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We consider theoretically a superconducting qubit - nanomechanical resonator (NR) system, which was re-
alized by LaHaye et al. [Nature459, 960 (2009)]. First, we study the problem where the state of the strongly
driven qubit is probed through the frequency shift of the low-frequency NR. In the case where the coupling
is capacitive, the measured quantity can be related to the so-called quantum capacitance. Our theoretical re-
sults agree with the experimentally observed result that, under resonant driving, the frequency shift repeatedly
changes sign. We then formulate and solve the inverse Landau-Zener-Stückelberg problem, where we assume
the driven qubit’s state to be known (i.e. measured by some other device) and aim to find the parameters of the
qubit’s Hamiltonian. In particular, for our system the qubit’s bias is defined by the NR’s displacement. This
may provide a tool for monitoring of the NR’s position.

I. INTRODUCTION

Nanoelectromechanical systems have recently attracted at-
tention because of both possible applications (e.g. in sensing)
and interest in fundamental quantum phenomena in meso-
scopic systems.1 Particularly interesting is the coupling of the
mechanical motion of a nanomechanical resonator (NR) to an
electric mesoscopic system. A few examples are carbon nan-
otube NRs coupled to electron transport2 and a metallic NR
coupled to anLC tank circuit3. It was proposed theoreti-
cally that for sensing and controlling the NRs, superconduct-
ing few-level circuits (qubits)4 can be effectively used.5,6 For
example this approach was applied in the demonstration of
the ground state of a high-frequency piezoelectric dilatational
resonator coupled to a superconducting phase qubit.7

Successful coupling of a NR (a suspended silicon nitride
beam) to a charge qubit allowed LaHayeet al. [8] to demon-
strate both ground-state measurement and excited-state spec-
troscopy as well as Landau-Zener-Stückelberg (LZS) interfer-
ometry of the qubit. The spectroscopy was performed with
weak driving, where the position of the resonance gave the
information about the qubit levels. In the regime of strong
driving, where the qubit’s evolution experiences repeatedLZS
transitions at the avoided crossing, the resulting interference
is visualized in the LZS interferograms [9]. The LZS interfer-
ometry was demonstrated on superconducting qubits probed
by different methods (see Ref. [9] and references therein),
as well as studied for other different physical realizations of
strongly-driven two-level systems in Refs. [10].

In the work by LaHayeet al., Ref. [8], the NR’s frequency
shift was used for monitoring the qubit’s state. For the theo-
retical description of the NR-qubit system, the perturbation-
theory procedure developed in Ref. [5] was used. The theory
says that the NR’s frequency shift∆ωNR is negative for the
qubit in the ground state and zero when the two qubit states
are on average equally populated under the periodic driving.
This allowed to describe the ground-state and low-amplitude
spectroscopy measurements.8 However, this theory does not
explain the experimentally observed sign changes of∆ωNR in
the strong-driving regime, where the frequency shift becomes

positive.
In this work we consider the NR-qubit system semi-

classically. Within this approach, we describe the qubit as
a quantum system coupled to a classical resonator, with the
oscillation-energy quantum much smaller than the thermal en-
ergy,~ωNR ≪ kBT . Note that such a semi-classical approach
was successful for the description of most phenomena related
to atom-light interaction.11

The impact of the qubit on the resonator’s frequency shift
can be described in terms of the so-called quantum capaci-
tance, as studied for the qubits in Refs. [12,13]. The quantum
capacitance is defined as the derivative of the average charge
on the qubit with respect to the applied voltage. The charge
can then be related to the charge-qubit occupation, the deriva-
tive of which (under resonant driving) exhibits sign changes.
Similar sign-changing response under strong driving was re-
cently studied for qubits probed by anLC (tank) circuit for
capacitive coupling14,15 as well as for inductive coupling16,17.
Thus, in the first part of this work (Section II) we study the
situation where the strong-driving qubit’s state is probedby
the NR.

In Section III, we formulate the inverse problem. There, we
are interested in the influence of the NR’s state (its position)
on the qubit’s state. We graphically demonstrate the formula-
tion of the problem for the direct and inverse interferometry
in Fig. 1. There, the two-level system represents a qubit with
control parameterε0; the parabola represents the resonator’s
potential energy as a function of the displacementx. Thus, in
the first part of our work (Sec. II) we deal with the direct prob-
lem, where the influence of the qubit’s state on the resonator
is studied.

The second part of this work (Secs. III and IV) is devoted to
the inverse problem, where we study the influence of the res-
onator’s state on the qubit’s state. Measuring the latter isan
alternative method for defining the NR’s displacement. This
approach can be related also to other inverse problems for
two-level systems, as studied in Refs. [18–20]. Generalization
of the results can also be applied to other quantum systems for
which the problem of defining the Hamiltonian’s parameters
with given system’s state was studied in Ref. [21]. In Section
IV we demonstrate how the inverse problem can be solved for



2

FIG. 1: (Color online) Schematic representation of the formulated
problems for direct and inverse interferometry. The red curves on
the left represent the bias-dependent energy levels of the qubit, and
the green parabola on the right shows the potential energy ofthe
(classical) resonator. In the direct problem, the resonator is used to
probe the state of the qubit. In the inverse problem, the response of
the qubit to external driving is used to infer the state of theresonator.

different driving regimes in a generic two-level system, and
we comment on the possibility of applying this technique for
superconducting qubit-NR systems.

