOS models8, we assume that H does not change discontinuously
with p, which implies that the integer function N(l) is independent of p and we can derive it in a limit where the
composite weights assume a simple form. We can show that (see Appendix C) in the p → 1 limit the weights of the
composite model take a particularly simple form and the corner transfer matrix A can be readily diagonalized. After
a fairly lengthy calculation, involving the ‘conjugate-modulus’ (or modular) transformation, the dust settles, and one
finds the diagonal form of A

Al,l′ = [e−uH]l,l′ = g
−1
l1 w

N(l)/2δ(l, l′) , (58)

where

w = e−2πu/K
′

gl1 = w
(2l1−r)2/(16r) (59)

and

N(l)/2 ≡ φ(l) =
(m+1)/2

∑
j=1

j(
∣l2j+3 − l2j−1∣

4
+ δl2j−1,l2j+1δl2j+1,l2j+3δl2j ,l2j+2), (60)

where sum over j is performed along a line in the 2D lattice (see Fig. 9). Each term in this sum corresponds to
the weight of the jth plaquette (counted from the central site), times j, which is the number of plaquettes on the
jth diagonal. In the limit p = 1, these plaquettes all have the same form, because A is diagonal then, as shown in
Appendix C.

D. Local height probability.

We can now collect the results, and obtain the local height probabilities Pa. Substituting the diagonal form of A,
Eq. (58) in Eq. (56), we find that

Pa = S
−1vaXm(a; b, c, d, e;xt). (61)
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Here we adopted the following definitions:

Xm(a; b, c, d, e; q) = ∑
l2,...,lm

qφ({l}), (62)

va = x
(2−t)(2a−r)2/(16r)E(xa, xr), (63)

S =∑
a

vaXm(a; b, c, d, e;xt), (64)

x = e−4πη/K
′
. (65)

The function φ(l) was given in Eq. (60) and the function E(z, x) appears in Jacobi’s triple product identity,

E(z, x) =
∞
∏
n=1

(1 − xn−1z)(1 − xnz−1)(1 − xn) . (66)

Furthermore, l1 = a and heights b, c, d, e (see Fig. 9) are the boundary heights, which are to be fixed to the values of
a ground state in the domain of u under consideration. We see from Eq. (62) that the partition function as well as
the local height probability is expressed as a sum over 1D height configurations, in contrast to 2D configurations in
the original formulation (see Eq. (37)). This property is the consequence of integrability of the model and greatly
simplifies calculations.

VI. PHASES OF THE COMPOSITE HEIGHT MODEL

In this section, we will make a start with the exploration of the phase diagram of the composite height model,
which will be focussed on the regions which are related to the anyonic quantum chain. We will give a more detailed
description of the various phases of the model in a forthcoming publication.

The phase diagram of the composite height model bears resemblance to the phase diagram of the original RSOS
model. We will consider the phase diagram as a function of the parameters u and p, where the parameter u is related
to the anisotropy of the model. Only the sign of this parameter will be relevant. The parameter p drives a phase
transition between different ordered and disordered phases, as was the case in the RSOS model. We consider the
regime 0 ≤ p ≤ 1, which is the one relevant for our purposes.

We start by analyzing the ordered phases, by setting p = 1, and taking either u > 0, which we call regime III, or
u < 0, called regime II. The naming of the regimes follows the nomenclature of ABF. We use the results of the previous
section, where we calculated the height probabilities in terms of the functions

Xm(a; b, c, d, e; q) = ∑
l2,l3,...,lm

qφ(l) , (67)

where the vector l has m+ 4 components, l = (a, l2, . . . , lm, b, c, d, e), which satisfy the constraint li = li−1 ± 1, implying
that a + e = 0 mod 2. We repeat the function φ(l) for convenience,

φ(l) =
(m+1)/2

∑
j=1

j(
∣l2j+3 − l2j−1∣

4
+ δl2j−1,l2j+1δl2j+1,l2j+3δl2j ,l2j+2) . (68)

For 0 < p < 1, the height probabilities are proportional to Xm(a; b, c, d, e;xt), with t = 2 + r for u > 0, and t = 2 − r for
u < 0.

To find the ground states at p = 1, we analyze the function φ(l). The ground states are those configurations which
contribute maximally to the partition function. In domain D1, which has u > 0, and t = 2 + r > 0, the ground states
are given by those configurations which minimize the function φ(l). For domain D2, with u < 0 and t = 2 − r < 0,
the function φ(l) should be maximized instead. As long as 0 < p < 1, one finds that the arguments about the ground
states go through, because x < 1. At the critical point (p→ 0) we have x→ 1, hence the argument fails and all height
configurations contribute equally.

The model is critical when p→ 0, and we will study the full height probabilities Pa, which give the probability that
the central height takes the value a, depending on the boundary heights (b, c, d, e) (see Fig. 9). We will evaluate these
height probabilities, in the case that the boundary heights are such that they belong to a ground state pattern.
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Figure 10: Ground state pattern for u > 0, which is characterized by the pattern in the dashed box.

A. Ground states for u > 0 (domain D1)

Let us start by analyzing the case u > 0, and minimize the function φ(l). In this case, as many plaquettes as possible
should give zero contribution to φ(l). This can be achieved in the following way. First of all, one should have that
li = li+4, such that the first term within the parenthesis in Eq. (68) is zero. There are now two different ways in which
one can avoid a contribution from the second term. First, one can set li+2 = li ± 2 and li+1 = li+3 = li ± 1, where the
sign in both equations should be the same. The other possibility is li+2 = li, while li+1 = li ± 1 and li+3 = li ∓ 1, where
the signs in the last two equations have to be opposite.

In particular, the vector l describing the ground states for 0 < p < 1, u > 0 takes the form (we show the case r = 7)

(1,2,3,2,1,2,3,2,1, . . .) (2,3,4,3,2,3,4,3,2, . . .) (3,4,5,4,3,4,5,4,3, . . .) (4,5,6,5,4,5,6,5,4, . . .)

(3,2,1,2,3,2,1,2,3, . . .) (4,3,2,3,4,3,2,3,4, . . .) (5,4,3,4,5,4,3,4,5, . . .) (6,5,4,5,6,5,4,5,6, . . .)

for the ground states of the first type. The patterns of the second type are mere translations of the patterns of the
first type, and are given by the vectors l of the form

(2,1,2,3,2,1,2,3,2, . . .) (3,2,3,4,3,2,3,4,3, . . .) (4,3,4,5,4,3,4,5,4, . . .) (5,4,5,6,5,4,5,6,5, . . .)

