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Abstract

Machine learning, is a broad discipline that comprises a variety of techniques for
extracting meaningful information and patterns from data. It draws on knowledge and
“know-how” from various scientific areas such as statistics, graph theory, linear algebra,
databases, mathematics, and computer science. Recently, materials scientists have
begun to explore data mining ideas for discovery in materials. In this paper we explore
the power of these methods for studying binary compounds that are well characterized,
and are often used as a testbed. By mining properties of the constituent atoms, three
material research relevant tasks, namely, separation of a number of compounds into
subsets in terms of their crystal structure, grouping an unknown compound into the
most characteristically similar peers - in one instance 100 % accuracy is achieved, and
specific property prediction (the melting point), are explored.

PACS: 61.50.Ah, 61.66.Fn, 64.70.dj, 89.20.Ff

1 Introduction

Data mining is a broad discipline that develops methods and tools to extract meaningful
information and patterns from data. It draws on knowledge and “know-how” from various
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Figure 1: Dimensionality reduction techniques. Left: general method; Right: Graph pre-
serving method

scientific areas such as statistics, graph theory, linear algebra, databases, mathematics, and
computer science. With the emergence of the information era, the importance of these tech-
niques has increased dramatically in information-related applications including commerce,
finance, and criminology, to cite just a few. Data mining has also become an essential tool
in the area of genomics whose primary technique involves routinely sifting through millions
of genes to discover similarities or patterns among them.

Materials scientists have begun to explore data mining ideas for the selection of materials
in applications that range from photovoltaics to thermoelectrics to catalysts [1, 2]. The
following section gives a brief overview of a few basic techniques used in data-mining, in
part to define terminology. Whenever possible, an attempt is made to give examples from
materials where the techniques can be applicable.

Among the many problems that are tackled by data mining, two are of primary impor-
tance. One is ‘unsupervised clustering,” which is the task of finding subsets of the data such
that items from the same subset are most similar and items from distinct subsets are most
dissimilar. The second is classification (predictive modeling, supervised learning), whereby
we are given a few distinct sets that are labeled (e.g. samples of handwritten digits labeled
from 0 to 9) and when a new sample is presented to us we must determine to which of the
sets is it most likely to belong. For the example of handwritten digits this is the problem
of recognizing a digit given a data set of many labeled samples of already deciphered digits
available (called a training set).

In order to perform these tasks, it is common to first process the given dataset (e.g., a
database of handwritten digits as represented by the values of the pixels) in order to reduce
its dimension, i.e., to find a dataset of much lower dimension than the original one but
which preserves its main features. What is sometimes misunderstood is that this dimension
reduction step is not done for the sole purpose of reducing cost but mainly to reduce the effect
of noise and in order to extract the main features from the data.



Dimension reduction and PCA. Two distinct types of methods have been proposed for
dimension reduction. The first class of methods which can be termed “projective” includes
all linear methods whereby the data matrix is explicitly transformed into a low-dimensional
approximation. These projective methods find an explicit linear transformation to perform
the reduction, i.e., they find an m x d matrix V and express the reduced dimension data
as Y = VTX. This class of methods comprises the standard Principal Component Anal-
ysis (PCA), the Locality Preserving Projection (LPP) [3], the Orthogonal Neighborhood
Preserving Projections, (ONPP) [4, 5] and variants of these.

A second class of methods that do not rely on explicit projections and are inherently
nonlinear [6], find directly the low dimensional data matrix Y, by simply imposing that
certain locality or affinity between near-by points be preserved. Many of these methods
utilize weighted graphs to represent local geometry in high-dimensional space, which they
try to preserve. As an example, the Locally Linear Embedding (LLE) technique starts by
defining a graph that expresses every point of the original data as an approximate convex
combination of its immediate neighbors. Then it asks the question: How can we map these
data points into a low dimensional space (d coordinates instead of m, with d < m) in such
a way that this graph is preserved as best as possible. This is illustrated on the right side of
Figure 1.

These types of dimension reduction methods can be extended to supervised analogues,
i.€., to situations where each data point is associated with a class label. The class labels
are then taken into account when performing the reduction step. In the case of graph-based
methods, this can be simply achieved by defining the neighbors of an arbitrary vertex ¢ in
the graph to be all the vertices which share the label of . Techniques based on this approach
can be very powerful for face recognition, see, e.g., [5, 7, 8.