II. CHARGE QUBIT PROBED THROUGH THE
QUANTUM CAPACITANCE

The split-junction charge qubit (also called Cooper-pair box
and shown in red in Fig. 2) consists of a small island between
two Josephson junctions. The state of the qubit is controlled
by the magnetic fluxΦ and the gate voltageVCPB + VMW.
HereVCPB is the dc voltage used to tune the energy levels
of the qubit andVMW = Vµ sinωt is the microwave signal
used to drive and manipulate the energy-level occupations.
The Cooper-pair box is described in the two-level approxi-
mation by the Hamiltonian in the charge representation (see
e.g. Ref. [8] and Appendix A)

H(t) = −∆

2
σx − ε0

2
σz −

A sinωt

2
σz . (1)

Here the tunnel splitting∆ is equal to the Josephson energy
EJ, which is controlled by the magnetic fluxΦ

∆ ≡ EJ = EJ0 |cos(πΦ/Φ0)| . (2)

The charging energy and the driving amplitude are given by

ε0 = 8EC(ng − 1/2), A = 8ECnµ, (3)

where the Coulomb energyEC = e2/2CΣ is defined by the
total island’s capacitanceCΣ = 2CJ + CCPB + CNR, de-
fined with the notation2CJ ≡ CJ1 + CJ2; the dimension-
less driving amplitude isnµ = CCPBVµ/2e; the dimension-
less polarization chargeng = nNR + nCPB is the fractional
part of the respective polarization charges in the plates of
two capacitors:nNR = {NNR} andnCPB = {NCPB} with
NNR = CNRVNR/2e andNCPB = CCPBVCPB/2e.

Here we consider the Cooper-pair box formed by four ca-
pacitances,CJ1, CJ2, CCPB, andCNR (CJ ≫ CCPB, CNR).
One of the plates of the latter capacitor is formed by the NR,
which is characterized by the displacement at the midpoint

FIG. 2: (Color online) Schematic diagram of a split-junction charge
qubit coupled to a nanomechanical resonator. The charge qubit
(shown in red) is biased by the magnetic fluxΦ and the dc+µw volt-
ageVCPB + VMW, to which it is coupled through the capacitance
CCPB. The qubit is coupled to the NR (shown in green) through the
capacitanceCNR. The NR is biased by a large dc voltageVNR; its
state is controlled and measured by applying the dc and rf voltages
between the gate and the NR,VGNR andVRF, through the capaci-
tanceCGNR. The NR’s motion is described by the displacement at
the midpointx. Capacitances form the island (Cooper-pair box) with
the total capacitanceCΣ, voltageVI and charge−2en.

x. This displacement is much smaller than the distanced be-
tween the plates, in which case the capacitance between the
NR and the qubit reads

CNR(x) ≈ CNR0 +
∂CNR

∂x

∣∣∣∣
0

x ≡ CNR0

(
1 +

x

ξ

)
, (4)

ξ−1 =
1

CNR0

∂CNR

∂x

∣∣∣∣
0

, ξ ∼ d ≫ x. (5)

(By the subscript0 here we mean the values atx = 0; in
what follows this subscript is assumed). The displacement of
the NR influences the qubit through the changes in the polar-
ization charge; to make this influence significant, a large dc
voltageVNR (of the order of volts) is applied. On the other
side, the NR is biased by dc and rf voltages,VGNR andVRF,
through the capacitanceCGNR.

The influence of the qubit’s dynamics on the nanomechan-
ical resonator can be described in different ways. In Ap-
pendix A we present a detailed derivation of the influence of
the qubit’s state through the voltageVI and the average polar-
ization charge−2e 〈n〉 of the CPB on the NR’s dynamics. An
alternative, and maybe physically more illustrative, approach
is to describe the CPB as an effective capacitor, which is the
subject of Appendix B. Here, in the main text, we present only
essential results, referring the interested reader to the Appen-
dices.

As a result of the interaction between the qubit and the
NR, the resonance frequency of the NR is shifted (see Ap-
pendix A). The result can be written in the following form

∆ωNR

ωNR
= −β

∂ 〈n〉
∂ng

= −β

2

∂ 〈σz〉
∂ng

, (6)

β =
1

mω2
NRCΣ

(
CNRVNR

ξ

)2

. (7)
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The frequency shift∆ωNR is defined by thederivative of the
average extra Cooper-pair number on the island〈n〉 = 0·P0+
1 ·P1 = P1. HereP0 (P1) stands for the probability of having
0 (1) extra Cooper pair.