(2,3,2,1,2,3,2,1,2, . . .) (3,4,3,2,3,4,3,2,3, . . .) (4,5,4,3,4,5,4,3,4, . . .) (5,6,5,4,5,6,5,4,5, . . .)

In the limit p = 1, the corner transfer matrix A is diagonal, which gives rise to ground states patterns which are invariant
under translation along the North-East to South-West (NE-SW) diagonal. A particular ground state pattern for u > 0
is displayed in figure 10. All the ground states are of the form (l − 1, l, l + 1, l, l − 1, l, l + 1, . . .), or translations of this
pattern.

To count the number of different ground states, we note that the ground state patterns are specified by three
consecutive integers. Because the heights can take the values 1,2, . . . , r − 1, there are r − 3 possible consecutive
integers. By translation, each of these sets of consecutive integers gives rise to four different ground states, for a total
of 4(r − 3) ground states.

We will now count the number of different height probabilities, Pa(b, c, d, e), where the boundary condition (b, c, d, e)
corresponds to a ground state pattern. First, we note that a, the height of the central site, and e have to have the
same parity, a + e = 0 mod 2. For r odd, there are (r − 1)/2 odd valued heights, and (r − 1)/2 even valued heights.
In both cases, a can take (r − 1)/2 values, giving 2(r − 1)(r − 3) different height probabilities. In the case that r is
even, there are r/2 odd valued heights, and r/2 − 1 even valued heights. Out of the 4(r − 3) ground state patterns,
2(r − 3) have e even, and 2(r − 3) have e odd. Hence, also for r even, the number of height probabilities to consider
is 2(r − 1)(r − 3). These height probabilities are given in terms of the functions Xm(a; b, c, d, e; q), which satisfies the
relation (which follows from the symmetry properties of the plaquette weights)

Xm(a; b, c, d, e; q) =Xm(r − a; r − b, r − c, r − d, r − e; q) . (69)
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Figure 11: Ground state pattern for u < 0, which is formed characterized by the pattern in the dashed box.

This halves the number of independent height probabilities, which is thus given by (r − 1)(r − 3), or in terms of
k = r − 2, by k2 − 1.

B. Ground states for u < 0 (domain D2)

We now consider the ground states for u < 0, and look for configurations which maximize the function φ(l).
Because li and li+4 maximally differ by four, both terms within the parentheses in Eq. (68) can maximally contribute
1. However, in order that the first term contributes for every plaquette, the heights li would have to steadily increase
or decrease, which is impossible, because the values the li can take lie in the range li = 1,2, . . . , r−1. The second term
inside of the parenthesis in Eq. (68) can be 1 for all plaquettes. The only requirement is that l2j−1 = l2j+1 = l2j+3 and
l2j = l2j+2 = l2j−1 ± 1. For p = 1, the ground states again are invariant under translations over the NE-SW diagonal,
thus, for u < 0, the ground states are given by configurations for which the heights stay as constant as possible, i.e.
they take the form (l, l + 1, l, l + 1, l, . . .), as depicted in Fig. 11 for a typical example.

The number of ground state patterns is given by the number of consecutive pairs (both increasing and decreasing),
i.e. 2(r − 2). We again need the number of height probabilities we have to consider, or the number of functions
Xm(a; b, c, d, e; q). We only have to specify (a;d, e), because d and e fix the values of b and c in the ground states.
There are 2(r−2) pairs (d, e). It turns out that the number of height probabilities is given by (r−1)(r−2), irrespective
of whether r is even or odd. Thus, there are (r − 1)(r − 2)/2 = k(k + 1)/2 independent height probabilities, because of
the relation in Eq. (69).

C. Criticality at p = 0

We found the ground states for u > 0 and u < 0 deep in the ordered regime, namely for p→ 1 (but also valid for all
p’s in the range 0 < p < 1), by minimizing or maximizing the function φ(l), which appears in the height probabilities,
as well as the partition function. At the critical point, for p = 0 as in the original RSOS model, all configurations
contribute, and one has to do a more careful study of the model. In the remainder of this paper, we focus on the full
form of the height probabilities, which have a close connection with conformal field theory characters, which allows
us to unambiguously identify the critical behavior of the model, for both regimes u > 0 and u < 0. Because we already
established the connection between the composite height model and the anyonic chains, we thereby also explain the
critical behavior of the anyonic chains at the integrable point. A more detailed study of the critical behavior of the
composite height model will be left for a future publication.
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VII. EVALUATION OF THE HEIGHT PROBABILITIES

We now turn our attention to the evaluation of the height probabilities. We have shown that the probability that
the central height takes the value a depends on the boundary condition, which we specified by fixing the boundary
heights (b, c, d, e). The height probabilities are governed by the functions Xm(a; b, c, d, e; q) given in Eqs. (67) and
(68). We are ultimately interested in the behavior of these functions in the limit m → ∞. In that limit, we can let
the boundary heights correspond to the ground state patterns, which extremize the function φ(l).

We therefore consider the functions Xm(a; b, c, d, e; q), for all possible values of (a; b, c, d, e) such that the boundary
heights (b, c, d, e) are part of a ground state pattern. In the limit m → ∞, these functions will receive contributions
from all possible configurations specified by the vectors l. For finite m, these functions are finite polynomials in
q (or q1/2 times such polynomials). The minimal power of q which can occur is zero, while the maximal power is
(m + 1)(m + 3)/8. We note that these extremal values are not obtained for all choices of (a; b, c, d, e).

In the following subsections, we will provide explicit expressions for the functions Xm(a; b, c, d, e; q), in the case
r = 5. We did not yet obtain explicit expressions for r > 5, but by analyzing the functions, we unambiguously
identified them as the characters of certain conformal field theories. In particular, we checked extensively that in the
limit of m → ∞, the functions Xm(q) tend to affine Lie algebra branching functions, or in other words, characters
of the various primary fields in certain coset models. This is precisely the connection we are after, because these
coset models describe the behavior of the model at the critical point, and hence the critical behavior of the anyonic
quantum chains. Before delving into the details, we will first state the results here.