Consider the PCA approach for dimension reduction. The primary assumption that
makes PCA useful in this context is that there is some underlying low-dimension of the high-
dimensional data, which represents the most significant features of the data. If we are able
to discover this space we can perform whatever analysis we wish with fewer parameters. In
PCA, this space is obtained via the Singular Value Decomposition (SVD) [9, 10]. Specifically,
let us denote by X the matrix of zero re-centered data, i.e., each column is #; = x; — jt where
W= %2?:1 x; is the mean of X. In PCA, an orthogonal matrix V' is computed which will
map the data so as to maximize the variance of the projected data in the d-dimensional
space. As it turns out the column vectors of this matrix V' are the left singular vectors of
X, associated with the largest d singular values,

[XX]T’UZ:AZ’UZ, Z:1,2,,d (1)

The matrix Y corresponding to the projected (low-dimensional) data is then given by ¥ =
VTX.

Though materials informatics is a relatively new specialty, the use of databases in ma-
terials dates to the 1960’s with the emergence of extensive data sets. The key to “soft”
design of materials, i.e., design without physical experimentation, is to keep the number of
computational tests with materials to a minimum. This means that a search must be per-
formed to select good candidate materials, which can be studied in more detail by solving
the electronic structure problem for the properties of interest.



A recent example of this type comes from Curtarolo, et al. [11] where the authors demon-
strate an interesting application of PCA for the task of predicting structural energies of crys-
tals with the help of the CRYSMET database. For 55 different alloys, they form an array
with 55 columns (for each alloy) and 114 rows (one for each possible crystal structure). The
structural energies, determined by density functional theory calculations, are correlated and
these correlations are unraveled by PCA. With an rms error of 50 meV only 9 dimensions are
required out of 114. The implication is that it is not necessary to perform 11} experiments
for a new alloy but only 9, the others can then be deduced from the correlation.

Unsupervised learning. In unsupervised learning, one is given a data set (refer to the
example of the introduction) and is then asked to find characteristics of the set using only
the data at hand. For example, we may be interested in partitioning the set into distinct
subsets. A number of techniques are used for this purpose and we refer the reader to standard
textbooks, e.g., [12, 13, 14].

Supervised learning. Supervised learning tools are at the basis of pattern recognition.
A prototypical application is that of “face recognition” or “digit recognition” (mentioned
above). In face recognition, we are given a database of photographs picturing ¢ known
individuals (say 20 photos for each of 100 known, i.e., labeled, persons). We are then
presented with a test photo of an unknown person and would like to know of this person is
one of the 100 labeled individuals. A simple comparison based on the array of pixels will
generally perform very poorly. PCA is satisfactory in some cases, but graph based methods
such as ONPP [5] perform quite well for applications where images are involved.

In this context, a number of powerful techniques have been developed in the literature to
“classify” data, i.e., to find its class. Linear classifiers such as Linear Discriminant Analysis,
and Fisher methods, provide ways to optimally separate data into classes.

In the context of materials, one may apply this to guess the ‘class’ of a given material.
For example, we can consider a database of known (i.e., previously studied) compounds,
which can be labeled “photovoltaic,” and we now consider a given ternary material not
studied before. From knowledge of its constituent atoms, and from known structures, we
would like to know if it is likely to be a member of the photovolatic class. When a good
candidate material is identified, a full-fledged electronic structure calculation, e.g. one based
on density functional theory, can be performed and the resulting data will then be added to
the database. The method by which the material has been correctly or incorrectly classified
will be updated according to the result. This feed-back loop to improve the classification
model is called “learning”.

A major part of supervised learning is concerned with building ‘classifiers’ which will
help determine if a given new material has a certain property or not. For example, is the
material in the multiferroic class or not? If the illustration of Figure 2 represents a cloud of
materials in some high-dimensional space, the simplest form of classifier is just a hyperplane
which will tend to best separate the multiferroic materials from the others. The picture may
deceive one to believe that this is an easy task in this particular illustration. However, two
classes may not be easy to separate in a general case, especially in high dimensions. High
dimensionality is one reason why ‘Kernels’ are commonly used in this context [13]. The use
of Kernels amounts to simply changing inner products so as to alter the notion of lengths.
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Figure 2: Classification of materials

Property prediction. A rather common question in materials is whether or not it is
possible to predict a value associated with some physical properties of a compound, e.g., its
melting point. Ideally these should be predictable from properties of the constituent atoms.
The capability to predict a property value with a certain degree of accuracy is another
important application of data mining techniques in materials research. Unlike supervised
learning or unsupervised learning, in most cases, data mining techniques are combined with
statistical regression methods to generate a numerical physical property value of an unknown
material. The ultimate goal is to discover the genuine function that can precisely describe
the correlation between the variable to be predicted and other already known parameters.
The regression part works by finding the best fit to a set of points. Take linear regression as
an example. The best fit is achieved by finding the minimum value of the squared residuals,
leading to what is known as the least squares method. At the same time data mining
techniques can efficiently extract the main features from the data and reduce the effect of
noise. As a result, the unique combination of regression and data mining ideas may provide
a powerful mechanism for predicting numerical values of materials properties.

