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  Abstract 

Elastic stability criterion is generally formulated based on local elasticity where 

the second order elastic constants of a crystalline system in an arbitrary deformed state 

are required. While simple in formalism, such formulation demands extensive 

computational effort in either ab initio calculation or atomistic simulation, and often 

lacks clear physical interpretation. Here we present a nonlinear theoretical formulation 

employing higher order elastic constants beyond the second-order ones; the elastic 

constants needed in the theory are those at zero stress state, or in any arbitrary deformed 

state, many of which are now available. We use the published second and higher order 

elastic constants of several cubic crystals including Au, Al, Cu, as well as diamond-

structure Si, with transcription under different coordinate frames, to test the stability 

conditions of these crystals under uniaxial and hydrostatic loading. The stability region, 

ideal strength, and potential bifurcation mode of those cubic crystals under loading are 

obtained using this theory. The results obtained are in very good agreement with the 

results from ab initio calculation or embedded atom method. The overall good quality of 

the results confirms the desired utility of this new approach to predict elastic stability and 

related properties of crystalline materials without involving intense computation. 
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1. INTRODUCTION                                          

Born formulated the elastic stability criterion in the context of thermal melting of 

a crystal 1, 2. It states that to ensure a crystalline solid in a stable state, the determinant of 

the second-order elastic constant tensor C  must be positive, 0C > , which amounts to 

saying that given a perturbative strain η  such as in thermal melting, the variation of the 

internal energy of the system must remain positive and convex if the system is in a stable 

state. Furth quickly realized that Born criterion also sets the limit of the strength of a 

perfect crystal subject to external stress that causes deformation strain 3. Thus | | 0C →  

would be the elastic stability condition at temperature below melting point when the 

crystal is under external stress. Since Born criterion is formulated for a crystalline solid in 

a stress-free state, Furth’s generalization is clearly invalid as the elastic constants at finite 

deformation depend on applied stress 4. Born criterion for crystals in deformed state 

should be modified using the stress-dependent elastic constants. The general expression 

for the elastic constants under an arbitrary applied stress was derived by Wallace in the 

context of formulating equations of elastic wave propagation in stressed crystals 4, where 

he called it elastic stiffness constant, 

(1/ 2)( 2 ).ijkl ijkl ik jl jk il il jk jl ik kl ijB C δ τ δ τ δ τ δ τ δ τ= + + + + −   (1) 

Here 2 /ijkl ij klC Fρ η η= ∂ ∂ ∂  is the elastic constants, τ the applied stress, ρ  the density of 

the material in a deformed state, and F  the free energy of the system. Using the elastic 

stiffness constants, the Born stability criterion then becomes 
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     0B > .                                                            (2) 

Eq. (2) reduces to the original Born criterion at zero applied stress ( 0τ = ), i.e. B C= .  

Recently, we 5 showed that the general stability criterion shown in Eq. (2) is 

related to the one proposed much earlier by Polanyi, Frenkel and Orowan 6-8 that predicts 

the ideal strength of a crystal. The connection is through the relation 

2( ) ( ) [( ) ]ij ij ijkl kl klx X B Oτ τ η η= + + ,                                           (3) 

where ( )ij xτ  is the stress at a current deformed state x  away from a reference state X  

and ( )ij Xτ  is the stress applied to a system at state X ,η  the Lagrangian strain from state 

X to state x . If x  is sufficiently close to X , the stability criterion is set by  

                                                    / 0τ η∂ ∂ >                                                                (4) 

which is the Frenkel-Orowan criterion.  

           Using the generalized Born criterion (Eq. (2)), a large number of theoretical and 

computational work has been performed 9 to investigate the elastic stability problems 

associated with phase transition, ideal strength, and crystal defect formation, etc.. 

Continuum model with finite element method 10, atomistic simulation with embedded 

atom method (EAM) 11, 12, and ab initio quantum mechanic simulation 13-16 have been 

employed extensively in various calculations. All these approaches however require 

tremendous amount of computational resource, among which the largest fraction is on 

calculation of the second order elastic constants ijklC  in each deformed state. For ab initio 

calculation, the total energy needs to be calculated first and used later to obtain ijklC ; for 

atomistic simulation, ijklC  can be obtained using either analytical expression or 

fluctuation formula 11, 12. For the latter case, a large amount of computation resource is 
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needed to guarantee the convergence of fluctuations so reliable results can be reached 17, 

18. In addition, the elastic stability criterion as expressed in Eq. (2), though simple, often 

hides the physical mechanisms underlying the stability limit. For example, anharmonic 

effects present in a crystal under applied stress play an important role in softening the 

material, leading to elastic instability. By focusing only on the second order elastic 

constants ijklC , this and other effects manifested in higher order elastic constants are often 

masked.  

 In this work, we present a general theoretical framework of elastic stability 

criterion using higher order elastic constants. In finite deformation theory, both the stress 

and the second order elastic constants in a stressed state can be expressed in a series 

expansion in terms of the deformation strain with the expansion coefficients involving 

stress, the second and higher order elastic constants at a reference state. Choosing the 

reference state as the zero stress state, we obtain the stability criterion as expressed in Eq. 

(2) in terms of the second and higher order elastic constants at zero stress states. Many of 

these zero stress elastic constants are now available either from experiments or theoretical 

calculations, making it extremely desirable, and possible, to use the nonlinear formulation 

analytically to predict stability and ideal strength of crystalline materials without 

resorting to extensive computation. In addition, the anharmonic contributions to the 

elastic stability can be easily seen through these higher order terms. Another advantage is 

that one may use this formulation to predict stability conditions at elevated temperatures 

whenever the elastic constants are available, that cannot be easily dealt with using DFT 

calculation which is confined to zero temperature. 
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           This paper is organized as follows. In section 2, we present a unified transcription 

theory for stress, second and higher order elastic constant at different coordinate frames, 

which is needed for our nonlinear theoretical formulation. We express elastic stability 

criterion and the nonlinear formulation using second and higher order elastic constants at 

zero stress state. Instances of the stability criterion for cubic crystals under hydrostatic 

and uniaxial stress are given. In section 3, we present the methods to test the new 

theoretical formulations of stability conditions with second and higher order elastic 

constants of the materials under zero stress.  In section 4, we give the results obtained 

from several crystalline systems where higher order elastic constants are available. They 

include the stability region expressed by the strain limits, ideal strength or stress, and 

possible bifurcation mode of crystal metals, such as Au, Al, Cu and Si. For comparison 

we show results from our ab initio calculation and other theoretical works. In section 5, 

we discuss the new method and its applications, along with its limitations, mostly from 

the view of the quality of the input data.  Finally, in section 6, we draw conclusions from 

this work. 