For u > 0, we find that the functions Xm(a; b, c, d, e; q) tend to the characters of the coset su(2)1×su(2)1×su(2)k−2
su(2)k ,

where k = r − 2. In the case that k = 3, this coset is equivalent to a Gepner parafermion theory25 based on su(3)2,
explicitly su(3)2

u(1)4u(1)12 . The characters of this theory were considered in Ref.33 in the context of a particular non-abelian
spin-singlet quantum Hall state34. The finitizations of the characters considered in Ref.33 precisely correspond to the
functions Xm(q) we obtain from the integrable model we introduced in this paper.

For u < 0, one needs to consider the part of the functions Xm(q) with the highest powers of q, as explained below.
In particular, the functions q(m+1)(m+3)/8Xm(q−1) are the functions one needs to consider in the limit m → ∞. We
found that they precisely correspond to the characters of the Zk parafermion theory26 (which is for instance given by
the coset su(2)k

u(1)2k ). The characters of this theory can be found in Ref.35.
For r = 5, we have the interesting situation that the finitization of the characters of the su(3)2 Gepner parafermions,

i.e. the functions Xm(q), also can be considered as finitized characters of the Z3 parafermions. Because both
theories contain Fibonacci particles, one could say that ‘Fibonacci meets Fibonacci’, in the same spirit as ‘Ising meets
Fibonacci’6, which establishes a connection between the theories su(2)2 and su(3)2, which have Ising and Fibonacci
type fusion rules.

In the following two subsections, we provide explicit expressions for the functions Xm(a; b, c, d, e; q), for finite m in
the case, r = 5. These expressions are such that the limit m→∞ can be taken explicitly.

The identification of the functionsXm(a; b, c, d, e; q) for all values of r and (a; b, c, d, e) in terms of the CFT characters
is the subject of Appendix D, which deals with both cases u > 0 and u < 0.

A. Probability amplitudes for u > 0

In this subsection, we give the explicit form of the functions Xm(a; b, c, d, e, q), for those values of (a; b, c, d, e) which
correspond to the ground states for u > 0 (for r = 5). We did not yet prove these results, but we expect that a
proof along the lines of the original paper8 is feasible. Such a proof involves the recursion relations for the functions
Xm(a; b, c, d, e, q), which we give in Appendix D, Eq. (D1).

We start by giving the expressions for finite m, and take the limit m →∞ afterwards. We introduce the function
(q)m = ∏

m
k=1(1 − q

k), for positive integers m, and (q)0 = 1, which appears in the definition of the q-binomials, or
Gaussian polynomials

[
m
n
] =

⎧⎪⎪
⎨
⎪⎪⎩

(q)m
(q)n(q)m−n

for 0 ≤ n ≤m

0 otherwise
(70)

The precise form of the following function we introduce was inspired by the (finitized) character of the Gepner
parafermions associated with su(3)2 (see Ref.33), as well as the characters for the original RSOS model (see, for
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instance, Ref.13). In particular, we introduce

y(m; l2, l3, l4; q) = ∑
′

a,b≥0
q
a2+b2−ab−aδl4,3−bδl4,2

2 [
m+b+δl3,1+δl4,3

2
a

] [
m+a+δl2,1+δl3,2+δl4,2

2
b

] . (71)

where we assume thatm is an integer, l2, l3 = 1,2 and l4 = 1,2,3,4. The prime on the sum indicates the constraints that
the argument of the q-binomials have to be (non-negative) integers. We labelled the function with l2, l3, l4, because
of the connection with conformal field theory characters, which we will describe below (the label l1 can always be
chosen as l1 = 1).

We then have the following results

Xm(1; 2,1,2,3; q) = y(
m − 1

2
; 1,1,1; q)

Xm(3; 2,1,2,3; q) = y(
m − 1

2
; 1,1,3; q)

Xm(2; 3,2,3,4; q) = y(
m − 1

2
; 1,2,2; q)

Xm(4; 3,2,3,4; q) = y(
m − 1

2
; 1,2,4; q)

Xm(2; 1,2,3,2; q) = y(
m − 1

2
; 2,1,2; q)

Xm(4; 1,2,3,2; q) = y(
m − 1

2
; 2,1,4; q)

Xm(1; 2,3,4,3; q) = y(
m − 1

2
; 2,2,1; q) + q

m+1
4 y(

m − 3

2
; 1,1,1; q)

Xm(3; 2,3,4,3; q) = y(
m − 1

2
; 2,2,3; q) + q

m+1
4 y(

m − 3

2
; 1,1,3; q)

(72)

We can now rather easily take the limit m→∞, by using the result limn→∞ [
n
n′

] = 1
(q)n′

. We will assume that m is

of the form 4p + 3, with p integer (the case m = 4p + 1 is only slightly different). By taking this limit, we find that

lim
p→∞

X4p+3(1; 2,1,2,3; q) = c
su(3)2
1 (q)

lim
p→∞

X4p+3(4; 3,2,3,4; q) = lim
p→∞

X4p+3(4; 1,2,3,2; q) = lim
p→∞

X4p+3(1; 2,3,4,3; q) = c
su(3)2
ψ (q) (73)

lim
p→∞

X4p+3(2; 3,2,3,4; q) = lim
p→∞

X4p+3(2; 1,2,3,2; q) = lim
p→∞

X4p+3(3; 2,3,4,3; q) = q−
1
10 csu(3)2σ (q)

lim
p→∞

X4p+3(3; 2,1,2,3; q) = q−
1
10 csu(3)2ρ (q)

Here, the functions csu(3)2x (q) denote the characters of the su(3)2 parafermion theory. This theory has eight fields,
including the identity field 1, with the character csu(3)21 (q), and three parafermions, ψ1, ψ2 and ψ12, which have
identical characters csu(3)2ψ (q). The remaining four fields are three ‘spin’ fields σ1, σ2 and σ12, which have identical

characters csu(3)2σ (q). Finally there is the field ρ, whose character we denote by csu(3)2ρ (q).
In the above, the characters of the fields are ‘normalized’ such that the first term in the expansion is qh, where h

is the conformal dimension of the field under consideration. These conformal dimensions are given by h1 = 0, hψ = 1
2
,

hσ = 1
10
, and hρ = 3

5
. Combining all the factors, the expressions for the limit of Xm(q) are series expansions with

integer or half integer powers of q.
For our present proposes, it is best to view this CFT as the following coset model: su(2)1×su(2)1×su(2)1

su(2)3 . The fields in

this coset model are labelled by the labels of the constituent factors, Φl1,l2,l3l4
, where l1, l2, l3 correspond to the factors

su(2)1, and l4 corresponds to the factor su(2)3. These labels have to satisfy the constraint l1 + l2 + l3 + l4 = 0 mod 2,
which we use to set l1 = 0, and consider the fields with l2 + l3 + l4 = 0 mod 2.

