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We consider theoretically a superconducting qubit - narabrameical resonator (NR) system, which was re-
alized by LaHaye et al. [Natur459 960 (2009)]. First, we study the problem where the stat@efstrongly
driven qubit is probed through the frequency shift of the-foequency NR. In the case where the coupling
is capacitive, the measured quantity can be related to thvaltsd quantum capacitance. Our theoretical re-
sults agree with the experimentally observed result thater resonant driving, the frequency shift repeatedly
changes sign. We then formulate and solve the inverse Landaer-Stiickelberg problem, where we assume
the driven qubit’s state to be known (i.e. measured by soimer atevice) and aim to find the parameters of the
qubit's Hamiltonian. In particular, for our system the disbbias is defined by the NR’s displacement. This
may provide a tool for monitoring of the NR’s position.

I. INTRODUCTION positive.
In this work we consider the NR-qubit system semi-

a%lassically. Within this approach, we describe the qubit as

Nanoelectromechanical systems have recently attracted . :
; ; e - a quantum system coupled to a classical resonator, with the
tention because of both possible applications (e.g. inisghs o
oscillation-energy quantum much smaller than the thermal e

and interest in fundamental quantum phenomena in meso- : ;
scopic system&Particularly interesting is the coupling of the ergy,nr < kpT. Notethatsuch a semi-classical approach

) . - was successful for the description of most phenomena celate
mechanical motion of a nanomechanical resonator (NR) to aj] S et
0 atom-light interactiort

electric mesoscopic system. A few examples are carbon nan- The impact of the qubit on the resonator's frequency shift
otube NRs coupled to electron transpahd a metallic NR pact <€ q q y .
can be described in terms of the so-called quantum capaci-

coupled to anLC tank circuif. It was proposed theoreti- ; o
cally that for sensing and controlling the NRs, supercotduc tance, as stu_d|ed f_or the qubits in _Ref_s. [12,13]. The quantu
ing few-level circuits (qubit$)can be effectively used® For capacnanc_e |s_def|ned as the derlvat_lve of the averagee&harg
example this approach was applied in the demonstration a" the qubit with respect to the applle_.\d voltage_. The char.ge
the ground state of a high-frequency piezoelectric dilae can then t.)e related to the chargg—qublt occupation, thesderi
resonator coupled to a superconducting phase dubit. tive .Of Wh'Ch (unde_r resonant driving) exhibits sign change
Similar sign-changing response under strong driving was re
Successful coupling of a NR (a suspended silicon nitridesently studied for qubits probed by drC (tank) circuit for
beam) to a charge qubit allowed LaHasgteal. [8] to demon-  capacitive coupling1®as well as for inductive coupli§?”.
strate both ground-state measurement and excited-s&te SpThys, in the first part of this work (Section 1) we study the
troscopy as well as Landau-Zener-Stiickelberg (LZS)feter  sijtuation where the strong-driving qubit's state is probgd
ometry of the qubit. The spectroscopy was performed withhe NR.
weak driving, where the position of the resonance gave the | Section 111, we formulate the inverse problem. There, we
information about the qubit levels. In the regime of strongare interested in the influence of the NR’s state (its pasjtio
driving, where the qubit's evolution experiences repea®8 o, the qubit's state. We graphically demonstrate the foamul
transitions at the avoided crossing, the resulting interfee  {jon of the problem for the direct and inverse interferometr
is visualized in the LZS interferograms [9]. The LZS !nterfe in Fig. 1. There, the two-level system represents a qubft wit
ometry was demonstrated on superconducting qubits prob&gntrol parameter,; the parabola represents the resonator’s
by different methods (see Ref. [9] and references thereinkygtential energy as a function of the displacemerithus, in
as well as studied for other different physical realizadiof  tne first part of our work (Sec. 1) we deal with the direct prob
strongly-driven two-level systems in Refs. [10]. lem, where the influence of the qubit's state on the resonator
In the work by LaHayest al., Ref. [8], the NR'’s frequency is studied.
shift was used for monitoring the qubit’s state. For the theo The second part of this work (Secs. lll and 1V) is devoted to
retical description of the NR-qubit system, the pertudrati  the inverse problem, where we study the influence of the res-
theory procedure developed in Ref. [5] was used. The theorgnator’s state on the qubit’s state. Measuring the lattanis
says that the NR’s frequency shiftwng is negative for the alternative method for defining the NR’s displacement. This
qubit in the ground state and zero when the two qubit stateapproach can be related also to other inverse problems for
are on average equally populated under the periodic drivingwo-level systems, as studied in Refs. [18-20]. Geneltédina
This allowed to describe the ground-state and low-ammitud of the results can also be applied to other quantum systems fo
spectroscopy measuremeftislowever, this theory does not which the problem of defining the Hamiltonian’s parameters
explain the experimentally observed sign changeSwfir in  with given system’s state was studied in Ref. [21]. In Sectio
the strong-driving regime, where the frequency shift beeem 1V we demonstrate how the inverse problem can be solved for
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FIG. 1: (Color online) Schematic representation of the faated
problems for direct and inverse interferometry. The redsesiron
the left represent the bias-dependent energy levels ofuhi, and
the green parabola on the right shows the potential enerdieof
(classical) resonator. In the direct problem, the resanataosed to
probe the state of the qubit. In the inverse problem, theoresp of
the qubit to external driving is used to infer the state ofrésonator.
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FIG. 2: (Color online) Schematic diagram of a split-junaticharge
qubit coupled to a nanomechanical resonator. The chargé qub
(shown in red) is biased by the magnetic flivand the dcaw volt-
ageVcers + Vmw, to which it is coupled through the capacitance
Ccps. The qubit is coupled to the NR (shown in green) through the
) o ) ) ) capacitanc&'nr. The NR is biased by a large dc voltager; its
different driving regimes in a generic two-level systemdan state is controlled and measured by applying the dc and thge$
we comment on the possibility of applying this technique forbetween the gate and the NR;nr and Var, through the capaci-
superconducting qubit-NR systems. tanceCcenr. The NR’s motion is described by the displacement at
the midpointz. Capacitances form the island (Cooper-pair box) with
the total capacitanc€:, voltageV; and charge-2en.