 

2. THEORY 

A. Finite deformation theory of stress and elastic constant  

      Suppose a material point in configuration X  under stress ( )ij Xσ  is undergoing a 

small displacement, i.e. with a strain η , to a new state x  with a corresponding stress 

( )ij xσ . We assume, without loss of generality, that the displacement could be arbitrary 

and infinitesimal as needed. The corresponding change of the Helmholtz free energy 

( , ) ( , )F x T F Tη=  at state x  from ( , ) (0, )F X T F T=  at sate X  is expressed 
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as

2 3 4

, ' , ' , ' , '

1 1 1( , ) (0, ) ...
2! 3! 4!X X X X

F F F FF T F T
η η η η

η η ηη ηηη ηηηη
η η η η η η η η η η

∂ ∂ ∂ ∂= + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

,  (5) 

correct to the fourth order in η  with the understanding that all derivatives appearing in 

Eq. (5) is done at state X  with all other strain components 'η  held constant. The 

corresponding (second Piola-Kirchhoff) stress, the second, third and higher order 

isothermal elastic constants at state X  are then 

  
, '

1( )
( ) X

FX
V X η

τ
η

∂=
∂

,                                                                    (6a) 

             
2

, '

1( )
( )

X

FC X
V X

η
η η
∂=

∂ ∂
,      (6b) 

3

, '

1( )
( )

X

Fc X
V X

η
η η η
∂=

∂ ∂ ∂
,       (6c) 

4

, '

1( )
( )

X

Fc X
V X ηη η η η

∂=
∂ ∂ ∂ ∂

,                                                               (6d) 

where ( )V X  is the volume of the system at X . To avoid overcrowded notations, we shall 

not use suffixes for tensors unless necessary. Summation convention is automatically 

assumed.  

Following the same scheme, we can obtain the corresponding stress, the second 

and third order isothermal elastic constants at state x , 

  
, '

1( )
( ) x

Fx
V x ξ

τ
ξ

∂=
∂

,                                                                     (7a) 

             
2

, '

1( )
( )

x

FC x
V x

ξ
ξ ξ

∂=
∂ ∂

,       (7b) 
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3

, '

1( )
( )

x

Fc x
V x

ξ
ξ ξ ξ
∂=

∂ ∂ ∂
,       (7c) 

where ( )V x  is the volume of the system at state x  and ξ  is a Lagrangian strain from state 

x  to state y . From above expressions, we see that we can simply take a derivative of Eq. 

(5) with respect to ξ  at state x , so we have, after dividing by ( )V x  on both sides,  

           
, '

1 ( ) 1 1( ) ( ) ( ) ( ) ( ) ...
( ) ( ) 2! 3!x

F V Xx X C X c X c X
V x V xη

ητ τ η ηη ηηη
ξ ξ

∂ ∂ ⎡ ⎤= = + + + +⎢ ⎥∂ ∂ ⎣ ⎦
.  (8a) 

Following the same scheme, we can systematically obtain the second and higher order 

elastic constants at state x  in relation to those at state X ,  

2

, '

1 ( ) 1( ) ( ) ( ) ( ) ...
( ) ( ) 2!

x

F V XC x C X c X c X
V x V x

η

η η ηη
ξ ξ ξ

∂ ∂ ⎡ ⎤= = + + +⎢ ⎥∂ ∂ ∂ ⎣ ⎦
,              (8b) 

[ ]
3

, '

1 ( )( ) ( ) ( ) ...
( ) ( )

x

F V Xc x c X c X
V x V x

η

η η
ξ ξ ξ ξ
∂ ∂= = + +

∂ ∂ ∂ ∂
,         (8c) 

and so forth and so on. As we show below, these transcription relations enable us to 

formulate the nonlinear theory of elastic stability criterion.  

B. Elastic stability of crystal solids under external stress 

If the material at the state X  is stable, given a small increment of strain η  (with 

Voigt notation, a strain tensor is treated as a vector, 1 2 3 4 5 6( , , , , , )η η η η η η η= ), the 

increment of the corresponding stress must remain positive along the direction of the 

perturbative strain η . Otherwise, the system at state X is unstable. This criterion  is what 

Polanyi, Frenkel and Orowan 6-8 originally proposed for estimating the ideal strength of a 

material where / 0τ η∂ ∂ → . This approach to obtain stability is effective as in most 

calculations and simulations the stress-strain relation can be easily obtained. However, it 
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often occurs that the deformation strain at the instability does not follow the original 

loading path. For example 15, when a fcc crystal Au is under uniaxial tension, the elastic 

instability is dominated by one of the shear strains, rather than the tensile strain. This 

particular aspect makes it more appealing to use the following approach.  

The elastic response coefficient defined as in Eq. (1) is often used as a default to 

judge the stability as the ingredients needed in this criterion can be obtained directly from 

calculations. It involves τ , the external stress at state X , or the Cauchy stress when the 

system is in equilibrium, and 1 2
0( / )ijkl ij klC V U ηη η−

== ∂ ∂ ∂ , the elastic constants at state 

X . This stability criterion can be obtained from the stability criterion proposed by Hill 

and Milstein 19-23. We can show that, with a perturbative strain η , a solid can only be 

stable when the variation of the internal energy or free energy F  is larger than the 

external work W done to the system, or ( ) 0TF W Bδ η η− = > .  

      Based on its definition, ijklB  is in general asymmetric while ij kl↔ , unless the 

applied stress is hydrostatic, ij ijτ δ∝ . The stability criterion ( ) 0TF W Bδ η η− = >  will be 

valid only if the symmetrized part of B , ( ) / 2TB B B= + , is positive-definite, or | | 0B > . 