For completeness, we explicitly give the labels of the parafermion fields

Φ0,0,0
0 = 1 Φ0,1,1

0 = ψ1 Φ0,1,0
3 = ψ2 Φ0,0,1

3 = ψ12

Φ0,0,0
2 = ρ Φ0,1,1

2 = σ2 Φ0,1,0
1 = σ1 Φ0,0,1

1 = σ12 .
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For r > 5, we did not yet obtain closed expressions for the functions Xm(a; b, c, d, e; q). However, one can obtain
expansions to high order, by making use of the recursion relations satisfied by the Xm(q), Eq. (D1). These high order
expansions can be compared to the branching functions (or characters) of various coset model. In doing so, we have
established that the Xm(a; b, c, d, e; q; r) are (in the limit m → ∞) the characters of the cosets su(2)1×su(2)1×su(2)k−2

su(2)k
(we remind that k = r − 2). In Appendix D, we will give the relation between the values (a; b, c, d, e) and the labels of
the coset fields.

B. Probability amplitudes for u < 0

The functions Xm(q), with the boundary heights (b, c, d, e) given by the ground state patterns for u < 0, can also
be expressed in terms of the function y(m; l2, l3, l4) which was introduced in the previous subsection. We first state
these results, and subsequently take the limit m → ∞, in order to identify the critical theory describing the critical
behavior of the anyonic quantum spin chain. In particular, for r = 5

Xm(1; 2,1,2,1; q) = q
m+1
4 y(

m − 1

2
,1,1,1)

Xm(1; 2,3,2,3; q) = q
m+1
4 y(

m − 1

2
,1,2,1)

Xm(1; 4,3,4,3; q) = q
m+1
2 y(

m − 1

2
,2,2,1)

Xm(2; 1,2,1,2; q) = q
m+1
2 y(

m − 1

2
,2,2,2)

Xm(2; 3,2,3,2; q) = q
m+1
4 y(

m − 1

2
,1,2,3)

Xm(2; 3,4,3,4; q) = q
m+1
4 y(

m − 1

2
,1,1,3)

(74)

The ground states correspond to the highest possible powers of q, so to make the identification with the conformal field
theory, we we will have to make the substitution q → q−1, and multiply by q

(m+1)(m+3)
8 , which is the maximal power of

q which occurs in the functions Xm(q). This will make sure that the function corresponding to the vacuum character
is a polynomial in q, starting with 1. We find that the functions thus obtained tend to the characters of the su(2)3
parafermions in the limit m → ∞. The su(2)3 parafermion theory contains six fields, the identity, with character
c
su(2)3
1 , two parafermion fields ψ1 and ψ2, with the character csu(2)3ψ , two spin fields σ1 and σ2, with characters csu(2)3σ ,

and finally the field ε, with the character csu(2)3ε . The scaling dimensions are h1 = 0, hψ = 2
3
, hσ = 1

15
and hε = 2

5
. We

find

lim
p→∞

q
(p+1)(p+2)

2 X2p+1(1; 2,1,2,1; q−1) = c
su(2)3
1 (q) (75)

lim
p→∞

q
(p+1)(p+2)

2 X2p+1(1; 2,3,2,3; q−1) = lim
p→∞

q
(p+1)(p+2)

2 X2p+1(1; 4,3,4,3; q−1) = q−
1
6 c

su(2)3
ψ (q) (76)

lim
p→∞

q
(p+1)(p+2)

2 X2p+1(2; 1,2,1,2; q−1) = lim
p→∞

q
(p+1)(p+2)

2 X2p+1(2; 3,2,3,2; q−1) = q−
1
15 csu(2)3σ (q) (77)

lim
p→∞

q
(p+1)(p+2)

2 X2p+1(2; 3,4,3,4; q−1) = q
1
10 csu(2)3ε (q) (78)

The identification of the functions Xm(q−1) for u < 0 in the limit m → ∞ is given in Appendix D, in the case k > 3
(r > 5). They correspond to the characters of the Zk parafermions35.

VIII. CONCLUSIONS AND OUTLOOK

We have introduced a two-dimensional classical statistical mechanics model the critical properties of which corre-
spond to the integrable points of a chain of su(2)k anyons with competing two- and tree-body interactions (J2 − J3
model, given in Eq. (24)). The 2D classical model is a composite height model which is a generalization of the
restricted solid-on-solid model solved by Andrews, Baxter and Forrester8 by means of the corner transfer matrix
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method. We have also used the CTM method and have found that, similar to the RSOS model, there are four differ-
ent regimes with two critical points at p = 0. We have studied two new integrable critical points of the anyonic chain
at tan θint = (d2k − 1)/d2k, which correspond to the p→ +0, u→ ±0 limits of the composite height model.

For ferromagnetic interactions (u > 0, θ = arctan((d2k − 1)/d2k) + π, J2, J3 < 0) the critical point is described by
the su(2)1×su(2)1×su(2)k−2

su(2)k coset conformal field theory. This critical behavior actually describes an extended critical
region around the integrable point. For antiferromagnetic interactions (u < 0, θ = arctan((d2k − 1)/d2k), J2, J3 > 0) the
behavior is that of the Zk parafermions. This critical point constitutes the boundary between a gapped phase, and
an extended critical region, which is described, in general, by theM(k + 1, k + 2) minimal model2.

These CFT identifications stem from the observations that functions Xm(q), which define the local height prob-
abilities are given by characters of the corresponding conformal field theory. The integrable properties of quantum
1D and classical 2D models are fully defined by the Temperley-Lieb algebra relations in Eq. (9), which suggest that
the Hamiltonian in Eq. (24) can be exactly solved in different representations of TL algebra. A particular phys-
ical interpretation of the model depends on the particular representation chosen to solve it. In our case, we have
used the representation of su(2)k anyons, which straightforwardly maps onto the composite RSOS model. In this
representation, an interpretation as a chain of interacting anyons is straightforward.