Alternatively to the approach above, the effect of the qubit
on the NR can be described in terms of the effective (dif-
ferential) capacitance, as described in Appendix B,Ceff =
∂QNR/∂VNR = Cgeom + CQ, where the relevantquantum
capacitance is given by

CQ =
C2

NR

CΣ

∂ 〈n〉
∂ng

. (8)

The term “quantum” capacitance is used here to denote the
(small) qubit-state-dependent addition to the classical (ge-
ometric) capacitance. Obviously, Eq. (6) can be rewritten
in terms of the quantum capacitance (cf. discussion in Ap-
pendix C for the qubit-LCR circuit system)

∆ωNR

ωNR
= −β̃

CQ

CNR
, (9)

whereβ̃ = (CΣ/CNR)β.
The qubit’s density matrix in the energy representation (in

the eigenbasis of the time-independent Hamiltonian) is pa-
rameterized in terms of the respective Pauli matricesτi as
follows: ρ = 1

2 (Xτx + Y τy + Zτz). Now we express the
probability of having one excess Cooper pair,P1, by chang-
ing from the energy basis to the charge basis, and obtain

P1 =
1

2

(
1− ∆

∆E
X +

ε0
∆E

Z

)
, ∆E =

√
∆2 + ε20. (10)

And this gives (after time-averaging over the driving period
2π/ω) for the quantum capacitance the following

CQ ≈ C2
NR

CΣ

(
4EC∆

2

∆E3
Z +

ε0
2∆E

∂Z

∂ng

)
, (11)

where we have taken into account that in the stationary state
X averages to0.9

As we can see from Eq. (11), the quantum capacitance is
defined by the valueZ = 〈τz〉 which is the difference be-
tween the occupation probabilities of the excited and ground
states. In particular, we obtain the quantum capacitance and
the respective frequency shift in the ground/excited (g/e) state
with Z = 〈τz〉 = ±1

∆ω
g/e
NR

ωNR
= ∓β

4EC∆
2

∆E3
. (12)

This result, obtained in the semi-classical approach, is in
agreement with the one obtained in Ref. 5 and used in Ref. 8.
Equation (11) is a more general result, where the second
term describes the sign-changing behavior near resonance.
Namely, when sweeping the gate voltageng, the quantityZ
changes from−1, far from resonance (in the ground state), to
0 in resonance (when the levels are equally populated). This
describes the maximum ofZ in resonance and the change
of its derivative∂Z/∂ng from positive, in the left vicinity

of the resonance, to negative, to the right of the resonance
point. Thus, the resulting behavior of the observable (either
∆ωNR or CQ) is defined by the competition of the two terms
in Eq. (11). In what follows we will use Eq. (11) for the su-
perposition states (which appear under driving).14 Note that
a similar approach for calculating the effective (quantum)in-
ductance was used in Refs. 16,17.

The dissipative dynamics can be described with the Bloch
equations written in the energy representation (where relax-
ation appears naturally). To characterize dissipation we use a
result of the spin-boson model with the spectral density de-
fined with the dimensionless parameterα, J(ω) = α~ω, (see
e.g. Ref. 23 and references therein) and also introduce the
(relatively large) phenomenological parameterB to describe
the low-frequency1/f noise:

T−1
1 = α

∆2

2~∆E
coth

∆E

2kBT
, (13)

T−1
2 =

1

2
T−1
1 +

kBT

~

ε20
∆E2

(α+
B

2π
) ≈ B

kBT

h

ε20
∆E2

. (14)

We display the direct LZS interferometry in Fig. 3, where
the resonator’s frequency shift∆ωNR was calculated with
Eqs. (9) and (11). Figure 3 demonstrates that our formal-
ism is valid for a description of the experimentally measurable
quantities: the quantum capacitance or the resonant frequency
shift8,14 (see also Appendix C). Such a description allows
to correctly find the position of the resonance peaks in the
interferogram and to demonstrate the sign-changing behav-
ior of the quantum capacitance, which relates to the measur-
able quantities. The appearance of the interferogram depends
on several factors: the values of the qubit parameters, the
model for the dissipative environment (such as Eqs. (13, 14)
and the parametersα andB), the value of the bias current
(which distorts the shape of the resonances, as demonstrated
in Ref. [17]). Moreover, the formalism presented above is
valid for the case where the qubit’s dynamics is much faster
than the NR’s dynamics; otherwise one should study the co-
operative dynamics of the composite system; see, e.g., discus-
sions in Refs. [14] and [17]. However, we will not go here into
more detailed calculations, since our aim was to demonstrate
the simplest approach for the description of the experimentin
Ref. [8].

III. THE BIAS INFLUENCED BY THE RESONATOR:
PROBLEM FOR THE INVERSE INTERFEROMETRY

Let us now consider the qubit’s biasε0, Eq. (3), as a func-
tion of the NR’s displacementx. For smallx ≪ ξ, we have
the expansion (4), which results in the decomposition of the
bias

ε0(x) ≈ ε∗0(ng) + δε0(x), (15)

where

ε∗0(ng) = 8EC (ng − 1/2) , (16)

δε0(x) = 8EC nNR
x

ξ
. (17)
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FIG. 3: (Color online) LZS interferometry probed via the resonator’s
frequency shift∆ωNR. (a) The frequency shift versus the energy
bias (ng) and the driving amplitude (nµ). Arrows show the values
of nµ andng at which the graphs (b) and (c) are plotted as func-
tions ofng andnµ, respectively. The upper curves were shifted for
clarity. The parameters for calculations were taken close to the ones
of Ref. [8]: ωNR/2π = 58 MHz, EJ0/h = 13 GHz,EC/h = 14
GHz,ω/2π = 4 GHz,kBT/h = 2 GHz,α = 0.005, B = 0.2, and
the proportionality coefficientβ defined by the qubit-NR coupling
constantλ from Ref. [ 8]: ~λ2/πEJ0 = β · ECωNR/πEJ0 = 1.6
kHz.