Specifically, for a cubic crystal subject to hydrostatic pressure P , ij ijPτ δ= − , thus 

B B= , due to preservation of the lattice symmetry. We follow the convention that the 

inward pressure is positive while outward one is negative (i.e., 0P <  for tension). The 

stability conditions are, 

                                     ( ) 11 12 11 12( 2 ) / 3 ( 2 ) / 3 0TB B B C C Pτ = + = + + > ,                        (9) 

                                      ( ) 11 12 11 12' ( ) / 2 ( 2 ) / 2 0G B B C C Pτ = − = − − > ,                        (10) 
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                                            ( ) 44 444 4( ) 0G B C Pτ = = − > .                                  (11) 

Here Voigt notation is applied. We express the bulk stiffness modulus ( )TB τ , tetragonal 

shear stiffness modulus '( )G τ , and rhombohedral shear stiffness modulus ( )G τ  

explicitly. 

For a cubic crystal under an uniaxial stress along the [100] axis, 1 1ij i jτ τδ δ= , 

where , 1, 2,3i j = , the lattice symmetry will become tetragonal after deformation. The 

criterion, | | 0B > , gives four stability conditions, two of which are associated with 

applied stress explicitly 24: 

           
2 2

11 22 23 12 11 22 23 12( ) 2 0 ( )( ) 2( ) 0,
2

B B B B C C C C ττ+ − > ⇔ + + − − >                      (12) 

             22 23 22 230 0,B B C C− > ⇔ − >                                                                 (13) 

                                 44 440 0,B C> ⇔ >                                                                           (14) 

                                 55 550 0.
2

B C τ> ⇔ + >                                                                     (15) 

The first condition in Eq. (12) equals to that the Young’s modulus, 100 0E > . The 

Young’s modulus expressed in terms of the elastic stiffness constants that governs a fully 

relaxed stretch along [100] direction is  

                                       
2

11 22 23 121
100 11

22 23

( ) 2( ) ,B B B BE S
B B

− + −= =
+

                                      (16) 

where ijS  is the elastic compliance tensor for tetragonal crystals.  

The ideal tensile or compressive strength of the crystal is the corresponding value 

of the normal stress τ  at which any one of the above conditions (Eq. 12-15) starts to fail. 

This is different from the original Polanyi-Frenkel-Orowan criterion for theoretical 
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strength mentioned above if the strain corresponding to the violation of the stability 

condition is not along the primary loading path, the [100] direction. This phenomenon is 

called stability bifurcation 15, 16, 19-23. The corresponding strain along the primary loading 

path where any one of the above stability conditions is violated sets the strain limit for the 

materials. 

C. Nonlinear theoretical formulation of elastic stability criterion       

  As mentioned in the Introduction, one necessary ingredient in acquiring the elastic 

stability criterion expressed in Eq. (2) is the second order elastic constants ijklC  at the 

current state which is usually deformed. To simulate the elastic stability of a crystal solid 

deformed along a loading path, for each small increment of deformation strain, one must 

calculate ijklC , either from the total energy in ab initio calculations or fluctuation in 

atomistic simulation. This procedure demands a huge computing effort.  

 Realizing the relations expressed explicitly in Eqs. (8) between the stress and 

elastic constants at an arbitrary deformed state x  and those at a reference state X , we 

can significantly simplify the procedure to test the elastic stability criterion (Eqs. (1) and 

(2)) by using a reference state under zero stress which is often called natural state in 

mechanics where ( ) 0Xτ = . We could express stress and elastic constants at an arbitrary 

stressed state x  as the function of the deformation strain and the stress and elastic 

constants at the natural state. We obtain these relations below. 

 Considering only symmetric strain from X to x , when we use relations  

i
ij ji

j

xa a
X

∂= =
∂

, ij
ki lj

kl
a a

η
ξ

∂
=

∂
, the stress in Eq. (8) becomes      
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0( / ) [ (0) (0)

1 1(0) (0) ...],
2 6

ij ik jl ij klmn mn
kl mn

klmnpq mn pq klmnpqrs mn pq rs
mnpq mnpqrs

V V a a C

C C

τ τ η

η η η η η

= +

+ + +

∑ ∑

∑ ∑
                     (17)                                

where 0V , (0)ijτ , (0)klmnC , (0)klmnpqC , etc., represent the volumes, stress, the second, 

third and fourth order elastic constants at zero stress state respectively, and V  is the 

volume at the current state x .  Similarly, following Eq. (8b), we can write the second-

order elastic constants ijklC at state x ,  

       0
1( / ) (0) (0) (0) ... .
2ijkl im jn kp lq mnpq mnpqrs rs mnpqrstu rs tuC V V a a a a C C Cη η η⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
         (18)                          

Explicitly for example, after using the relations, ( )det | | 1 ...
( ) ii

V xJ a
V X

η= = ≈ + + and 

1 ...
2ij ij ij ki kja δ η η η≈ + − + , Eq. (17) becomes Eq. (3) correct to the first order of ijη  (higher 

order terms in ijη can also be obtained easily from Eqs. (8)), and the second order elastic 

constants in Eq. (18) becomes 

     
(0) (0) (0) (0) (0) (0)

(0) ...
ijkl ijkl ijkl mm ijkm lm ijml km imkl jm mjkl im

ijklmn mn

C C C C C C C

C

η η η η η

η

⎡ ⎤= + − + + + +⎣ ⎦
+ +

.   (19) 

Now we have a general expression for ijτ and ijklC  evaluated at any deformed state 

x , in terms of the second-, third-, fourth-order and even higher order elastic constants 

evaluated at the zero stress state. If we know these elastic constants, either from 

experiment or theoretical calculations, we could express the elastic stability conditions, as 

expressed in Eqs. (9)-(11) or Eq. (12)-(15), analytically as functions of the deformation 

strain η  only. This new formulation based on the finite deformation theory (section 2A) 

gives a significant relief in computing the elastic stability conditions; and at the same 
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time it offers valuable insights into how the nonlinear effects such as anharmonicity 

contribute to crystal stability. In addition, if the data are known, one can predict stability 

conditions at elevated temperatures where the DFT type of calculations becomes difficult 

as they are confined at zero temperature. In the following, we shall present detailed 

formulations to implement this approach in cubic crystals. 

3. DETAILS OF THEORETICAL CALCULATION  

We performed ab initio calculations previously with the density functional theory 

(DFT) to investigate the elastic stability of a face-centered cubic crystal Au under 

hydrostatic and uniaxial stresses, respectively 15, 16 . The calculation consists of three 

parts: (1) equilibrate the system and then subject the system under deformation by 

applying a homogeneous deformation strain along a specific loading path; (2) obtain the 

elastic constants, stresses, and other relevant properties such as volume at each of the 

deformed state; and (3) from the elastic constants, obtain the elastic stiffness constants 

and thus the stability criteria (Eq. (2)). One can obtain the stability condition using the 

stress-strain relations (Eq. (3)) too but caution must be taken in case of any possible 

occurrence of bifurcation.  