A different interpretation as a Q-state Potts model (with
√
Q = 2 cos( π

k+2) = dk, where in this case, k is considered
to be a continuous parameter) or a six-vertex model was put forward by Ikhlef et. al.17,18, which naturally admits
the so called ‘loop representation’. The J2 − J3 model at the integrable point, θ = arctan((d2k − 1)/d2k) + π, has been
exactly solved in spin-1/2 representation of the Uq(SU(2)) quantum algebra17,18. In this representation, in contrast
to the ‘anyon representation’, the Hilbert space has a tensor product structure and the J2 − J3 model admits the
solution by the algebraic Bethe Ansatz method. We should note that in spin or loop representations the 1D quantum
Hamiltonian is non-Hermitian and lacks obvious physical interpretation. Despite this non-Hermiticity, it has been
conjectured that the part of the spectrum which scales as 1/L is real. In contrast, in the ‘anyon representation’, which
is adopted in this paper, the Hamiltonian is Hermitian (real symmetric) and has a physical interpretation as a local
interaction between anyons. Despite the differences, the critical properties at θ = arctan((d2k − 1)/d2k) + π found by us
are similar to those found by Ikhlef et. al.17,18. Namely, they have the same central charge, at least for u positive.
The precise connection between these models is interesting, and requires more detailed research. We note that a
similar loop model, related to the anyon model with u < 0 (θ = arctan((d2k − 1)/d2k) ), has been studied in Ref.36. It
was conjectured and several arguments were given that the critical behavior of this loop model (in an appropriate
limit) is described by Zk parafermions.

The anyonic chains have been generalized in different ways. First, to different type of unitary anyons4. It would
be very interesting to investigate to what extend the methods of ‘fused models’, as studied in Refs.12 and29 can be
applied to the anyonic chains of Ref.4. Chains of non-unitary anyons were also considered37. This leads in general to
non-Hermitian Hamiltonians, which nevertheless have a real spectrum. It should be possible to generalize the models
considered in Ref.38 to composite versions, and make a connection with a generalization of the chains considered in
Ref.37.

In this paper, we have described only half of the phase diagram of the composite RSOS model, positive p regime
(0 < p < 1). The corner transfer matrix method allows to study the negative p regime (−1 < p < 0) also, which will be
addressed in a subsequent publication. We have shown that the positive p regime has the interpretation in terms of
1D interacting anyons. The 1D quantum mechanical interpretation of the negative p regime is yet unknown and also
requires further investigation.

Last, but not least, we would like to point out that the study of the RSOS model by Andrews, Baxter and Forrester
gave rise to an interesting set of Rogers-Ramanujan-type identities. Further study of the composite height model in
light of these identities will be most interesting.
Acknowledgements. We acknowledge stimulating discussions with C.J. Bolech, H.P. Eckle, Y. Ikhlef, J. Jacobson,
A.W.W. Ludwig and S. Trebst. We thank K. Schoutens for helpful comments on the literature, and M. Hermanns,
Y. Ikhlef and S. Trebst for useful comments on the manuscript. P.K. acknowledges support from the NSF grant
DMR-1006684.

Appendix A: The plaquettes of the composite-RSOS model

The plaquettes of the composite model are obtained by stacking four plaquettes of the original RSOS model (see
Fig. 7), and giving them the appropriate weights. In the process of stacking the plaquettes, one has to sum over the
internal height, which in some cases can take two possible values (see Fig. 8).

In the following, we will display the possible composite plaquette types, and give the associated weights in terms of
the weights of the RSOS model. In this case, the composite plaquette weights have the same symmetry as the original
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model (with φ = 0), namely the weights are unchanged under exchange of the North-West (NW) and South-East (SE)
corners, as well as under exchange of the North-East (NE) and South-West (SW) corners. This last property is lost,
if φ ≠ 0,K.

We start by giving the composite plaquettes for which the internal height is fixed by the boundary heights. In case
the plaquette is not symmetric, we will indicate the amount of plaquettes which can be obtained from the given by
taking the appropriate mirror image. These mirrored plaquettes have the same weight as the displayed plaquette.

The weights of the composite plaquettes are given in terms of the weights of the original RSOS model, given in
Eq. (18). Let ζl(u) be any weight of the RSOS model, i.e. ζ = α,β, γ, δ. Then, ζl = ζl(u), ζ+l = ζl(u + K) and
ζ−l = ζl(u −K). With this notation, we can give the weights of the composite plaquettes for φ =K:

l l + 1 l + 2
l − 1 l + 1
l − 2 l − 1 l

= β+l+1β
−
l−1β

2
l ( ←

→)

l + 2 l + 1 l
l + 1 l − 1
l l − 1 l − 2

= α+l α
−
l αl+1αl−1 ( ←

→
) (A1)

l − 1 l l + 1
l − 2 l
l − 1 l − 2 l − 1

= β+l γ
−
l−2β

2
l−1 ( ←

→)

l + 1 l l − 1
l + 2 l
l + 1 l + 2 l + 1

= β+l δ
−
l+2β

2
l+1 ( ←

→) (A2)

l + 1 l l − 1
l l − 2

l − 1 l − 2 l − 1
= α+l−1α

−
l−1αlδl−1 ( ←

→
)

l − 1 l l + 1
l l + 2

l + 1 l + 2 l + 1
= α+l+1α

−
l+1αlγl+1 ( ←

→
) (A3)

l − 1 l l + 1
l − 2 l
l − 1 l l − 1

= β+l α
−
l−1βl−1γl−1 ( ←

→←
→
)

l + 1 l l − 1
l + 2 l
l + 1 l l + 1

= β+l α
−
l+1βl+1δl+1 ( ←

→←
→
) (A4)

l + 1 l l − 1
l l

l − 1 l − 2 l − 1
= δ+l α

−
l−1αlβl−1 ( ←

→←
→
)

l − 1 l l + 1
l l

l + 1 l + 2 l + 1
= γ+l α

−
l+1αlβl+1 ( ←

→←
→
) (A5)

l − 1 l l + 1
l − 2 l
l − 1 l l + 1

= β+l α
−
l−1βl−1αl ( ←

→←
→
)

l + 1 l l − 1
l + 2 l
l + 1 l l − 1

= β+l α
−
l+1βl+1αl ( ←

→←
→
) (A6)

l l + 1 l
l + 1 l + 1
l l − 1 l

= δ+l+1α
−
l γlβl ( ←

→←
→
)

l l − 1 l
l − 1 l − 1
l l + 1 l

= γ+l−1α
−
l δlβl ( ←

→←
→
) (A7)

l l + 1 l
l − 1 l + 1
l l − 1 l

= δ+l+1γ
−
l−1β

2
l ( ←

→)

l l + 1 l
l − 1 l − 1
l l + 1 l

= α+l α
−
l β

2
l ( ←

→
) (A8)

l l + 1 l
l + 1 l − 1
l l − 1 l

= α+l α
−
l γlδl ( ←

→
) (A9)