II. CHARGE QUBIT PROBED THROUGH THE

QUANTUM CAPACITANCE z. This displacement is much smaller than the distahbe-

o ] ) ) tween the plates, in which case the capacitance between the
The split-junction charge qubit (also called Cooper-paitb  NR and the qubit reads

and shown in red in Fig. 2) consists of a small island between
two Josephson junctions. The state of the qubit is contiolle

by the magnetic fluxp and the gate voltag€cps + Varw. Cnr () = Cnro + 90w z = CNRo <1 + f) . @
Here Vepg is the dc voltage used to tune the energy levels 9z |, €

of the qubit andlA\rw = V,,sinwt is the microwave signal

used to drive and manipulate the energy-level occupations. I 1 0Cxr E~d> . (5)
The Cooper-pair box is described in the two-level approxi- Cxro O |y’

mation by the Hamiltonian in the charge representation (Sef’By the subscriph here we mean the values at= 0; in

e.g. Ref. [8] and Appendix A) what follows this subscript is assumed). The displacemgnt o
A ‘o Asinwt the NR influences the qubit through the changes in the polar-
- —0, — 0. (1) ization charge; to make this influence significant, a large dc

2 2 voltageVnr (of the order of volts) is applied. On the other

Here the tunnel splitting\ is equal to the Josephson energy side, the NR is biased by dc and rf voltagegxr andVrr,

Ej, which is controlled by the magnetic fluik through the capacitancegnr - _
The influence of the qubit’s dynamics on the nanomechan-
A = Ej = Ejq |cos(m®/®g)| . (2) ical resonator can be described in different ways. In Ap-

pendix A we present a detailed derivation of the influence of
The charging energy and the driving amplitude are given by the qubit’s state through the voltagieand the average polar-

ization charge-2e (n) of the CPB on the NR’s dynamics. An

€0 = 8Ec(ng —1/2), A =8Ecn,, (3) alternative, and maybe physically more illustrative, agmh

is to describe the CPB as an effective capacitor, which is the
where the Coulomb energyc = e?/2C% is defined by the  subject of Appendix B. Here, in the main text, we present only
total island’s capacitanc€s, = 2C; + Ccpp + Cxr, de-  essential results, referring the interested reader to fipeA-
fined with the notatioRCy = Cj; + Cjys; the dimension- (jces.
less driving amplitude is,, = CcppV,,/2e; the dimension-  As a result of the interaction between the qubit and the
less polarization charge, = nnr + ncpsp is the fractional  NR, the resonance frequency of the NR is shifted (see Ap-

part of the respective polarization charges in the plates ohendix A). The result can be written in the following form
two capacitorsnyg = {Nnr} andnces = {Ncpp} with