In the case of hydrostatic loading, due to the preservation of the symmetry, the 

procedure is simple. We apply hydrostatic deformation to a crystal supercell via a 

strain, 11 22 33η η η ξ= = = , 0ijη = for i j≠ , which is done by changing the lattice 

parameter a  homogeneously, or 0/ 1 2a a ξ= + . We then obtain the pressure-strain 

relation and the internal energy U  as a function of the applied strain, or 0( / )U U a a= , 

from which we obtain the elastic constants.  
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For uniaxial loading, the procedure is much involved. To simulate deformation 

along [100] axis, we first apply an incremental strain, 1η , along [100] axis to a crystal 

supercell. Then we hold the supercell in [100] direction but allow it to relax along the 

other two perpendicular directions, [010] and [001]. When the stress components 2σ  and 

3σ  along these two directions reach zero as required by Poisson contraction, we measure 

the value of 2η and 3η  and obtain a new supercell, which is now under the non-vanishing 

stress only along [100] axis. Due to the tetragonal crystal symmetry and 

relaxation, 2 3 0σ σ= = , the total energy of the system is a function of 1η  only. From the 

total energy of the deformed supercell at each value of 1η , we calculate the elastic 

constants, and test those stability conditions Eq. (12)-(15). The process is very tedious 

and time consuming. In the following, we present the analytical model using the 

nonlinear formulation to express the stability conditions for cubic crystals under 

hydrostatic and uniaxial loadings, respectively. 

A. Cubic crystals under hydrostatic stress 

For a cubic crystal under a hydrostatic loading, we have a pressure on the system, 

'
ij ijPσ δ= − , and the deformation strain 1 2 3η η η= = . Using Eqs. (17) and (18), we have 

the pressure and elastic constants for the deformed system in terms of these at zero 

applied pressure,  

              

' '
1 11 12 1

1

2 3
111 112 123 1 1111 1112 1122 1123 1

1 1( ) [( 2 )
3 1 2

1 1 4( 3 ) ( 2 ) ] ...
2 6 3

P tr C C

C C C C C C C

σ σ η
η

η η

−= − = − = + +
+

+ + + + + + +
  ,  (20) 

correct to the third order in Lagrangian strain, and 
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'
11 1 11 111 112 1 1111

2
1112 1122 1123 1

11 2 [ ( 2 ) (
2

2 ) ]

C C C C C

C C C

η η

η

= + + + + +

+ +
  ,                               (21a) 

  

'
12 1 12 112 123 1 1112 1122

2
1123 1

1 2 [ (2 ) (
5 ) ]
2

C C C C C C

C

η η

η

= + + + + + +
   ,                      (21b) 

and 

   
'
44 1 44 144 155 1 1144 1155 1255

2
1266 1

11 2 [ ( 2 ) ( 2
2

) ]

C C C C C C C

C

η η

η

= + + + + + + +
   ,    (21c) 

correct to the second order in Lagrangian strain. Using these relations, we can test the 

stability conditions expressed in Eqs. (9)-(11). 

B. Cubic crystals under uniaxial stress along [100] axis       

We denote the original state by X , that is corresponding to an initial state of a 

cubic supercell (not necessarily the natural or stress-free state), the state with applied 

strain 1η  by 'X , the state after relaxation by ''X , both of the latter two states are with 

tetragonal symmetry. Then from X to ''X , using Eq. (17) we have the stress 

             

''
1'' 0 1

1 1''
1 0 1 1 2

2
11 1 12 2 3 111 1 112 1 2 3

2 2 3 2
112 2 3 123 2 3 1111 1 1112 1 2 3

3 3 2 2
1112 2 3 1122 1 2 3

1 21 1 [
'' '' 1 2

1( ) ( )
2

1 1 1( ) ( )
2 6 2
1 1( ) (
6 2

VU U
V V V

C C C C

C C C C

C C

ηησ σ
η η η η

η η η η η η η

η η η η η η η η

η η η η η

+⎛ ⎞⎛ ⎞ ⎛ ⎞∂∂ ∂= = = +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ +⎝ ⎠ ⎝ ⎠⎝ ⎠

+ + + + + +

+ + + + + +

+ + + 2 2
1123 1 2 3 2 3 2 3

1 1) ( )]
2 2

C η η η η η η η+ + +

     ,    (22) 

correct to the third order of Lagrangian strain. We now choose state X  as the natural 

state, 1 0σ = . Similarly, we may use Eq. (18) to have the six independent second-order 

elastic constants at the state ''X ,    
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3/2
'' 21
11 11 111 1 112 2 3 1111 1

2

2 2
1112 1 2 3 1122 2 3 1123 2 3

(1 2 ) 1[ ( )
(1 2 ) 2

1( ) ( ) ]
2

C C C C C

C C C

η η η η η
η

η η η η η η η

+= + + + + +
+

+ + + +
  ,                              (23a) 

            

'' 22
22 11 111 2 112 1 3 1111 21/2

1

2 2
1112 2 1 3 1122 1 3 1123 1 3

(1 2 ) 1[ ( )
(1 2 ) 2

1( ) ( ) ]
2

C C C C C

C C C

η η η η η
η

η η η η η η η

+= + + + + +
+

+ + + +
  ,                             (23b) 

            

'' 1/2 2 2
12 1 12 112 1 2 123 3 1112 1 2

2
1122 1 2 1123 1 3 2 3 3

1(1 2 ) [ ( ) ( )
2

1( )]
2

C C C C C

C C

η η η η η η

η η η η η η η

= + + + + + + +

+ + +
   ,                   (23c) 

           

'' 2 22
23 12 112 2 3 123 1 1112 2 31/2

1

2
1122 2 3 1123 1 1 2 1 3

(1 2 ) 1[ ( ) ( )
(1 2 ) 2

1 ( 2 2 )]
2

C C C C C

C C

η η η η η η
η

η η η η η η η

+= + + + + + +
+

+ + +
,                     (23d) 

           