We now focus on the composite plaquettes for which the internal height is not fixed by those of the boundary in
general, and hence takes two different values. The composite weight is a sum of two terms, the first term correspond
to the internal height being l + 1, the second one to the internal height l − 1:

l + 1 l l + 1
l l

l + 1 l l + 1
= γ+l γ

−
l δ

2
l+1 + β

+
l β

−
l α

2
l

l − 1 l l − 1
l l

l − 1 l l − 1
= β+l β

−
l α

2
l + δ

+
l δ

−
l γ

2
l−1 (A10)
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l + 1 l l − 1
l l

l + 1 l l + 1
= β+l γ

−
l δ

2
l+1 + δ

+
l β

−
l α

2
l ( ←

→)

l − 1 l l + 1
l l

l − 1 l l − 1
= γ+l β

−
l α

2
l + β

+
l δ

−
l γ

2
l−1 ( ←

→) (A11)

l − 1 l l + 1
l l

l + 1 l l + 1
= γ+l γ

−
l δl+1αl + β

+
l β

−
l αlγl−1 ( ←

→
)

l + 1 l l − 1
l l

l − 1 l l − 1
= β+l β

−
l δl+1αl + δ

+
l δ

−
l αlγl−1 ( ←

→
) (A12)

l + 1 l l − 1
l l

l − 1 l l + 1
= β+l β

−
l δ

2
l+1 + δ

+
l δ

−
l α

2
l

l − 1 l l + 1
l l

l + 1 l l − 1
= γ+l γ

−
l α

2
l + β

+
l β

−
l γ

2
l−1 (A13)

l − 1 l l − 1
l l

l + 1 l l + 1
= β+l γ

−
l αlδl+1 + δ

+
l β

−
l γl−1αl ( ←

→←
→
) (A14)

We find that the total number of possible composite plaquette types is 66. The total number of plaquettes depends
on the value of r = k + 2, as is the case in the RSOS model.

Appendix B: Properties of corner transfer matrices in different domains

To find out the properties of corner transfer matrices near the boundaries of different domains we need to calculate
the weights of the composite model in those limits.

1. u→ 0 limit

Using the properties of the elliptic theta functions it is straightforward to show that the weights of the RSOS model
in the u→ 0 limit are

αl(u = 0) = 1, (B1)
βl(u = 0) = 0,

γl(u = 0) = 1,

δl(u = 0) = 1.

The RSOS wights with shifted fugacities, φ =K = ηr, have the form

α+l (u = 0) = −α−l (u = 0) =
h(2η − ηr)

h(2η)
, (B2)

β+l (u = 0) = −β−l (u = 0) =
h(ηr)

h(2η)

[h(2η(l − 1))h(2η(l + 1))]1/2

h(2ηl)
,

γ+l (u = 0) = −γ−l (u = 0) = δ−l (u = 0) =
h(2ηl + ηr)

h(2ηl)
,

δ+l (u = 0) = −δ−l (u = 0) = γ−l (u = 0) =
h(2ηl − ηr)

h(2ηl)
.

We are able to show that in this limit all off-diagonal (NE-SW asymmetric) weights of the composite model are zero
and only diagonal (NE-SW symmetric) weights survive. This implies that the corner transfer matrices A and C are
diagonal in this limit. Of the 66 different type of plaquettes, 50 are off-diagonal. Of these 50 type of plaquettes, 42
are trivially zero in the limit u → 0, because they contain a factor βl(u = 0) = 0. The remaining plaquettes are those
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in Eqs. (A11) and (A14), and they are zero because of the relations between the weights given in Eq. (B2). As an
example, we have for the plaquettes on left hand side of Eq. (A11): β+l γ

−
l δ

2
l+1+δ

+
l β

−
l α

2
l = β

+
l γ

−
l +δ

+
l β

−
l = β

+
l δ

+
l −δ

+
l β

+
l = 0.

The weights of all the diagonal plaquettes turn out to be the same. For the weights which only have one contributing
term, we immediately find W1 = −(

h(2η−ηr)
h(2η) )

2
. The weights of the diagonal plaquettes which consist of two terms read

W2 = −(
h(2ηl−ηr)
h(2ηl) )

2
−(

h(ηr)
h(2η)h(2ηl))

2
h(2ηl−2η)h(2ηl+2η). By making use of the following identity for elliptic functions

(see, for instance, Chapter 15 of Ref.9)

h2(2η − ηr)h2(2ηl) = h2(2η)h2(2ηl − ηr) + h2(ηr)h(2η(l − 1))h(2η(l + 1)) , (B3)

we find that W2 =W1. Thus, the general weight of the composite model reads, in the limit u→ 0

W̃ (l1, l2, l3,l4, l5, l6, l7, l8)(u = 0) = −(
h(2η − ηr)

h(2η)
)

2

δl2,l8δl3,l7δl4,l6 . (B4)

Using the definition of Uj , Eq. (40), we can show that

(Uj)l,l′(u = 0) = −(
h(2η − ηr)

h(2η)
)

2

δ(l, l′) , (B5)

such that Uj is a diagonal matrix. From the above and the Eq. (42) it follows that

A(u = 0) = C(u = 0) = 11, (B6)

where we have dropped the irrelevant multiplicative factor, which only depends on r.

2. u→ (2 + r)η limit

We show that in the limit u → (2 + r)η, the corner transfer matrices B and D are diagonal. For unshifted weights
of the RSOS model in the u→ (2 + r)η limit we get

αl(u = (2 + r)η) = −
h(ηr)

h(2η)
, (B7)

βl(u = (2 + r)η) = −
h(2η − ηr)

h(2η)

[h(2η(l − 1))h(2η(l + 1))]1/2

h(2ηl)
,

γl(u = (2 + r)η) = −
h(2η(l + 1) − ηr)

h(2ηl)
,

δl(u = (2 + r)η) =
h(2η(l − 1) − ηr)

h(2ηl)
.