Here we have used the fact thatx ≪ ξ andCNR ≪ CΣ.
The Hamiltonian of the qubit (1) with the parameter-

dependent biasε0(x) brings us to the following problem. Let
us assume that the qubit’s state is known (i.e., this is measured
by a device whose details we do not consider here for simplic-
ity; see Refs. [12,13,16,24] for different realizations ofthe
ways to probe the qubit’s state). Given the known qubit state,
we aim to find the Hamiltonian’s parameters. Particularly, we
are interested in the parameter-dependent biasε0(x).

On one hand, we can study here the general (“reverse engi-
neering”) problem in the spirit of Refs. [18,19]. On the other
hand, we aim to provide the basis for measuring the NR’s po-
sitionx by means of probing the qubit’s state, whilex = x(t)
is considered a slow time-dependent function.

In what follows we will consider the driven qubit’s state
with emphasis on finding optimal driving and controlled offset
parameters (A, ω, andε∗0) for the resolution of the small bias
componentδε0. We will assume that the dynamics of the pa-
rameterx is slow enough not to be considered during the mea-
surement process. Depending on this slowness, the measure-
ment might have to involve only one passage of the avoided

crossing, or it can involve long-time driving and stationary-
state equilibrium of the qubit. Our aim is to find a sensitive
probe for smallδε0. For high sensitivity we require substan-
tial changes in the qubit’s state for small changes ofε0 given
by δε0. For a quantitative definition of the sensitivity one can
consider the derivative of the probability with respect to the
biasε0.

IV. RESULTS FOR THE INVERSE LZS
INTERFEROMETRY

In this section we consider the inverse problem for the
qubit’s dynamics, in particular how to infer the qubit’s bias
ε0 from the measured qubit state. For concreteness, we con-
sider the qubit driven by the biasε(t) = ε0 + A sinωt. If
one is interested in the short time-scale dynamics, then the
one- or few-times passage of the avoided level crossing is rel-
evant. If the time-dependence of the biasε0(x) is so slow that
the multiple-passage dynamics is relevant, then the stationary
qubit state can be considered.

A. Single passage: non-linearity in the Landau-Zener problem

The linearization of the bias in the vicinity of the
avoided crossing (whereε(t) = 0) results in the approx-
imation that this region is swept at theε0-dependent rate
Aω
√
1− (ε0/A)2 (for details see Ref. [9]). The respective

probability of the non-adiabatic transition to the upper adia-
batic level is given by the Landau-Zener formula

P
(I)
+ = PLZ = exp

(
− γ√

1− (ε0/A)2

)
, γ =

π

2

∆2

A~ω
.

(18)
In other words, the non-linear dependence of the bias on time
has the effect that the Landau-Zener probability depends onε0
(see also Ref. [25]), which is demonstrated in Fig. 4(a). We
note that here|ε0| < A and the formula (18) gives numerically
incorrect results whenε0 tends toA.

To quantify the sensitivity of the transition probability to
small changes in the bias, in Fig. 4(c) we plot the derivativeof
the excitation probabilityP (I)

+ with respect toε0. We can see
that the non-linearity of the bias results in an increase of the
sensitivity.

For the single-passage case it is straightforward, from
Eq. (18), to find the solution for the inverse problemε0 =

ε0(P
(I)
+ ). In particular, in the caseε∗0 = 0 andδε0 ≪ A we

have

PLZ ≈ PLZ,0

[
1− γ

2

(
δε0
A

)2
]
, PLZ,0 = e−γ , (19)

and the solution for the inverse problem becomes

δε0
A

=

√
2

γ

(
1− PLZ

PLZ,0

)
. (20)
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FIG. 4: (Color online) Upper-level excitation probabilityP+ after
(a) single passage and (b) double passage, plotted forA/∆ = 5 and
~ω/∆ = 0.2, versus the biasε0. The sensitivity to the changes of
the biasε0, defined as the derivative,χ = |dP+/d(ε0/A)|, is plotted
in (c) and (d), respectively. Solid lines were plotted with Eqs. (18)
and (21), while dashed lines were calculated numerically.