2 Unsupervised learning experiment

We illustrate “unsupervised learning” by considering a well known family of crystal struc-
tures. These are binary octet crystals whose composition is ANB®~", where N refers to the
number of valence electrons. This family of crystals includes the technologically important
semiconductor such as Si, Ge, GaAs, GaN, and ZnO. There are approximately 80 members
of this crystal family, which condense primarily in graphite, diamond, zincblende, wurtzite,
rocksalt and cesium chloride structures.

The separation of these structures into distinct classes is difficult and has existed as a
problem in the literature for over 50 years [16, 17, 18, 19, 20, 21]. Ordinary chemical coordi-
nates such as size and electronegativity will not result in topologically distinct regimes [22].

Figure 3 illustrates one of the most successful structural maps for this family. The
separation between structural types is nearly exact. Of special note is the separation be-
tween the zincblende and wurtzite structures. These two family types often differ by only
~0.01 eV /atom as the zincblende and wurtzite structures are nearly identical in terms of
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Figure 3: Structural map for binary octet crystals. The coordination number (CN) is in-
dicated for each structural grouping. The chemical coordinates (r,,7,) are combinations of
orbital radii as defined in Ref. [15]. This mapping of these compounds in two dimensions
with the particular coordinates used in Ref. [15] reveals a good clustering of the six different
structures.



local order. They differ only in the third nearest neighbor. The chemical coordinates (r,, )
employed in Figure 3 were based on orbital radii determined from model pseudopotentials
fit to spectroscopic data [15, 23, 24]. In particular, the orbital radii are based on pseu-
dopotential description of the free ion. For example, the silicon radii are constructed from
considering Si*3 ions, i.e., one electron moving in the field of the silicon ion core. The model
pseudopotential is taken to be

Zy

Vir) = _% N Z (1 + 1)2;21(1 + 1)73l ‘ )

Here, Z, is the number of valence electrons, P; is a projection operator, which projects the
[th component of angular momentum and [ is an | -dependent parameter. Atomic units
(h = e = m) are used. This potential replicates only the valence states. A key advantage of
this potential is that it has an analytic solution for the energy levels of the ion. The energy
levels can be written as
_7?
E, = ———— (3)
2(n+1—-1)?

The energy levels can be interpreted as Rydberg levels with an [ dependent defect given by
[. Orbital radii can be defined by finding the classical turning points, V' (r;) = 0, or the
radial maximum of the wave functions arising from this potential [15, 23] as two differ by a
factor of two. The turning points are probably more physical, but traditionally the radii are
defined by the maximum of the wave function and are given by

~

n=1(+1)/2, (4)

While this pseudopotential is not particularly good for calculations, e.g., it possesses a
divergent potential in the core region and the wave functions are not similar to those expected
for an all electron potential, this potential is good for extracting the orbital deviations from
a hydrogenic atom and thus characterizing the chemical nature of the ion core. The orbital
radii are determined once F,, ; is known. The energy levels can be determined experimentally
from spectroscopic data, but the use of spectroscopic data has some obvious disadvantages.
Consider an atom like fluorine. To define the orbital radii for fluorine, we would need to
consider an 7% ion, which is extraordinarily difficult to create and measure. In the original
work [15, 23, 24], the radii for such cases were estimated by extrapolation from known values
of the energy levels.

Here we have decided to update the radii by considering theoretical calculations for the
energy levels and avoid the use of spectroscopic data. We use density functional theory to
determine the total energy to remove an electron from the ion of interest. For example, we
would consider a Sit? ion with a configuration of 3s'3p" for the s-state and 3s"3p' for the
p-state. We determine the total energy of the ion with these configurations and then subtract
the energy of the ion core. We employ the local density approximation, which is known to
be very accurate for ionization energies of neutral and positively charged atoms [25, 26].
For heavy atoms such as cadmium and cesium, we included relativistic effects, which tend
to result in small values of r,. The new set of radii produce a plot very similar to the one
illustrate in Figure 3.



The 2-D mapping used in this example of the octet compounds is identical to what is
usually done in dimension reduction for visualizing complex data. The figure shows the
compound CuF, which was thought to exist in the form of zincblende structure as noted
in another publication [15]. The mapping revealed that this hypothetical compound is
surrounded by crystals in the rocksalt structure. Further research showed that the CuF
compound does not actually exist as suggested by the 2-D mapping. [15].