The shifted weights take the form

α+l (u = (2 + r)η) = α−l (u = (2 + r)η) = 0, (B8)

β+l (u = (2 + r)η) = −β−l (u = (2 + r)η) = −
[h(2η(l − 1))h(2η(l + 1))]1/2

h(2ηl)
,

γ+l (u = (2 + r)η) = −γ−l (u = (2 + r)η) = −
h(2η(l + 1))

h(2ηl)
,

δ+l (u = (2 + r)η) = −δ−l (u = (2 + r)η) = −
h(2η(l − 1))

h(2ηl)
.

Because α+l (u = (2 + r)η) = α−l (u = (2 + r)η) = 0, most of the NW-SE asymmetric weights are zero. The remaining
NW-SE asymmetric weights can be shown to be zero, by making use of the properties Eqs. (B7), (B8). This shows
that for u→ (2 + r)η, the corner transfer matrices B and D are diagonal.

As was the case for u = 0, the plaquettes which contribute in the limit u→ (2+ r)η fall in two classes, the ones with
one term and those with two terms. Again, the plaquette weights of these two classes can be shown to give rise to
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the same weights, by making use of the elliptic function relation in Eq. (B3). The final form of the weights is slightly
more complicated than in the case u = 0, and does in fact depend on to the heights,

W̃ (l1, l2, l3,l4, l5, l6, l7, l8)(u = (2 + r)η) = −
[h(2ηl3)h(2ηl7)]

1/2

h(2ηl1)
(
h(2η − ηr)

h(2η)
)

2

δl1,l5δl2,l4δl6,l8 . (B9)

Using the definition of Vj , Eq. (41), we can show that

Vj(u = (2 + r)η) = −(
h(2η − ηr)

h(2η)
)

2

Ṽ 2j−1Ṽ 2j+3Ṽ
−2

2j+1 , (B10)

where we introduced

(Ṽ j)l,l′ = [h(2ηlj)]
1/2δ(l, l′). (B11)

From the above and the definition of the corner transfer matrices, Eq. (42), it follows that

B(u = (2 + r)η) =D(u = (2 + r)η) = Ṽ 1, (B12)

where we again dropped the irrelevant (l1 independent) multiplicative factor.

3. u→ (2 − r)η limit

In this limit all the weights of the RSOS model just change sign compared to the u → (2 + r)η limit. Hence, the
weights of the composite model are unchanged and we find

B(u = (2 − r)η) =D(u = (2 − r)η) = Ṽ 1. (B13)

Appendix C: Weights of the composite model in the p→ 1 limit

To derive the integer function N(l), we consider the limit p → 1 where weights of the composite model, and hence
the corner transfer matrix A, become diagonal. For 0 < p < 1, employing the conjugate modulus transformation, the
function h(u) can be written in the following way8:

h(u) = τ exp [−
π(u −K)2

2KK ′ ]E(e−2πu/K
′
, y), (C1)

where

y = e−4πK/K
′

τ =
K

K ′

∞
∏
n=1

1 − yn/2

1 + yn/2
(C2)

and the function E(z, x) is Jacobi’s triple product

E(z, x) =
∞
∏
n=1

(1 − xn−1z)(1 − xnz−1)(1 − xn) . (C3)

Then the weights of the RSOS model have the form

αl = ν
g2l

gl−1gl+1
w1/2E(xw−1, xr)

E(x,xr)

βl = ν
gl−1gl+1
g2l

(
xE(xl−1, xr)E(xl+1, xr)

wE2(xl, xr)
)

1/2
E(w,xr)

E(x,xr)
(C4)

γl = ν (
gl+1
gl

)
2 E(xlw,xr)

E(xl, xr)
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δl = ν (
gl−1
gl

)
2 E(xlw−1, xr)

E(xl, xr)

where

x = e−4πη/K
′

w = e−2πu/K
′

gl = exp[−
πu(2ηl −K)2

8ηKK ′ ] (C5)

and ν is a constant independent of l.
In what follows, we show that in the limit of p→ 1 and w → 1 the weights of the composite model become diagonal

(similar to the RSOS model). It is straightforward to see that the limit p → 1 implies that x → 0, since K ′(p → 1)
diverges. To find out the limiting values of the weights, we use the following properties of the function E(z, x):

lim
x→0

E(xlw,xr) = {
1 −w l = 0

1 1 ≤ l ≤ r − 1
(C6)

lim
x→0

E(wxl+r/2, xr) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 0 ≤ l < r/2

1 −w−1 l = r/2

−wxr/2−l r/2 < l ≤ r − 1

(C7)

lim
x→0

E(wxl−r/2, xr) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−wxl−r/2 0 ≤ l < r/2

1 −w l = r/2

1 r/2 < l ≤ r − 1

(C8)

In this limit the weights of the RSOS model (unshifted as well as shifted) can be written as

αl = w
r−1
2r α+l = −w

− r+12r x
3−r
4 α−l = w

r−1
2r x

1−r
4

βl = (1 −w)w− r−12r x
1
2 β+l = w

1−r
2r x

3−r
4 β−l = −w

1+r
2r x

1−r
4 (C9)

γl = w
1+2l−r

2r γ+l =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

w
1+2l−r

2r x
1+2l−r

4 l < r
2

w
1
2r (1 − 1

w
)x

1
4 l = r

2

−w
1+2l−3r

2r x
1−2l+r

4 l > r
2

γ−l =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−w
1+2l+r

2r x
−1+2l−r

4 l < r
2

w
1
2r (1 −w)x−

1
4 l = r

2

w
1+2l−r

2r x
−1−2l+r

4 l > r
2

,

δl = w
1−2l+r

2r δ+l =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−w
1−2l−r

2r x
1+2l−r

4 l < r
2

w
1
2r (1 − 1

w
)x

1
4 l = r

2

w
1−2l+r

2r x
1−2l+r

4 l > r
2

δ−l =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

w
1−2l+r

2r x
−1+2l−r

4 l < r
2

w
1
2r (1 −w)x−

1
4 l = r

2

−w
1−2l+3r

2r x
−1−2l+r

4 l > r
2

Using the limits above and taking into account the exact forms for the composite weights (see Appendix A), we are
able to show that the diagonal weights become much larger than the off-diagonal ones. In particular, the leading x
behavior of the weights of the diagonal plaquettes (those which are NE-SW symmetric) is given by x1−r/2, in the limit
x → 0. We explicitly checked that all the off-diagonal plaquettes have weights with a leading exponent of x strictly
larger than 1 − r/2, showing that A is diagonal when p → 1. So in this limit we can drop all the off-diagonal weights
and only diagonal weights contribute to the corner transfer matrix:

W̃ (l1, l2, l3,l4, l5, l6, l7, l8) =
gl3gl7
gl1gl5

x1−r/2w∣l1−l5∣/4+δl1,l7δl6,l8δl1,l5 δl2,l8δl3,l7δl4,l6 . (C10)

The dependence on w of the weights in the limit p→ 1 follows from the form of the weights αl, etc., given in Eq. (C9),
combined with the form of the weights given in Eq. (C4). Note that the exponent of w is always integer or half-integer.