'' 22
44 44 144 1 155 2 3 1144 11/2

1

2 2
1155 3 2 1255 1 2 1 3 1266 2 3

(1 2 ) 1[ ( )
(1 2 ) 2

1 ( ) ( ) ]
2

C C C C C

C C C

η η η η η
η

η η η η η η η η

+= + + + + +
+

+ + + +
 ,                               (23e) 

and  

          

'' 1/2 2
55 1 44 144 2 155 1 3 1144 2

2 2
1155 3 1 1255 1 2 2 3 1266 1 3

1(1 2 ) [ ( )
2

1 ( ) ( ) ]
2

C C C C C

C C C

η η η η η

η η η η η η η η

= + + + + + +

+ + + +
   ,                                (23f) 

correct to the second order in Lagrangian strain. With Eqs. (22) and (23), we have the 

stress and elastic constants at state ''X  all expressed in terms of 1η  and the second-, 

third-, and fourth-order elastic constants at state X , given the condition that 

2 3 1( )fη η η= =  as required from 
2 3

'' '' 0σ σ= =  after relaxation from state 'X . To identify 

the value of 2η and 3η  for each specific 1η , we use the procedure given in Appendix A. 



 16

Therefore using the available elastic constants at zero stress, we can test the stability 

conditions expressed in Eqs. (12)-(15) involving the stress and elastic constants at any 

deformed state ''X .  

 

4. RESULTS 

 In the following, we shall presents the results on testing the nonlinear formulation 

of the elastic stability conditions expressed in two different forms, one is in terms of the 

elastic stiffness coefficients (Eq. (2)) and the other is from the stress-strain relation (Eq. 

(3)). In the nonlinear formulation, both the stress and the elastic constants are functions of 

the deformation strain only. The inputs are the second-, third-, and fourth-order elastic 

constants at a natural state from available experimental measurements or theoretical 

calculations. Obviously, the quality of the input data has a big effect on the stability 

results, especially at large strains. We shall discuss this issue in more detail in next 

section. For comparison, we also use the results from ab initio calculations and atomistic 

simulations, in particular those from our own DFT calculation of Au where all elastic 

constants up to the fourth order were available in our previous publication 25. 

A. fcc crystal Au under hydrostatic stress 

Figure 1 gives the stress-strain curves of both analytic results and ab initio 

calculations for the crystal Au under a hydrostatic stress. We have two stress-strain 

curves from Eq. (20) resulting from two sets of data of the elastic constants, one from the 

experiments 26 and the other from our recent ab initio calculations 25. We can see that the 

analytical results agree well with that from the DFT calculation in the presented large 
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strain range; and the one with experimental input deviates from the other two only in the 

compressive regime.  

Figures 2(a)-2(c) show the elastic stiffness moduli defined in Eqs. (9)-(11) with 

varying hydrostatic strains. As for the stress-strain relation, three sets of results are 

obtained for each stiffness modulus. We see that when we use the second-, third-, and 

fourth-order elastic constants of the stress-free crystal Au from our calculations and the 

experiments, the results agree very well with the direct ab initio calculated stiffness 

moduli. Our earlier ab initio calculation work 15 shows that under hydrostatic stress, the 

instability does not occur along the primary volumetric deformation path; instead it 

happens along a bifurcated path, the rhombohedral shear path at the expansion strain of 

0.06 15. The analytical results using the elastic constants from our ab initio calculations 

show that under compression, all of the three stability conditions (Eq. 9-11) are obeyed 

within 10% strain range. In expansion, the stability conditions associated with the bulk 

and tetrahedral shear stiffness moduli (Eq. (9) and (10)) are maintained (Fig. 2a and 2b), 

and the rhombohedral shear stiffness condition is violated, i.e. goes to zero first at 

Lagrangian strain 1 ~ 0.05η , which agrees well with our previous direct ab initio 

calculation of the stability condition (Fig. 2c) 15. It is interesting to notice that the 

rhombohedral shear stiffness condition from the analytical result using the experimental 

elastic constants does not show instability, although a minimum at the same strain 

( 1 ~ 0.05η ) can be seen. Moreover, the rhombohedral shear stiffness modulus increases at 

the large strain, due mainly to the use of the fourth-order elastic constants, while that 

from the direct ab initio calculation shows a monotonous decrease with volume 

expansion.  
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As we mentioned early, the rhombohedral shear instability showing up as an 

instability bifurcation can not be captured directly from the hydrostatic pressure-strain 

curves as shown in Fig. 1. Accordingly, the theoretical strength cannot be obtained from 

the pressure-strain curve using Frenkel-Orowan criterion. Instead, it can only be obtained 

from the information of the shear instability from the generalized Born criterion. From 

the analytical stress-strain curves (Fig. 1), using the input elastic constants from our 

previous ab initio calculations we obtain the ideal hydrostatic strength 17.1 GPa that 

corresponds to the shear instability at 1 ~ 0.05η . As a comparison, it is 19.2 GPa from the 

direct ab initio calculations due to shear instability 15. 

B. Diamond-structure Si under a hydrostatic stress 

            Karki BB et al 27employed ab initio calculations to test the stability conditions of 

diamond-structure Si under hydrostatic pressure. Their results show that the tetragonal 

shear modulus decreases with pressure and vanishes at about 101 GPa, while 

rhombohedral shear modulus decreases to zero at a higher pressure of 107 GPa. We used 

the fourth-order elastic constants obtained by Gerlich D et al 28 with Keating model to 

test the elastic stability of Si with the above nonlinear theoretical formulation. We found 

that the tetragonal shear modulus approaches zero under a pressure of 69 GPa, while 

rhombohedral shear modulus decreases to be zero at 32 GPa. In Gerlich’s work, the 

errors in the fourth-order elastic constants are more than even 100%, that might be the 

major reason we can not use those elastic constants to obtain satisfactory results. 