The 2-D mapping in this example was performed by a judicious change of coordinates,
exploiting physical intuition. One question that may be asked is whether or not a similar
mapping can be discovered in some systematic way. If we restrict the mapping to be linear
then the answer depends on what ‘features’” are included in the data.

In our experiment, we use only the following information from each of the two constituent
atoms:

1. The number of valence electrons;
2. The ionization energies of the s- and p-states of the ion core;

3. The radii for the s- and p- states as determined from model potentials, which are also
listed in Table 1.

The total number of valence electrons is eight for the compounds considered, so there is
some redundancy in this data. Since we are considering two atoms, we will normally have
10 features available for each compound, or nine actually because the number of valence
electrons for the B atom can be obtained from the first. With nine features the data is
still somewhat redundant, in part because some elements repeatedly appear in different
compounds.

The data set we consider is basically the same as before, and consists of 67 compounds.
In this study, we did drop the copper and silver halides as we wanted to restrict our study
to compounds made with simple metals and avoid complications associated with d valence
states. For example, should we consider the d states in copper as part of the valence shell
or not? We classify these compounds into six structures: zincblende (Z), wurtzite (W),
diamond (D), rocksalt (R), and “dual structures” where the ground state structures are
borderline between two phases: zincblende-wurtzite (ZW), and wurtzite-rocksalt (WR). Such
degenerate structures can occur at ambient temperature and pressure. As an example,
ZnS can occur as a zincblende structure or as a wurtzite structure. To accommodate such
situations we would label ZnS as belonging to the “zincblende-wurtzite” class.

In addition, the raw use of the number of valence electrons leads to some difficulties, as
these numbers are of different scale from the others. As a result, for each atom we simply
use the number of valence electrons to scale the data. Specifically, if Z, is the number of
valence electrons for a given atom, we use the following information

1. The energies of the s-electron and the p-electron scaled by +/Z,

2. The radii of s-electron and p-electron orbitals.

With this we can produce the data matrix used for the clustering experiment. The matrix
is of size 8 x 67. Each column corresponds to one of the 67 binary octets considered. The
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Figure 4: PCA projection for 67 octet compounds

entries (rows) are simply the 4 features mentioned above for atom A followed by the same
features for atom B. For elemental crystals, we simply repeat the information, essentially
making the AB compound with B == A. We then use PCA (and other techniques) to
project the data in 2-dimensions. This gives a 2 X 67 array, i.e., two coordinates for each
octet. These 2 coordinates are used to plot the data in a 2-D plane. The result is shown in
Figure 4. The dual structure compounds ZW and WR are represented with the color of one
structure and the shape of the other to facilitate interpretation. As can be seen, the rocksalt
compounds are nicely separated from the other structures as are the diamond structures !
For the sake of lightening the figure, only the labels of a few borderline crystals are shown.

3 Supervised learning experiment

This section will illustrate what is commonly referred to as “supervised learning” in data
mining. The problem at hand is to try to identify the unknown ‘class’ of a given compound.

!There are four diamond compounds. Two of them are almost in the same location near the point with
coordinates (-2, -0.5)
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Figure 5: Left: k-NN classification; Right: Classification by PCA projection.

This class can be a property such as “photovoltaic” or “superconductor”, etc. It is a label
we assign to an item. In the experiment to be described, the class is the structure of the
compound, one of the 6 labels “Z, W, D, R, ZW, WR”.

The problem setting is as follows. We have n compounds ¢y, ¢, -, ¢, whose classes
S1, 89, -+ S, are known. This set is commonly referred to as the ‘training set’. We also have
another compound called t (for “test”) whose label (structure) is unknown. The problem
is to determine the class of t. To do so we need to use information we have about these
compounds. In the illustration below we are allowed to use the exact same information as in
the previous section (9 entries in all for each compound). We will describe 3 methods which
are known for their simplicity.

The first method uses a majority rule among k-nearest neighbors. In this approach,
illustrated in Figure 5 (left), some distance between the test sample and all other compounds
is evaluated and the classes of the k nearest neighbors (8 in the figure) are considered. We
attribute to ¢ the label of the predominant class among these k items. For the example of
the figure the test sample will get the class “asterisk”. The issue with this method is what
is a good choice for k and what distance to use. In the experiment we only use k = 5 and
the Euclidean norm distance.

The second approach is based on the observation made in the earlier section that PCA
does an excellent job at reducing dimensionality. PCA can then be used for classification.
We project everything in a low-dimensional space and determine the closest item to ¢ in
this low-dimensional space. The class assigned to ¢t will be the class of this item. This is
a common technique used in the area of pattern recognition, as for example, when we try
to recognize an individual in a photo (face-recognition) by comparing a “test-image” with
pictures of a number of known individuals.