Inserting the above in the definition A in Eq. (42), we get that

Al,l′ =

(m+1)/2

∏
j=1

[W̃ (l2j−1, l2j , l2j+1,l2j+2, l2j , l2j+1, l2j+2, l2j+3)]
jδ(l, l′) (C11)

and

Al,l′ = g
−1
l1 w

φ(l)δ(l, l′), (C12)

where we have dropped the irrelevant multiplicative factor x1−r/2 and φ(l) is given in Eq. (60).
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Appendix D: Connection with conformal field theory for r > 5

In the case r > 5, we did not yet obtain explicit expressions for the functions Xm(q) with m finite. However, the
functions Xm(q), with m odd, satisfy the following recursion relations (m is odd by definition)

Xm(a; b, c, d, e; q) =q
(m+1)(∣b−1−e∣/4+δb−1,cδc,eδb,d)

2 Xm−2(a; b − 2, b − 1, b, c; q)+

q
(m+1)(∣b−1−e∣/4+δb−1,cδc,eδb,d)

2 Xm−2(a; b, b − 1, b, c; q)+

q
(m+1)(∣b+1−e∣/4+δb+1,cδc,eδb,d)

2 Xm−2(a; b, b + 1, b, c; q)+

q
(m+1)(∣b+1−e∣/4+δb+1,cδc,eδb,d)

2 Xm−2(a; b + 2, b + 1, b, c; q) ,

(D1)

where we define Xm(a; b, c, d, e; q) to be zero if any of the a, b, c, d, e lies outside of the range 1,2, . . . , r−1. In addition,
Xm(a; b, c, d, e; q) = 0 if ∣b − c∣ ≠ 1, ∣c − d∣ ≠ 1, ∣d − e∣ ≠ 1. Finally, X1(a; b, c, d, e; q) = q∣a−e∣/4+δa,cδb,dδc,e , if also ∣a − b∣ = 1
and zero otherwise.

Using these recursion relations, one can obtain high order expansions for Xm(q), which allows one to identify the
conformal field theory, by direct comparison to the CFT characters. The following exact results were obtained in this
way, and hence not proven.

1. The case u > 0 (domain D1)

For u > 0, we could identify the functions Xm(q), where (a; b, c, d, e) correspond to ground state patterns, as
characters of the coset model su(2)1×su(2)1×su(2)k−2

su(2)k , where r − 2 = k ≥ 3. The ground states for u > 0 were discussed

in section VIA. The fields in this model are labeled by Φt
′,t,s1
s2 where t′ and t correspond to the factors su(2)1, s1

corresponds to su(2)k−2 and s2 to su(2)k. Because of the constraint t′ + t + s1 + s2 = 0 mod 2, we can set t′ = 1 (both
t′ and t can take the values 1 and 2). Finally, s1 = 1,2, . . . , k − 1 and s2 = 1,2, . . . , k + 1. Note that we use the height
values to label the fields.

To make the connection between the labels (t′, t, s1, s2), we will assume that m = 4p+ 3, with p an integer (the case
m = 4p+1 is very similar). Because of the relation Xm(a; b, c, d, e; q) =Xm(r−a; r− b, r− c, r−d, r− e; q), we only have
to consider two cases for the labels (a; b, c, d, e). The function limp→∞X4p+3(a; b, b − 1, b, b + 1; q) gives the character
of the field Φ1,1,b−1

a . Finally, the function limp→∞X4p+3(a; b, b+ 1, b+ 2, b+ 1; q) gives the character of the fields Φ1,2,b
a .

For completeness, we give the scaling dimensions of the fields in the coset theory explicitly. This formula resembles
the formula for the scaling dimensions of the minimal models39.

Finding the scaling dimensions of the fields in coset conformal field theories is typically easiest done in a Coulomb
gas formalism40. In the case at hand, the relevant Coulomb gas was studied in Ref.18. Based on those results we find
(by appropriately constraining the values of the electric and magnetic charges)

h(t, s1, s2) =

⎧⎪⎪
⎨
⎪⎪⎩

(s1(k+2)−s2k)2−4
8k(k+2) + 1

2
−
(s1−s2+2t)mod 4

4
for s1 + s2 mod 2 = 0

(s1(k+2)−s2k)2−4
8k(k+2) + 1

8
for s1 + s2 mod 2 = 1

(D2)

The scaling dimensions satisfy h(3− t, k−s1, k+2−s2) = h(t, s1, s2), reflexing the fact that the fields Φ3−t′,3−t,k−s1
k+2−s2 and

Φt
′,t,s1
s2 are identified.

2. The case u < 0 (domain D2)

For u < 0, the system is described in terms of Zk parafermions, and we find the following identification. The Zk
parafermion fields are labeled by two integers, Φjn, where j = 0,1, . . . , k, and j + n = 0 mod 2. Two fields which only
differ in their n label by 2k are identified, Φjn ≡ Φjn+2k. In addition, one has the identification Φjn ≡ Φk−jn+k, which is
reflected in the function Xm(q) via Xm(a; b, c, d, e; q) =Xm(r − a; r − b, r − c, r − d, r − e; q). We remind the reader that
k = r − 2, and that the parameters a, . . . , e lie in the range 1,2, . . . r − 1.

For u < 0, the ground states are specified uniquely by (a; b, c), because d = b and e = c (the ground states for u < 0
were discussed in Section VIB). Note that c = b ± 1. The label a corresponds directly to the label j = a − 1. The
magnitude of the field label n is given by c − 1, with a positive sign if c = b + 1, and a negative sign if c = b − 1. Thus,
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in general we find that limm→∞ q(m+1)(m+3)/8Xm(a; b, c, b, c; q−1) corresponds to the character of the field Φa−1(c−b)(c−1),
where the limit is taken over the odd integers.
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