 
C. fcc crystal Au under uniaxial stress along [100] axis 

As compared with the hydrostatic case, the uniaxial loading is more complicated 

due to symmetry breaking. Figure 3 gives the uniaxial stress as a function of strain 1η  
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along the [100] direction for a face-centered cubic crystal Au under a uniaxial stress 

(tension and compression). Three sets of results are presented, one is from the direct ab 

initio calculation and the other two are from Eq. (22) using the elastic constants from 

experiments  26 and our DFT calculations 25 . The three lines agree well with each other in 

the range of small strains less than 0.02. Beyond this range, some differences occur. In 

general, the analytical result using the elastic constants calculated from the ab initio 

results agrees well with the stress-strain relation obtained directly from ab initio 

calculation; but the analytical result using the experimental data differs substantially from 

the ab initio ones, which is understandable considering that the experimental data were 

not obtained at zero temperature. They came from different measurements with 

approximations, noticeably using Cauchy relation 26. Another obvious deviation among 

the stress-strain relations occurs at larger strains in the compression region. The 

analytical result using the elastic constants from the DFT calculations shows a larger 

deviation from the direct ab initio calculation result. Partly those deviations are due to 

keeping only a finite number of terms in the deformation energy up to the fourth-order in 

strain 1η . As shown later, nevertheless, the deviation in stress-strain relations does not 

affect the prediction of the stability conditions.  

Using the relations in Eqs. (23), we obtained the elastic constants at a deformed 

state, from which we can obtain the stiffness constants (Eq. (1)) and thus test the stability 

criteria for Au under an uniaxial loading (Eqs. (12)-(15)). Figure 4(a)-4(d) give these 

elastic stiffness moduli as functions of 1η . In general, the trend in each of the four moduli 

as functions of the uniaxial strain is captured well by the analytical results as compared 

with the direct ab initio calculations, although increasing deviation occurs at larger 
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strains due to the use of only finite terms in the theory. The most salient feature is that the 

nonlinear theory can predict the instability and bifurcation relatively well (within the 

range of the strains before large deviation from these of ab initio calculation occurs). As 

shown in figure 4(a), under tensile stress, the stability condition involving the tetragonal 

shear modulus (Eq. (13)) is violated first. The corresponding Lagrangian strain is at 

1 ~ 0.048η   where the shear stiffness modulus calculated using the elastic constants from 

the ab initio calculations vanishes, and at 1 ~ 0.10η  where the shear stiffness modulus 

calculated using the experimental input data for elastic constants vanishes. Once again we 

see that the instability occurs not along the primary loading strain path but along a shear 

path, called instability bifurcation, which is well captured by the theory. Fig. 4(b) and 

4(c) show that there is no instability triggered by two other shear stiffness coefficients; 

both 44B  and 55B  remain finite within the range of strains before the tetragonal shear 

instability occurs. 

As shown in figure 4(d), under compression, the stability condition governed by 

the Young’s stiffness modulus (Eq.(12) or (16)) is violated first  at the Lagrangian strains 

1 ~ 0.045η −  and 1 ~ 0.085η −  using the input elastic constants from the ab initio 

calculations and experiments respectively. As a comparison, the corresponding strain 

limits at these tension and compression instability points from our previous ab initio 

calculation are 0.07 and -0.07 16.  

Given the stress-strain curve (Fig. (3)), from the nonlinear theory with inputs from 

the ab initio calculation we can locate the ideal tensile strength of Au is 2.7 GPa at the 

shear instability point 1 ~ 0.048η  and the ideal compressive strength is 0.7 GPa at the 

compressive strain of 1 ~ 0.045η − . The strengths predicted from the shear-strain 
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bifurcation is much smaller than the ideal strengths at the instability points at 

1 ~ 0.085η −  and 1 ~ 0.10η  predicted using experimental measurements of elastic 

constants. 

D. Other fcc crystals 

 The cases of Au presented above are unique in which the required input elastic 

constants up to the fourth order are available from both theoretical calculations and 

experiments, and the direct ab initio simulations of both the hydrostatic and uniaxial 

deformation modes are also available for comparison 15, 16. In a recent work, we have 

calculated the elastic constants of several fcc metals up to the fourth order 25. This effort 

makes it possible to extend the nonlinear formulation of elastic stability to those 

materials, including Al and Cu. Since the detailed approaches have been given in the last 

two sections, we shall only summarize the results for these fcc crystals subject to 

hydrostatic and uniaxial loading (Table 1). Our emphasis is on the elastic stability from 

the nonlinear formulation, the ideal strength and strain, and the stability mode under 

which the stability condition is violated. 

The ideal strength and stable region of strain are obtained using the new 

formulation for Au, Al, and Cu under uniaxial tension and compression along [100] 

direction. Table 1 we list the results from our nonlinear analytic theory, previous ab initio 

calculation work 13-16 and embedded atom method 11 . As in Au, the maximum tensile 

strength for Al and Cu is also determined by a shear bifurcation via tetragonal shear 

instability where 2322 BB − =0; and the maximum compressive strength is determined by 

tensile instability at vanishing Young’s stiffness coefficient, i.e. 100E . Depending on the 

method used, the numerical values of the maximum strengths and the strains 
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corresponding to the maximum strength under tension and compression vary widely for 

the same system. For example, for Au, the tensile maximum strength is 2.7, 4.2, 6.31, and 

10.0 GPa and the corresponding strain limit is 0.048, 0.07, 0.079, and 0.11 respectively. 

In general, the molecular dynamics simulation gives the highest strength and largest 

limiting strain, whereas the nonlinear elastic theory has the smallest strength and smallest 

strain. The agreement among these methods is the remarkably consistent prediction of the 

mode under which the instability occurs. For example, all fcc metals have tensile strength 

determined by the tetragonal shear bifurcation and compression strength is determined by 

the instability in Young’s stiffness coefficient. 

 

4. DISCUSSION 

           The results shown above indicate that our analytic model gives similar results with 

the ones from our ab initio calculations in terms of the deformation mode at the 

instability and even the values of the theoretical strength and strain. This is not surprising 

since the elastic constants used in the nonlinear theory are from the same ab initio 

calculations. Larger deviation occurs between these results with those using experimental 

elastic constants. The difference may come from a few sources. First, the elastic constants 

are calculated at zero temperature using ab initio method, while experimental ones are 

usually at room temperature. 20-30% change in the elastic stiffness constants at different 

temperature such as in the case of tetragonal shear instability, 2322 BB − , can lead to the 

difference in the limiting strains and the maximum strength. Secondly, when we calculate 

those second-, third-, and fourth-order elastic constants 25, we apply small perturbative 

strains to the supercell to get the energy-strain curve. The elastic constants are obtained 
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through fitting the energy-strain curves. So system errors occur and will propagate during 

these procedures when we apply the stress and elastic constants in Eq. (20)-(23). Thirdly, 

our ab initio work 13 employs the stress-strain relation to obtain elastic moduli, which is 

different with the energy-strain method we use to obtain the elastic constants. So we may 

find in Fig. 4 that, at the original size of supercell, the moduli values obtained from these 

two methods are not exactly the same. For these reasons, we do not expect the curves 

from analytic method and those from ab initio calculations overlap completely in Fig. 4. 