We describe a third method which we refer to as Orthogonal Neighborhood Preserving
Projections (ONPP) [4]. This method seeks an orthogonal mapping of a given data set so as
to best preserve a certain affinity graph. The graph we use here is the one associated with
the classes: any two compounds in the same class will be linked by an edge. This means
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that a class forms a “clique”. We then associate a weight matrix W with this graph in which
an entry w;; has the value zero if i and j are not in the same class and 1/|C| if they both
belong to class C'. (Note that |C| is the cardinality of this class C'). The projection matrix
V in ONPP is determined so that V is orthogonal (VZV = I) and so that the projected
data Y = VT X minimizes the sum of w;;||y; — y;| over all pairs 4, j. This encourages y; and
y; to be close. After some algebraic manipulations, the optimization problem becomes:

min Tr [VIXUI -WH(I-W)XTV] . (5)
V e Rmxd
VIV =1

Its solution is the basis of the eigenvectors associated with the d smallest eigenvalues of the

eigenvalue problem:
X(I—WH(I - W)X u; = M. (6)

Then the projector V' is [uy, uy, - - -, u4] and results in the projected data Y = VT X,

The data set we consider consists of the same set as before except that we removed
the elemental crystals for the moment because they are isostructural with the zincblene
structure, i.e., if one ignores the difference in atomic species, the zincblende and diamond
structures are identical. We also removed all the Cu and Ag crystal structures as mentioned
before, as well as BN since it alone occurs in a graphite structure once C is removed.

This leaves us with a set of 55 compounds. We perform a ‘leave-one-out’ experiment in
which we take each of the 55 compounds in turn and pretend we do not know its structure.
We then try to guess its structure by correlating it with the other 54 compounds. The
average precision, i.e., recognition rate of the process, is then computed for all 55 cases.
This is the mean number of times (out 55) that the procedure guessed the correct structure
and it is computed for each method separately. For the situations where a compound has
a dual structure, we decided to rate as correct any outcome where at least one label of the
two matches. For example, if the system returns WR for a rocksalt we rate the outcome
as correct. Similarly, the outcome is rated correct in the case when WR is returned for a
wurtzite.

Table 2 shows the results for the following cases:

Case 1: For each atom use features 1:5 for atom A and 2:5 for atom B. No scaling is
applied.

Case 2: For each atom use features 2:5 for atom A and atom B, scale features 2 to 4 (s-,
p-, energies and s-radius) by /z.

Case 3: For each atom use features 1:5 for atom A and 2:5 for atom B. Scale features 2
and 3 (s-, p-, energies) by /z.

Since ONPP and PCA are projection-type methods, we can use two different distances
when trying to determine a class. We can elect to compare VV 't with z; by measuring
|VVTt— ;]| or we can work in the V-space by comparing V1t with VTz;, i.e., by measuring
VTt — VTz,||. Cases 1, 2, 3 use the former measure. Cases 4-6 are identical to cases 1-3,
but use the second measures, i.e., those based on ||V7t—V7Tz;||. These are different distances
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when the projector does not project z; exactly, i.e. when VV7Tx; # z;. Table 3 details the
structure recognition, in case 6, for all 55 compounds.

Looking at the Table 2 we note that even KNN, the simplest method, achieves a recogni-
tion of at least 94.5% in four of the six tests. The other 2 methods easily achieve recognition
rates of 96.4% and higher (2 errors out of 55). In one instance of PCA (test 2) 100% ac-
curacy is achieved although this is a rather contrived situation show here only to illustrate
the possibility of getting 100% accuracy. One compound that is not easily recognized by all
procedures is MgTe. This is a wurtzite, identified incorrectly by KNN and by ONPP as a
zincblende in all 6 tests. It was labeled WR by PCA in Cases 2, 3, 6 and Z in all other
tests. CdO (a rocksalt) also gave difficulties. It was incorrectly labeled as W by KNN in all
6 cases, by ONPP in 3 out of the 6 cases, and by PCA in 2 out of the 6 tests.

4 Property prediction experiment

In this section we explore the melting point of 44 AB suboctet compounds - following an
experiment performed in the paper [15] mentioned earlier. AB suboctet compounds are
composed of simple metals and metalloids as cations and do not contain any transition
metals, the number of valence electrons for the two components is less than eight, e.g.,
MgAu, Naln, and LiAl. As discussed in previous supervised learning experiment, we perform
a “leave-one-out” experiment. Experimental melting points for this set of 44 compounds are
available. By removing one of them we are left with 43 and can use this data to perform a
(linear) regression. The melting point is expressed as a linear combination of a number of
selected features, such as s-radius and p-radius of each of A and B, the number of valence
electrons of atom A, the number of valence electrons of atom B and so on.