B. Double passage: Stückelberg oscillations

Next, consider the situation where the avoided crossing re-
gion is passed twice. For example, the qubit can be driven
by a sinusoidal pulse of length2π/ω. Alternatively, triangu-
lar pulses can be used to drive the qubit twice through the
avoided-level crossing, as in Refs. [26,27]. In both cases,the
double-passage process can make use of quantum interference
to increase the sensitivity of our problem through the accumu-
lation of the Stückelberg phase.28

The upper-level excitation probability after the double-
passage is9

P
(II)
+ = 4PLZ(1 − PLZ) sin

2(ζ2 + ϕS), (21)

whereζ2 is the phase acquired during the evolution between
anticrossings att2 andt1 + 2π/ω:

ζ2 =
1

2~

∫ t1+2π/ω

t2

√
∆2 + ε(t)2 dt, (22)

andϕS is the Stokes phase.
Stückelberg oscillations, described by Eq. (21), are demon-

strated in Fig. 4(b) for0 < ε0/A < 1. The respec-
tive sensitivity is shown in Fig. 4(d). The agreement of
the analytical formulas and numerical calculations is remark-
able (as demonstrated in Fig. 4). One can notice that the
sharper the Stückelberg oscillations, the higher the sensitiv-
ity. This is related to the period of the Stückelberg oscilla-
tions, which decreases with increasingA/ω. Here we also

note thatP (II)
+ (ε0) is not a symmetric function, and the pe-

riod of the Stückelberg oscillations is smaller forε0 < 0 than
for ε0 > 0. Therefore, using negative values ofε0 results in
slightly higher sensitivity than what is shown in Fig. 4(d).

The factorPLZ(1 − PLZ) in Eq. (21) is described by the
one-passage problem above. Consider the termcos2 ζ2. For
ε∗0 = 0 andδε0 ≪ A we have9 ζ2 ≈ A

~ω− π
2
δε0
~ω . For example,

for A
~ω = 2kπ + π

4 we obtain

P
(II)
+ ≈ 2PLZ(1− PLZ)

(
1 + π

δε0
~ω

)
. (23)

This describes a linear dependence on the small biasδε0,
which is a significant increase in sensitivity as compared to
the quadratic dependence onδε0 in the single-passage case
above, Eq. (19). If the decoherence is negligibly small, one
can further increase the sensitivity of the excitation probabil-
ity to small changes in the bias due to interference by consid-
ering multiple-passage case.

The formula (23) can be conveniently used to make quan-
titative estimates. Consider this for the example of the qubit-
nanomechanical resonator system as in Ref. [8]. First, to in-
crease the sensitivity of the changes ofP

(II)
+ with respect to

δε0, we choose the smallest possible frequencyω. In our
case the driving period should exceed the decoherence time
T2 and the NR oscillation period2π/ωNR. For superconduct-
ing qubitsT2 is typically higher than1 µs. Then, we are
limited by the relationω > ωNR, and we takeω/2π ∼ 0.1
GHz. We choose the parametersA(nµ) and∆(Φ) such that
PLZ ∼ 1/2. AssumingnNR = 1 and8EC/h = 100 GHz, we
obtain the change of the probability with changes in the NR’s
displacement∆P

(II)
+ = 103x/ξ. This means that for probing

a displacement ofx ∼ 10−5ξ, one has to be able to measure
population changesP (II)

+ ∼ 0.01. This level of accuracy is
achievable with superconducting qubits.29

C. Multiple passage: stationary solution

Now we assume that what is relevant for our inverse prob-
lem is the stationary state of the driven qubit. To analyze the
analytical expressions, we consider two limiting cases.

1. Slow-passage limit

For the analytical description of the upper-level occupation
probability in the adiabatic limit, whenγ > 1, we use the
following formula from Ref. [9]

P+ =
PLZ(1− cos ζ′+ cos ζ−)

sin2 ζ′+ + 2PLZ(1 − cos ζ′+ cos ζ−)
, (24)

where

ζ′+ = ζ1 + ζ2, ζ− = ζ1 − ζ2,

ζ1 =
1

2~

t2∫

t1

√
∆2 + ε(t)2dt, (25)
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FIG. 5: (Color online) Slow-passage and fast-passage LZS interferometry of a qubit. (a) and (d): the time-averaged upper-level occupation
probabilities, defined in the adiabatic (P+) and diabatic (Pup) bases, as functions of the biasε0 and driving amplitudeA. The parameters are
the same as for Fig. 3 except for the frequency: (a)ω/2π = 6.5 GHz< ∆/h and (d)ω/2π = 20 GHz> ∆/h. (b) and (e): Cross-sections for
the respective dependencies of the upper-level occupationprobabilities as functions of the bias along the horizontaldashes shown in red and
green in (a) and (d). (c) and (f): Inverse graphs, which show the dependence of the bias on the upper-level occupation probabilities (assuming
thatε0 lies on the right-hand side of the resonance peak).

and ζ2 is given by Eq. (22). Formula (24) is illustrated in
Fig. 5(a). Considerε∗0 = 0, then for strong driving,A ≫ ∆,
we have

ζ− ≈ πδε0
~ω

, ζ′+ ≈ 2A

~ω
− δε20

A~ω
. (26)

Analyzing the interferogram in Fig. 5(a), we find the possi-
bility to obtain a sensitive working point with a driving am-
plitude a little bit lower than the one where the width of the

resonance line tends to zero, that is2A/~ω = 2πn−a, a ≪ 1
[see the red and green dashes in Fig. 5(a)]. It follows that

P+ ≈ 1

2

PLZ (πδε0/~ω)
2

a2 + PLZ (πδε0/~ω)
2 , (27)

which is equal to zero atδε0 = 0 and quickly tends to1/2
with increasingδε0. This is demonstrated in Fig. 5(b).