           In figure 1-4, we also give the analytic results using experimental values of 

second-, third-, and fourth-order elastic constants of Au. The second-, and third-order 

elastic constants have been measured at room temperature using high-purity single 

crystals 26. Based on those values, Hiki et al 29 estimated the fourth-order elastic constants 

with the generalized Cauchy relationship: 

                             1111 1112 1122 1155 1266 4444

1123 1144 1255 1456 4455

2 2 2 2 2 ,
0.

C C C C C C
C C C C C

= = = = =
= = = = =

 

This is a quite rough approximation. However, the fourth-order elastic constants that Hiki 

et al got are the only set of data we can find as no experimental data of fourth-order 

elastic constants are available even to date. When we use Hiki’s fourth-order elastic 

constants of Au, the analytic scheme gives somewhat different results with those from 

our own ab initio calculated elastic constants. 

               Different from the uncertainties in our approaches presented above, there are 

various sources of uncertainties in other theoretical and simulation approaches. These 

different sources of uncertainties contribute to the differences in the results shown in 

Table 1. For example, Milstein 11 et al used an embedded atom method to perform 

simulation. Although their potentials are quite sophisticated, as they are fitted to the 
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second- and third-order elastic constants, however, according our experience, at such a 

large finite strain range which is beyond 0.10, the fourth-order elastic constants would 

make contributions and must be taken into account in the fitting procedures of the 

potentials 25. Perhaps because of that, their values of ideal tensile strength are higher, and 

the stable range in tension is wider than ours. Zhang et al 12 employed a modified analytic 

EAM (MAEAM) model to investigate the same problem. Their results are closer to ours. 

Li 13 et al studied the ideal strength of Al, but they did not use symmetrized elastic 

stiffness constants. In addition, how they calculate each elastic constant at a given 

stressed state to test the stability conditions is not clear. Cerny 14 et al work on the ideal 

strength of Cu, but the Young’s modulus formulation they used is valid only in small 

deformation 16. Recently Cerny et al 30 presented another way to estimate uniaxial tensile 

strength on the basis of theoretical shear strength calculations. They claimed that the 

analysis of elastic stability of crystals under tensile loading would be avoided through 

that way. Their work shows that the ideal tensile strength is 5.8 GPa from the rigid-planes 

approach, and 3.6 GPa from the relaxed-planes approach. 

               Krenn et al 31 applied the transcription theory of stress and elastic constants to 

the nonlinear elastic behavior of face-centered cubic crystals Al and Cu. They used 

experimentally measured second-, and third-order elastic constants to explain the 

different structural relaxation modes of the crystals Al and Cu under shear deformation. 

Partly due to the accuracy of experimental data, but more importantly because of the 

limitation of the third-order elastic constants, their work indeed gives correct signs of the 

relaxations along x, y, and z axis, but can not agree with the magnitudes. At a finite strain 
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range around 10%, the fourth-order elastic constants play an essential role in the 

transcription theory scheme.  

Perhaps the most obvious discrepancy comes from the truncation of the higher 

order terms involving fourth- and higher order elastic constants. We demonstrate the case 

through Eq. (20) for the hydrostatic stress that is expressed at the second-, third-, and 

fourth-order elastic constants respectively. The stress-strain curve in Figure 5 shows the 

increasing accuracy of the stress-strain relation as compared with our ab initio calculated 

curve. We also checked the relation in Eq. (21) at various truncations. Figure 6 shows the 

bulk stiffness modulus with different order of accuracy varying with strain 1η .  

Figure 5-6 give us a general idea that when the analytic scheme is correct to the 

fourth-order elastic constants, the results usually come to fairly good agreement with the 

results from ab initio calculations, at least within the strain range where elastic instability 

occurs.  

The calculations performed in this work are based on the concept of elastic 

stability, which corresponds to long-wave phonon limit. As known, it is possible that 

some soft phonon modes, likely those along the rhombohedral or tetrahedron shear, may 

appear in the hydrostatically deformed crystal. Recent studies on elastic 13 and phonon 32 

instabilities of aluminium suggest that this scenario may likely occur in fcc metals, 

especially at elevated temperatures.  

5. CONCLUSION 

The current methods in accessing elastic stability and the related theoretical 

strength and strain are either through Frenkel-Orowan model (Eq. (3)) using direct 
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computation of the stress-strain relation or via the generalized Born criterion using the 

stiffness coefficient B . The drawback for the former is its inability to predict elastic 

instability bifurcation that happens prior to the maximum strength and strain along the 

original loading path, and for the latter is the requirement of extensive computation to 

obtain the second elastic constants at each deformed state to furnish B  (Eq. (1)). In 

addition, some critical physical effects such as anharmonicity are masked in this 

formulation. In this work we developed a general nonlinear theoretical formulation to 

overcome these limitations. The theory utilizes the high order elastic constants at the zero 

stress state, or those at any deformed state that are available either in experiment or 

through ab initio calculation or atomistic simulation. We tested the theory in several fcc 

crystals including Au, Al and Cu and Si using the available data. The stable region, ideal 

strength and the limiting strains are obtained and found in very good agreement with ab 

initio calculations in locating the mode of instability. The analytic scheme gives us a new 

and computationally efficient way to investigate the ideal strength, bifurcation and elastic 

stability problems in solids. Another advantage is that we may be able to use the theory 

for solids at elevated temperatures where the DFT type of calculations may not be usable. 
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Figure captions: 

 

Figure 1. The hydrostatic stress varies with strain 1η for a fcc crystal Au.  Two of the 

stress-strain curves use Eq. (20), with two sets of data for the elastic constants in the 

nonlinear theoretical formulation, one from experiments and the other from our recent ab 

initio calculation. The third curve comes from our ab initio calculation.  

 

Figure 2. The three elastic moduli of Au under hydrostatic deformation versus volume 

strain 1η , (a) bulk stiffness constant, (b) tetragonal stiffness constants, and (c) 

rhombohedral shear stiffness constant. Under compression, the crystal is stable. While 

under expansion, the rhombohedral shear stiffness modulus reaches zero firstly at 

1 ~ 0.05η . 