A common method used for regression is simply the least-squares approach. However, in
the presence of experimental data, and ill conditioning, it is often the case that regularization
must be used. Tikhonov regularization [27, 28] has been applied for this test. In a standard
regression analysis, we solve a least-squares problem min || X a—b||s where b are the measured
values for each of the m samples, ||.|2 is the Euclidean norm, the columns of X represent
variables evaluated for each of the m samples, and a is the sought coefficient vector which
determines how the variables are (optimally) combined to yield the result b. The solution to
the problem is @ = X 'b where X represents the pseudoinverse of X. In Tikhonov regulation
an approximate optimal solution is found in the form a = (X7X + 71)71 X7 where 7 is a
regularization parameter. In our study we first normalize the data matrix X by scaling its
rows by their 2-norms. The regularization parameter used is 7 = 0.135.

A combination of 16 features for each suboctet binary compound, namely, eight features
for each constituent atom A and B, have been selected for the melting point prediction.
These eight features for each atom are: (1) the number of valence electrons; (2) The radius
for the s states as determined from model potentials; (3) The radius for the p states as
determined from model potentials; (4) The electron negativity; (5) The boiling point; (6) The
1st ionization potential; (7) The heat of vaporization; (8) The atomic number. The radii for
both the s states and the p states are listed in Table 1. The electronegativity is the Pauling
electronegativity [29]. The atomic number, as well as the number of valence electrons,
are adopted from the periodic table published by the National Institute of Standards and
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Technology. Values of the other three features, namely, the boiling point, the 1st ionization
potential and the heat of vaporization, are listed in Table 4.

The results are given in Table 5 and they are also visualized in Figure 6. The relative
error in Table 5 is defined as the absolute difference between experimental and predicted
melting point divided by the experimental melting point. The median relative error of our
predictions is 0.128, which means half of the predictions have a relative error that is less
than 12.8%. The boundaries for predictions with a relative error of 15% are also plotted in
Figure 6. There are six compounds whose prediction relative error is above 25%, namely,
86% of the predictions have a relative error that are less than 25%. Only one compound’s
melting point is predicted with a relative error slightly above 30%. This compound is CaAg.
Considering the fact that the experimental melting points data ranging from 578 K to 1573
K, the theoretical difficulty of a clear description and understanding of the melting point, as
well as the relatively simple linear regression method used in the study, this performance is
understandable. All it says is that it may be possible to use data mining to predict within
a moderate error (say less than 15%) a value associated with some physical properties of a
material from properties of the constituent atoms.

It is remarkable that the anomalous behavior of MgAu disappears in the current study
while it consistently appears in both Bloch-Simons and Mooser-Pearson analytical study,
which has been substantially discussed in the paper [15]. Such anomalous behavior for
rather simple suboctet compounds hinders the practical application, as well as the further
development, of both Bloch-Simons and Mooser-Pearson analytical model for melting point
prediction. It may be attributed to the failure to incorporate correctly the p-d hybridization
into the Bloch-Simons and Mooser-Pearson models. In some ways, the effects of the p-d
hybridization are reduced via data mining. It may be partly due to the fact that more
physical properties of the constituent atoms are incorporated in the prediction through data
mining, some of these properties may include p-d hybridization implicitly. Twenty-three
properties of the constituent atoms, though less than complete, have been studied, and have
led to the optimal feature set listed above. These features include the covalent radius, atomic
mass, melting point, and ionic radius, to cite just a few. More importantly, the construction
of the feature matrix via similar compounds of the target compound, as described below,
provides a sound basis for the predictive inference.

Our melting point prediction algorithm works as follows: (1) Select one compound as a
prediction target from the compound dataset; (2) Search the remaining compounds in the
data set for similar compounds in terms of the outermost orbital type (s, p, d, f) of the
constituent atom’s electronic structure; (3) Form the feature matrix using all compounds
that are similar to the target compound; (4) Use the feature matrix to perform a regression
via Tikhonov regularization; (5) Calculate the relative error and store the predicted melting
point; (6) Return to step (1) for the next unpredicted compound until all compounds have
been predicted. Additional feature matrix formation mechanisms, such as atomic number
and combination of compounds with only one constituent atom similar to the target com-
pound, are also incorporated in our prediction process, forming a hierarchy of the feature
matrix.