2. Fast-passage limit

In the fast-passage and strong-driving regime (whereγ ≪
1), the rotating-wave approximation gives for the upper-level
occupation probability24,30

P up =
1

2

∑

k

∆2
k

~2

T1T2

+ T2

T1

(ε0 − k~ω)2 +∆2
k

, (28)

∆k = ∆Jk (A/~ω) , (29)

whereJk is the Bessel function. Formula (28) is demonstrated
in Fig. 5(d). If the relaxation is not taken into account, then

in the vicinity of thek-th resonance (whereε∗0 = k~ω) we
obtain the Lorentzian dependence on the small bias shiftδε0:

P up =
1

2

∆2
k

δε20 +∆2
k

. (30)

This describes the resonance peak,P up = 1/2, at δε0 = 0,
which is demonstrated graphically in Fig. 5(e). Its width is
defined by∆k and is minimized for the values ofA/~ω in the
vicinity of the zeros of the Bessel function. With relaxation
taken into account, the sensitivity is defined by the half-width
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of the resonances, given by

∆ε
(k)
0 =

√
T1T2∆2

k + ~2

T2
. (31)

This means that to increase the sensitivity, which is related
to the sharpness of the resonances, one has to decrease the
decoherence rate.

Here we note that it was assumed that the measurement
time is much smaller than the resonator’s period,Tmeas ≪
2π/ωNR. On the other hand, to reach a stationary state, the
measurement time should be larger than the relaxation time,
T1,2 < Tmeas. This means that the results presented in this
subsection are relevant for qubits with short relaxation times
and for resonators with small frequencies. Alternatively,one
should solve the problem which explicitly takes into account
x = x(t).

Formula (31) allows us to make estimates, as we did at the
end of the previous subsection. ForA/~ω equal to one of
the Bessel-function zeros and forT2 = 4ns ≪ 2π/ωNR, we
obtain that the probabilityP up changes by about1/4 when
the bias changes by∆ε0/h ∼ 0.25 GHz. On the other hand,
we have seen thatδε0/h ∼ 100(x/ξ) GHz. This means that
in order to observe changesx ∼ 10−5ξ, one has to distinguish
changes inP up ∼ 10−3, which is also possible, in principle.29

D. Inverse interferometry: qubit probes resonator

The idea of the measurement procedure, presented in Fig. 5,
could be as follows. Driving the qubit in a wide range of pa-
rameters is done first to plot the interferogram as in Fig. 5(a)
and/or (d). Then a region of high sensitivity, where small
changes in the qubit bias result in large changes in the final
state, is chosen. Examples of such high-sensitivity regions are
shown in Fig. 5(b) and/or (e).

From Fig. 5 we can see that both the slow-passage limit,
demonstrated in Fig. 5(a-c), and the fast passage limit
[Fig. 5(d-f)] can be used for the solution of the inverse prob-
lem. The choice of the optimal working point and its vicinity
will depend on the specific parameters of the problem. For
illustration, in Fig. 5(a) and (d) we marked by red and green
small dashes two possibilities of having the dip in Fig. 5(b)or
the peak in Fig. 5(e) being narrow (red curves) or relatively
wide (green curves).

In principle, a low-amplitude slice near the bottom of
Fig. 5(d) can be used to obtain a sharp resonance peak, as
in Fig. 5(e). However, based on the results of Refs. [9,31],
it seems that the width of the resonances might be increased
more for low-amplitude driving due to the influence of the
noise and decoherence. From the experimental point of view
the best strategy is probably to obtain a wide range interfero-
gram and then choose a narrow resonance.

One can now bias the qubit at a high-sensitivity point, apply
a “measurement pulse” to the qubit, measure its state at the
end of the pulse and extract the resonator’s positionx from the
measured qubit’s state, see Fig. 5(c) and (f), whereε0 (which
parametrically depends onx) is plotted as a function of the
qubit’s occupation probability.

It should be noted here that the measurement pulse, which
is essentially a driving signal applied to the qubit, can take a
short duration at the beginning of the measurement process.
Afterwards the final state of the qubit is read out in the ab-
sence of any driving fields. As a result, issues that only affect
the qubit on relatively large timescales, e.g. dephasing and the
slow measurement of the qubit’s state, do not affect the qubit’s
ability to accurately measure the instantaneous position of the
resonator. It should also be noted that this measurement pro-
cedure is a single-shot type of measurement and not a contin-
uous measurement. One could in principle use multiple qubits
in order to perform multiple measurements on the state of the
resonator.

V. CONCLUSIONS

We have analyzed a measurement scheme where a qubit
is probed via a quantum capacitance. We demonstrated the
sign-changing behavior of the quantum capacitance where the
strongly-driven qubit exhibits a LZS interferogram. Our semi-
classical calculations were used to describe recent experimen-
tal results8 for the LZS interferometry of the qubit probed by
a NR.