Nxr = OnrVir/2e andNcepg = CepsVers/2e. AwNR = —[38 () = _B89 <UZ>, (6)
Here we consider the Cooper-pair box formed by four ca- WNR Ong 2 Ong

pacitances(y;, Cj2, Ccpp, andCxr (Cy > Ccpp, ONR). )

One of the plates of the latter capacitor is formed by the NR, 8= 1 (CNRVNR) @

which is characterized by the displacement at the midpoint o mw¥rCs £ '
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The frequency shifAwyg is defined by thelerivative of the  of the resonance, to negative, to the right of the resonance

average extra Cooper-pair number on the islaryd= 0- P, + point. Thus, the resulting behavior of the observable éegith

1- P, = P,. HereP, (P) stands for the probability of having Awng or Cq) is defined by the competition of the two terms

0 (1) extra Cooper pair. in Eq. (11). In what follows we will use Eq. (11) for the su-
Alternatively to the approach above, the effect of the qubitperposition states (which appear under drivifgNote that

on the NR can be described in terms of the effective (dif-a similar approach for calculating the effective (quantimn)

ferential) capacitance, as described in AppendidxCBs = ductance was used in Refs. 16,17.
0QNR/OVNR = Cgeom + Cq, Where the relevarguantum The dissipative dynamics can be described with the Bloch
capacitance is given by equations written in the energy representation (wherexrela

ation appears naturally). To characterize dissipation seeau
8) result of the spin-boson model with the spectral density de-
Cs Ong ' fined with the dimensionless parameter (w) = ahw, (see

e.g. Ref. 23 and references therein) and also introduce the

The term “quantum” capacitance is used here to denote thge|atively large) phenomenological paramekto describe
(small) qubit-state-dependent addition to the classiga+ ( he low-frequencyl / f noise:

ometric) capacitance. Obviously, Eq. (6) can be rewritten

in terms of the quantum capacitane#. (discussion in Ap- T-1_ 4 A? coth AE (13)
pendix C for the qubitC' R circuit system) ! 2RAE 2kpT’
Awnk _ _xCq 1 kT €2 B kpT &2
= _ , 9 -1 _ —1 B4 &p N BL &g
oxn G O =g T Rt ) ¥ B R 09
whereg = (Cs/Cnr) 5. We display the direct LZS interferometry in Fig. 3, where

The qubit's density matrix in the energy representation (inth® resonator's frequency shifiwngr was calculated with
the eigenbasis of the time-independent Hamiltonian) is paEds: (9) and (11). Figure 3 demonstrates that our formal-
rameterized in terms of the respective Pauli matriceas 'S |s.v_aI|d for a description oft_he experimentally meablea
follows: p = L (X7, + Y7, + Z7.). Now we express the guantities:; the quantum capacitance or the resonant fnregue
probability of ﬁaving ONe exXCEsS Cooper pdt, by chang- shift®:14 (see also Appendix C). Such a description allows
to correctly find the position of the resonance peaks in the

ing from the energy basis to the charge basis, and obtain . i ‘
interferogram and to demonstrate the sign-changing behav-
P 1 ) A x4 0 B > o ior of the quantum capacitance, which relates to the measur-
1=5 < “AES T EZ) , AE =A% +e5. (10)  aple quantities. The appearance of the interferogram aspen
on several factors: the values of the qubit parameters, the
And this gives (after time-averaging over the driving pdrio model for the dissipative environment (such as Egs. (13, 14)

27 /w) for the quantum capacitance the following and the parameters and B), the value of the bias current
) ) (which distorts the shape of the resonances, as demornktrate
Co ~ CRr (4ECA 7z €0 3_Z> (11) in Ref. [17]). Moreover, the formalism presented above is
Cs AE3 2AFE ong )’ valid for the case where the qubit's dynamics is much faster

) ) ) than the NR’s dynamics; otherwise one should study the co-
where we have taken into account that in the stationary StatSperative dynamics of the composite system: see, e.gusdisc
X averages 0. , sions in Refs. [14] and [17]. However, we will not go here into