The worst predicted compound CaAg, with a relative error of 35%, is a compound with
constituent atoms from s-block and d-block elements, respectively. Four out of the six
compounds, with a relative error greater than 25%, are compounds combined by atoms from
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both s-block and d-block elements too. In addition, 78% of the compounds, with a relative
error greater than 20%, show the same characteristics, namely, one constituent atom is from
the s-block elements while the other from the d-block elements. Such a consistent pattern
reveals that the lack of an accurate description for the d-states may have a negative impact
on predictions, regardless of the techniques applied. In the paper [15], the d-orbitals have
been employed to explain the experimentally observed large melting point difference between
MgAu and ZnAu. Our data mining experiments suggest that the complexity of the d-orbitals
is beyond the description of a single parameter d state radius. This is one reason why we
omitted the coinage metals (Cu, Ag, and Au) when we considered the crystal structures.

In order to understand quantitatively the impact of each feature on the prediction accu-
racy, the sensitivity of features is also measured as follows. First, for the feature matrix X &€
R™*™ " in which features are represented by columns while rows stand for compounds, the
feature k for both atom A and B, namely, X (:, k) and X(:, k + 8) is increased by a product
of a uniform distributed random number and the norm of the feature vector in the order of
1078, represented as ¢ here. Consequently, the new feature value are X (:, k) = X(:, k) + ¢
and X (:,k 4+ 8) = X(:,k + 8) + € for both constituent elements of all compounds. Second,
the new coefficient vector a. is then calculated according to a, = (X7 X + 71)~'X7b where
T is a regularization parameter. Finally, the vector norm of the difference between the new
coefficient vector a, and the original coefficient vector a is divided by €. Such a dimensionless
ratio is calculated for all compounds, and its mean is assigned as the sensitivity of feature
k, i.e. < |lac —all/e > where < ... > represents the sampling average. The above detailed
the calculation for the sensitivity of feature k. Such a calculation has been repeated for all
features of the optimal feature set, as described previously, in order to obtain the sensitivity
of all features. The results are listed in Table 6. Our results show that the electron negativity
has the highest sensitivity value among the eight features set, which means the change in
the electron negativity will have the highest impact on the prediction accuracy. Further-
more, the similarity among compounds can be retrieved more via the electron negativity
of the constituent elements than any other single feature of the eight features set. In this
similarity extraction mode, the eight features of the optimal set can be ranked, descending
order accordingly, as following: (1) The electron negativity; (2) The radius for the s states;
(3) The radius for the p states; (4) Number of valence electrons; (5) The 1st ionization
potential; (6) The atomic numbers; (7) The heat of vaporization; (8) The boiling point. It is
interesting that the experimentally determined heat of vaporization and the boiling points
are the lowest ranked. These features implicitly contain all possible attributes. Also, unless
the structure of the melt is very different, the boiling points should contain essentially the
same information as the heats of vaporization. As such, it is not surprising that the two
features have similar behavior.

The melting point prediction study presented here suggests the possibility of promising
applications of data mining techniques in the materials property exploration. On the other
hand, advancement in the physics, as well as the insight into the nature of the materials,
in particular, the electronic structure of materials, will greatly promote such data mining
applications in materials research. In essence, the spirit of data mining applications in any
fields is the search for similarities that are relevant to the application goal. Unfortunately,
the measurement of similarities among materials for a targeted material property is still at
a nascent stage.
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5 Conclusions

The primary aim of this paper was to show how a few simple data mining techniques can
be applied to answer a few specific questions on materials. In the first experiment, an
“unsupervised learning” technique enabled us to separate 67 octet compounds into distinct
classes according to their crystal structure through a PCA projection of the two constituent
atoms properties. In the second experiment using “supervised learning” techniques, we were
able to find the correct crystal structure of 55 compounds with an average success rate of
95%. In one instance of PCA a 100 % accuracy was achieved albeit with an ad hoc scheme.
Finally, a simple form of regularized regression enabled us to predict the melting point of 44
suboctet compounds with a median relative error of 12.8 %. This was achieved by mining a
combination of 16 properties of the constituent atoms of each binary compound.

These preliminary results indicate that there is a great potential in applying data mining
techniques in materials science. This said, it is clear that more complex issues of materials
science will lead to big challenges to data mining. On the bright side there is much more
to data mining than the basic techniques explored here. Once researchers will gain a better
understanding of the intrinsic nature of the materials-related data, we will likely be in much
better position to deploy these methods for large data sets and extract much more meaningful
information than what was demonstrated in this paper.
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Element 7, Tp