Then, motivated by the experimental work by LaHaye et
al. [8], we formulated the inverse problem. The inverse LZS
problem in our approach was formulated for the driven qubit
as finding its biasε0 assuming its state to be known. More
specifically, we have split the quasi-constant biasε0 into an
externally-controlled partε∗0(ng) and a small partδε0(x) that
is to be measured. For the qubit-NR system the former can be
changed through the gate voltage to realize the most efficient
measurement working point; the latter was assumed to be a
function of the NR’s displacementx.

We have shown how the inverse problem can be used for
defining the NR’s displacement. First, one should find (mea-
sure) the direct LZS interferogram (in a wide range of parame-
ters). This allows finding the qubit’s parameters and choosing
the optimal biasε∗0. Then, fixing the qubit’s parameters at the
optimal working point, small changes due to the slow NR’s
motion may be used for measuring its displacement.
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Appendix A: Semi-classical theory for the qubit-resonator
system

In this Appendix we consider the semi-classical theory for
the qubit-NR system. The equation for the displacementx
of the classical NR with effective massm, quality factorQ,
eigenfrequencyω0 and driven by the external forceF , is

m
d2x

dt2
+

mω0

Q

dx

dt
+mω2

0x = F. (A1)

In our problem, presented in Fig. 2, the NR is influenced by
the voltage difference from both sides. On one side (to the
right of the NR in Fig. 2) the voltage difference contains the
large constant part,∆V = VNR − VGNR, and the small rf
driving component,VRF = VA cosωrft. The force due to
these voltages is

FGNR =
1

2

∂

∂x

[
CGNR(VNR − VGNR − VRF)

2
]

≈ 1

2

(
∂CGNR

∂x

)
∆V 2 − FA cosωrft, (A2)

whereFA = (∂CGNR/∂x) · ∆V · VA. From the other side
(left side of the NR in Fig. 2) the voltage difference is defined
by the island’s voltageVI. The respective force is

FNR =
1

2

∂

∂x

[
CNR(VNR − VI)

2
]

≈ 1

2

(
∂CNR

∂x

)
V 2
NR − VNR

∂

∂x
(CNRVI) . (A3)

In the Coulomb-blockade regime, the voltageVI is defined
by the quantum-mechanically averaged island’s charge−2en,
which is given by the sum of the charges on the plates of the
capacitors that define the island,

−2en = QJ1 +QJ2 −QCPB −QNR. (A4)

For the island’s voltage it follows that

VI =
2e(Ng + nµ sinωt− n)

CΣ
, (A5)

Ng =
CNRVNR

2e
+

CCPBVCPB

2e
≡ NNR +NCPB. (A6)

Here we note that to obtain the charging Hamiltonian of
the CPB in the two-state approximation, we considerNg =
N +ng close to a half-integer number, whereN is the integer
part ofNg, andng = {Ng} is the fractional part. Then, with
n = N + n̂ andnµ < 1, we obtain forHCPB = CΣV

2
I /2

the charging part of Hamiltonian, Eq. (1). Here the operator
for the extra Cooper-pair numbern̂ = (1 + σz)/2 acts on the
“charge” basis states as follows:n̂ |0〉 = 0 andn̂ |1〉 = |1〉.

At this point we assume that the qubit’s dynamics is much
faster than that of the classical NR, so the equation for the
NR can be averaged over the period2π/ω and then the NR’s
dynamics is defined by the time-averaged voltage

V I =
2e(ng − 〈n〉)

CΣ
. (A7)

In what follows this time averaging is assumed.
Denoting the sum of the constant terms in Eqs. (A2, A3) as

F0, we obtain

F = F0 +
∂F

∂x
x− FA cosωrft, (A8)

∂F

∂x
= − 2

CΣ

(
CNRVNR

ξ

)2 [
1− ∂ 〈n〉

∂ng

]
. (A9)

The termF0 results in an (irrelevant) constant displacement
of the NR, while the linear term results in the resonance fre-
quency shift in Eq. (A1) as follows

mω2
0 −

∂F

∂x
≡ mω̃2

NR. (A10)

Then we obtain the NR’s frequency shift

∆ω̃NR = ω̃NR − ω0 ≈ 1

2mω0

∂F

∂x
≡ ∆ω1 +∆ω2, (A11)

where∆ω1 and∆ω2 correspond to the two terms in Eq. (A9).
The term∆ω1 does not depend on the state of the qubit; we
therefore define the qubit-state-dependent frequency shift

∆ωNR = ∆ω̃NR −∆ω1 = ∆ω2 (A12)

which leads to Eq. (6).

Appendix B: Quantum capacitance

In addition to the theory presented in the previous Ap-
pendix, it is useful to consider the system qubit-resonatorby
introducing the quantum capacitance, which is the subject of
this Appendix.