As we can see from Eq. (11), the quantum capacitance igore detailed calculations, since our aim was to demoestrat

defined by the valugZ = (r.) which is the difference be- he simplest approach for the description of the experirirent
tween the occupation probabilities of the excited and gdoun ge. 8.

states. In particular, we obtain the quantum capacitande an
the respective frequency shift in the ground/excitg®) state

with Z = (r,) = £1 Il. THE BIAS INFLUENCED BY THE RESONATOR:
PROBLEM FOR THE INVERSE INTERFEROMETRY

Awfly gl 12)
WNR AE3 Let us now consider the qubit’s biag, Eq. (3), as a func-

.tion of the NR’s displacement. For smallz < &, we have

This result, obtained in the semi-classical approach, is i . . . o
agreement with the one obtained in Ref. 5 and used in Ref. Zgr::sexpansmn (4), which results in the decomposition of the

Equation (11) is a more general result, where the secon
term describes the sign-changing behavior near resonance. eo(z) = e5(ng) + deo(z), (15)
Namely, when sweeping the gate voltagg the quantityZ
changes from-1, far from resonance (in the ground state), to
0 in resonance (when the levels are equally populated). This go(ng) = 8Ec (ng —1/2), (16)
describes the maximum df in resonance and the change x

of its derivativedZ/dn, from positive, in the left vicinity deo(z) = 8Ec INR (17)

where
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crossing, or it can involve long-time driving and stationar
state equilibrium of the qubit. Our aim is to find a sensitive
probe for smalbey. For high sensitivity we require substan-
tial changes in the qubit’s state for small changesgodiven

by deg. For a quantitative definition of the sensitivity one can
consider the derivative of the probability with respecthe t
biasey.

0.

(2]

0.51

0.4

—0.3

0.2

IV. RESULTS FOR THE INVERSE LZS
INTERFEROMETRY

In this section we consider the inverse problem for the
gubit’s dynamics, in particular how to infer the qubit’'s fia
go from the measured qubit state. For concreteness, we con-
sider the qubit driven by the biagt) = 9 + Asinwt. If
one is interested in the short time-scale dynamics, then the
one- or few-times passage of the avoided level crossing-is re
evant. If the time-dependence of the bigér) is so slow that
the multiple-passage dynamics is relevant, then the statjo
gubit state can be considered.

2n [kHz]
o

Ao)NR /

03 04 05 06 07 ° 0.2 o4 p, °° A. Single passage: non-linearity in the Landau-Zener probém

FIG. 3: (Color online) LZS interferometry probed via theamator's The linearization of the bias in the vicinity of the
frequency shiftAwxr. (a) The frequency shift versus the energy avoided crossing (where(t) = 0) results in the approx-
bias () and the driving amplituder(,). Arrows show the values imation that this region is swept at thg-dependent rate
of n,, andn, at which the graphs (b) and (c) are plotted as func- Ay, /1 — (¢,/A)? (for details see Ref. [9]). The respective

tions ofng andn,, respectively. The upper curves were shifted for probability of the non-adiabatic transition to the uppeiaad
clarity. The parameters for calculations were taken closbé ones batic level is given by the Landau-Zener formula

of Ref. [8]: wnr/27m = 58 MHz, Ej0/h = 13 GHz, Ec/h = 14
GHz,w/2n = 4 GHz,kpT/h = 2 GHz, = 0.005, B = 0.2, and A2
the proportionality coefficient defined by the qubit-NR coupling PJ(FI) = Pz = exp S S , Y= ==
constant\ from Ref. [ 8]: h>\2/7rEJO = B Ecwnr/mE5 = 1.6 VA (e0/A)? 2 Ahw
kHz. (18)
In other words, the non-linear dependence of the bias on time
has the effect that the Landau-Zener probability depends on
Here we have used the fact that ¢ andCyr < Cs. (see also Ref. [25]), which is demonstrated in Fig. 4(a). We
The Hamiltonian of the qubit (1) with the parameter- note thatherg,| < A and the formula (18) gives numerically
dependent biasy () brings us to the following problem. Let incorrect results wheg, tends toA.
us assume that the qubit’s state is known (i.e., thisismredsu  To quantify the sensitivity of the transition probability t
by a device whose details we do not consider here for simplicsmall changes in the bias, in Fig. 4(c) we plot the derivagive

ity; see Refs. [12,13,16,24] for different realizationstbé  the excitation probability>'” with respect tar;. We can see

ways to probe the qubit’s state). Given the known qubit statethat the non-linearity of the bias results in an increaséef t
we aim to find the Hamiltonian's parameters. Particularly, w sensitivity.