Li 0.99 1.93
Be 0.66 0.96
B 0.49 0.64
C 0.40 0.48
N 0.33 0.39
0 0.28 0.33
F 0.25 0.28
Na 1.01 2.35
Mg 0.86 1.42
Al 0.75 1.09
Si 0.66 0.88
P 0.59 0.75
S 0.54 0.66
Cl 0.49 0.59
K 1.34 2.68
Ca 122 1.84
Cu 0.37 1.48
7n 0.62 1.17
Ga 0.65 1.01
Ge 0.64 0.90
As 0.62 0.82
Se 0.59 0.75
Br 0.57 0.70
Rb 144 2.86
Sr 136 2.05
Ag 047 1.58
cd 0.67 1.26
In 0.78 1.15
Sn 0.78 1.06
Sh 0.76 0.98
Te 0.74 0.92
I 0.71 0.87
Cs 1.66 3.08
Au 0.22 1.32
Ba 152 2.29
Tl 0.67 1.13
Hg 057 1.21
Pb 0.71 1.06
Bi 0.71 1.00

Table 1: List of the radii used in the present work. The radii were based on a model
pseudopotential using density functional theory and are given in atomic units.
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Case KNN ONPP PCA
Case 1 0.909 0.945 0.945
Case 2 0.945 0.945 1.000
Case 3 0.964 0.945 0.982
Case 4 0.909 0.964 0.964
Case 5 0.945 0.964 0.945
Case 6 0.964 0.964 0.945

Table 2: Recognition rate for 3 different methods using the data in different ways
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Compound  Structure KNN ONPP PCA
BeO W W W W
LiF R R R R
BP 7 7 7 7
7
7

SiC ZW / Vs

BeS 7 IW 7W

AIN W W W W
LiCl R R R
MgO R R W
NaF R R

BAs / 7

AlP 7

MgS WR

BeSe Z IW 7W
GaN W W W
ZnO W W W
LiBr
NaCl
CaO
KF
BeTe
AlAs
GaP
7ZnS
MgSe
Lil
CdO
InN
CaS
NaBr
KCl1
SrO
RbF
AlSb
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Table 3: Recognition details for case 6
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Element the boiling point (K) the 1st ionization potential (V) the heat of vaporization (kJ/mol)

Ca 1757 6.11 154
Ag 2436 7.58 251
Ba 2171 5.21 142
Pb 2013 7.42 178
Ge 3103 7.90 331
si 2628 8.15 384
Sn 2543 7.34 296
Sr 1657 5.70 144
Tl 1746 6.11 164
1 459 10.45 21

cd 1038 8.99 100
Li 1615 5.39 146
Mg 1363 7.65 127
In 2346 5.79 232
Au 3080 9.23 334
Rb 961 118 72

Be 3243 9.32 292
Cu 2840 7.73 300
Hg 630 10.44 59

Al 2740 5.99 293
Ga 2676 6.00 259
Na 1156 5.14 97

Bi 1837 7.29 105
K 1032 434 80

Table 4: List of the boiling point, the 1st ionization potential, and the heat of vaporization
used in the present work.
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Compound Experimental (K) Predicted (K) Relative Error

CaAg 938 1266 0.349
BaPb 1123 1158 0.031
BaGe 1418 1450 0.023
CaGe 1573 1385 0.120
CaSi 1518 1378 0.092
CaSn 1260 1438 0.142
SrSi 1423 1551 0.090
SrGe 1438 1546 0.075
TII 723 742 0.026
CdAg 1003 865 0.138
LiAg 1159 829 0.285
MgAg 1093 1090 0.003
ZnAg 963 1101 0.143
CdAu 900 1038 0.153
LiAu 918 1096 0.194
MgAu 1423 1114 0.217
RbAu 773 999 0.292
ZnAu 998 860 0.138
BeCu 1203 1413 0.174
CaCd 958 1089 0.137
CaTl 1243 930 0.252
CaHg 1234 979 0.206
SrCd 973 1046 0.075
ZnCu 1153 1040 0.098
LiHg 868 47 0.140
MgHg 900 982 0.091
LiPb 755 895 0.186
LiTl 783 743 0.051
MgT1 628 808 0.286
LiAl 991 1066 0.076
LiCd 822 811 0.013
LiGa 999 976 0.023
Liln 910 896 0.016
Naln 713 780 0.094
LiZn 753 917 0.217
NaTl 578 632 0.094
LiBi 878 895 0.020
NaBi 793 682 0.140
NaPb 641 714 0.114
KPb 843 830 0.016
KSn 1103 900 0.184
BaCd 854 1086 0.271
BaHg 1095 919 0.161
HgSn 1133 1016 0.103

Table 5: Comparison of the predicted and experimental melting points for the suboctet
compounds
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Name of the feature Sensitivity

number of valence electrons 809
the radius for the s states 1650
the radius for the p states 1057

the electron negativity 2384
the boiling point 2
the 1st ionization potential 627
the heat of vaporization 17
the atomic number 92

Table 6: Comparison of the sensitivity of different features
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