 

Figure 3. The normal stress varies with strain 1η  when an fcc crystal Au is under a 

uniaxial stress along [100] direction.  Two of the stress-strain curves come from Eq. (22), 

with two sets of data for the elastic constants in the nonlinear theoretical formulation, one 

from the experiments and the other from our recent ab initio calculations. The stress-

strain curve from our ab initio calculation is also shown. 

 

Figure 4. The four elastic stiffness moduli of Au under uniaxial stress vary with uniaxial 

strain 1η . Under compression, the Young’s modulus reaches zero firstly at 1 ~ 0.045η − ; 
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while under tensile stress, the tetragonal shear stiffness modulus reaches zero firstly at 

1 ~ 0.048η . 

 

Figure 5. The equation of state calculated for Au using various truncated terms in Eq. 

(20) to the second-, third-, and fourth-order elastic constants, respectively. As a 

comparison, the stress-strain curve from our ab initio calculation is also shown. 

 

Figure 6. The bulk stiffness modulus obtained with Eq. (9) by using Eqs. (20)-(21) with 

the second-, third-, and fourth-order elastic constants, respectively. For comparison, the 

modulus-strain relation from our ab initio calculation is also shown. 
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 Table 1. The ideal strength and stable region of face-centered cubic crystal Au, Al, and 

Cu under a uniaxial stress along [100] axis. The results from our analytic scheme, ab 

initio calculation, and of embedded atom method are listed.  

 

 

 

 
 

Tension 

11 12 0C C− =  

 
 

Compression 

[100] 0E =  

 1σ (GPa) 1η  1σ (GPa) 1η  

Au 

 
2.7 a 

 
0.048 a 

 
-0.7 a 

 
-0.045 a 

4.2 b 0.07 b -1.6 b -0.07 b 

6.31 c 0.079 c -2.21 c -0.098 c 

10.0 f 0.11 f  _ _ 

Al 

6.7 a 0.11 a -5.8 a -0.09 a 

12.1 d 0.27 d -5.62 d -0.10 d 

11.1 f 0.25 f _ _ 

Cu 

8.2 a 0.09 a -2.6 a -0.08 a 

9.4 e 0.10 e -3.5 e -0.09 e 

9.8 f 0.14 f _ _ 

 

a This work. 
b Reference 13. 
c Reference  9. 
d Reference 10. 
e Reference 11.  
f Reference  8. 

 



 30

Appendix A: 

                From state 'X  to state ''X , the internal energy as a function of strain 'η , 

expanded to '3( )O η , may be written as, 

       

' ' ' '2 ' '2 '2 ' ' ' ' '
11 1 22 2 3 12 1 2 3 1

' ' ' ' '3 ' '3 '3 ' '2 ' '
23 2 3 111 1 222 2 3 112 1 2 3

' ' '2 '2 ' ' ' ' ' ' ' ' '
122 1 2 3 223 2 3 2 3 123 1 2 3

1 1' ( ) ( )
2 2

1 1 1( ) [ ( )
6 6 2

( ) ( )] ,

i i
i

U C C C

C C C C

C C C

δ σ η η η η η η η η

η η η η η η η η

η η η η η η η η η η

= + + + + + +

+ + + + + +

+ + + +

∑

                               (A.1) 

where '
iσ  , '

ijC  and '
ijkC  represent the stress and elastic constants at state 'X , and '

iη  

represents the Lagrangian strain from state 'X to state ''X .We know that  ' '
2 3 ,η η=  

'
1 0,η =  ' '

2 3.σ σ=  Let ''
iσ  represent the stress at state ''X , '' ''

2 3 0σ σ= = . With Eq. (22), 

we have 

           '' ' ' ' ' ' ' '2 ' ' ' '2
2 2 22 2 23 3 222 2 223 2 3 3

1 1 (2 ).
2 2

C C C Cσ σ η η η η η η= + + + + +                                 (A.2) 

Using ''
2 0σ = , ' '

2 3 ,η η=  

             ( )' ' ' ' ' ' '2
2 22 23 2 222 223 2

1 30
2 2

C C C Cσ η η⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

.                                               (A.3)   

To solve this equation, we need to know the values of '
2 ,σ  '

22C , '
23C , '

222C , '
223C .  

                From state X to state 'X , 0iη = ( 1i ≠ ), 
1

1
' 1 2

V
V η

=
+

. Once again we use Eq. 

(22)-(23), and have, 

                      ' 2 3
2 12 1 112 1 1112 1

1

1 1 1 ,
2 61 2

C C Cσ η η η
η

⎛ ⎞= + +⎜ ⎟+ ⎝ ⎠
                                         (A.4) 

  
2 2

' 4 2
22 22 11 112 1 1122 1'2 2

2 2 1

1 1 1 1[ ],
' ' 21 2

U V UC a C C C
V V V

η η
η η η

⎛ ⎞∂ ∂⎛ ⎞= = = + +⎜ ⎟⎜ ⎟∂ ∂ +⎝ ⎠⎝ ⎠
                   (A.5) 
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2 2

' 2 2 2
23 22 33 12 123 1 1123 1' '

2 3 2 3 1

1 1 1 1[ ],
' ' 21 2

U V UC a a C C C
V V V

η η
η η η η η

⎛ ⎞∂ ∂⎛ ⎞= = = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ +⎝ ⎠⎝ ⎠
     (A.6) 

     
3 2

' 6
222 22 111 1112 1'3 3

2 2 1

1 1 1 [ ].
' ' 1 2

U V UC a C C
V V V

η
η η η

⎛ ⎞∂ ∂⎛ ⎞= = = +⎜ ⎟⎜ ⎟∂ ∂ +⎝ ⎠⎝ ⎠
                               (A.7) 

      
3 3

' 4 2
223 22 33 112 1123 1'2 ' 2

2 3 2 3 1

1 1 1 [ ],
' ' 1 2

U V UC a a C C
V V V

η
η η η η η

⎛ ⎞∂ ∂⎛ ⎞= = = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ +⎝ ⎠⎝ ⎠
              (A.8)  

Here all the coefficients at Eq. (A3) are expressed in terms of 1,η ijC , ijkC , ijklC . Then we 

get a solution of 2η  from Eq. (A3) for an arbitrary value of 1η . 
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