Let us introduce the effective (differential) capacitance, as
it is shown in Fig. 6(a), by differentiating the chargeQNR

of the capacitanceCNR as follows22: Ceff = ∂QNR/∂VNR.
Then, for the chargeQNR = (VNR−V I)CNR with the island’s
voltage given by Eq. (A7), we obtain

Ceff = Cgeom + CQ, (B1)

which consists of the quantum capacitanceCQ, given by
Eq. (8), and the geometric capacitanceCgeom

Cgeom =
CNR(CΣ − CNR)

CΣ
≈ 2CJCNR

2CJ + CNR
, (B2)

where the latter approximation is valid forCCPB ≪ CJ, CNR.
Alternatively to the approach of the previous Appendix, one

can consider the forceFNR as the electrostatic force from the
effective capacitance [see Fig. 6(b)]:FNR = 1

2
∂
∂x

(
CeffV

2
NR

)
.

Then the term with the quantum capacitance, in whichC2
NR ≈

C2
NR0 (1 + x/ξ)

2, results in the same frequency shift as ob-
tained in the previous Appendix, Eq. (A12).
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FIG. 6: (Color online) Scheme showing how the charge qubit can be
described as an effective capacitance coupled either to theNR or to
LCR resonator. (a) To the left, the charge qubit (CPB) is shown to
be described as the capacitance2CJ controlled by the voltageVCPB

and coupled through the coupling capacitanceCNR to a measuring
circuitry. This is described as the effective capacitanceCeff as shown
to the right. (b) The effective capacitance is coupled to theNR, which
can be used to model our system shown in Fig. 2. (c) The effective
capacitance is coupled to the electricLCR tank circuit.

Appendix C: Qubit probed by tank circuit

In this Appendix we consider a qubit coupled capacitively
to the seriesLCR (tank) circuit [see Fig. 6(c)]. The tank cir-
cuit consists of an inductorLT and a capacitorCT, while dis-
sipation is described by the resistorRT. The qubit is con-
sidered to be coupled to the tank circuit through the coupling
capacitance, which for uniformity we again denote byCNR

(even though there is no NR in the scheme considered in this
Appendix), in parallel to the tank’s capacitanceCT. The ef-
fect of the qubit on the tank circuit can be described by re-
placing the tank capacitanceCT with C̃T = CT+Ceff , where
the effective capacitance of the Cooper-pair box is given by
Eq. (B1). The geometric capacitanceCgeom gives only a con-
stant contribution to the tank capacitanceCT, while the quan-
tum capacitanceCQ ≪ C0 = CT + Cgeom is defined by the
derivative of the average extra Cooper-pair number on the is-
land〈n〉.

The tank circuit is biased by the currentIb = IA cosωrft.
The output voltage is given byVT = VA cos(ωrf t+ θ). Then
from the equation for the voltage we obtain for the phase shift

tan θ = Q0

(
2
∆ω

ω0
+

CQ

C0

)
, (C1)

FIG. 7: (Color online) LZS interferometry probed via a quantum
capacitance. (a) The quantum capacitanceCQ of the qubit versus the
energy bias (ng) and the driving amplitude (nµ). Arrows show the
values ofnµ andng at which the graphs (b) and (c) are plotted as
functions ofng andnµ, respectively. The upper curves were shifted
for clarity.

ω0 =
1√

LTC0

, ∆ω = ωrf − ω0, Q0 =
1

RT

√
LT

C0
. (C2)

The measured value can be either the voltage shiftθ at reso-
nance frequency (∆ω = 0)12,13,15

tan θ = Q0
CQ

C0
, (C3)

or the resonance frequency shift (at which the voltage shift
θ = 0):8

∆ω

ω0
= − CQ

2C0
. (C4)

Both are proportional to the quantum capacitanceCQ.
For the sake of illustration, in addition to Fig. 3, we also

demonstrate in Fig. 7 the direct LZS interferometry calculated
for the quantum capacitance for the parameters of Ref. [14]:
EJ0/h = 12.5 GHz, EC/h = 24 GHz, ω/2π = 4 GHz,
kBT/h = 1 GHz, and also we have takenα = 0.005, B =
0.5. We note that besides the difference in the parameters,
in Fig. 3 the frequency shift∆ω was plotted, while in Fig. 7
the quantum capacitanceCQ was shown. Both figures were
calculated by numerically solving the Bloch equation.

Finally, it is worthwhile emphasizing that for simplicity we
have assumed that the qubit’s dynamics is much faster than the
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resonator’s dynamics. In the general case, the cooperativedy-
namics of the qubit-resonator system should be studied, as e.g.
in Ref. [32]. However, a simplification can be made because
the stationary oscillations in thenonlinear system (either NR
or tank circuit), influenced by the qubit’s dynamics, can be re-
duced to oscillations in thelinear system, as was studied in
Ref. [17]. In that work, the Krylov-Bogolyubov technique of
asymptotic expansion was used. This technique describes the

influence of the qubit as shifts of both the effective damping
factor and the effective coefficient of elasticity. In analogy to
the results of Ref. [17], for the system considered here, this
means that not only the voltage shiftθ is related to the qubit’s
capacitanceCQ [see Eq. (C1)], but also the voltage magnitude
VA is defined byCQ. This, in particular, explains the experi-
mental results presented in Fig. 3 by Pailaet al. [15].
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