Prz ~ Pz , Puzo=¢", (19)

are interested in the parameter-dependentdjgs). For the single-passage case it is straightforward, from
On one hand, we can study here the general (“reverse engkq. (18), to find the solution for the inverse problegn =
neering”) problem in the spirit of Refs. [18,19]. On the athe 50(P_5_I))- In particular, in the case;, = 0 andde, < A we
hand, we aim to provide the basis for measuring the NR’s popgye
sition z by means of probing the qubit’s state, while= () )
is considered a slow time-dependent function. 1.7 deo

In what follows we will consider the driven qubit’s state 2\ A
with emphasis on finding optimal driving and controlled effs ) )
parameters4, w, ande;;) for the resolution of the small bias and the solution for the inverse problem becomes
componenbtey. We will assume that the dynamics of the pa-
rameterr is slow enough not to be considered during the mea- @ 2 <1 Py > (20)
surement process. Depending on this slowness, the measure- A ¥ Pizo)’
ment might have to involve only one passage of the avoided
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02k (@) o (b) The factorP.z(1 — Prz) in Eq. (21) is described by the
P ' one-passage problem above. Consider the teh(,. For
+ X Ok g5 = 0anddey < Awe ha\(@ (o ~ A~ —Z %0 Forexample,
01} - R for 2 = 2km + T we obtain
>, o2 ‘.
A\ \
II deo
0 ) 0 ; |\, P_f_ ) ~~ QPLz(l — PLZ) <1 + WE) . (23)
(c) A\ [ (d)
04r / Y|® {;;};I;ﬁ.’;gh This describes a linear dependence on the small &igs
7, A ;;f{;{;lf}:s]::;", 4 which is a significant increase in sensitivity as compared to
A7 N L A A the quadratic dependence 6sy in the single-passage case
02} /, v 10 EIIH‘"',“”U”?I":S, i s
Pl < i 'J;n“!},' e above, Eq. (19). If the decoherence is negligibly small, one
P ﬂl:h;i i ',-'5‘5 Wia, can further increase the sensitivity of the excitation pittib
0 L” . AILENEARE R AN B ASE ity to small changes in the bias due to interference by censid
0 0.5 g /A 1 0 05 & /A 1 . .
o o ering multiple-passage case.

The formula (23) can be conveniently used to make quan-
FIG. 4: (Color online) Upper-level excitation probabilifp, after titative estimates. Consider this for the example of theitgub
(a) single passage and (b) double passage, plotted fdr = 5and ~ nanomechanical resonator system as in Ref. [8]. First,-to in

hw/A = 0.2, versus the biasy. The sensitivity to the changes of i I) i

the biaso, defined as the derivativg, = |dPy /d(s0/A)|, is plotted g;iafﬁeﬂ;; sggzlttlxgys?,; ;rlllgs(;hs gs;g%{fre\(;vgggi ﬁ]egtut?

in (c) and (d)_, respectivgly. Solid lines were pIotted_withsE (18) cas’e the drivin iod should d the d h i

and (21), while dashed lines were calculated numerically. g period should excee € deconerence time
T, and the NR oscillation perio2lr /wng. For superconduct-

ing qubitsTy is typically higher thanl us. Then, we are

limited by the relationv > wngr, and we takev/27 ~ 0.1

GHz. We choose the parametetén,,) and A(®) such that

_ o _ . Prz ~1/2. Assumingnyr = 1 and8E¢/h = 100 GHz, we

_Next, consider the situation where the avoided crossing réspain the change of the probability with changes in the NR’s
gion is passed twice. For example, the qubit can be dnveraisplacemenﬁPfr”) — 103z /¢. This means that for probing

by a sinusoidal pulse of lengthr/w. Alternatively, triangu- ) _5
lar pulses can be used to drive the qubit twice through thé displacement af ~ 1077, one has to be able to measure

avoided-level crossing, as in Refs. [26,27]. In both cathes, Population changegfl) ~ 0.01. This level of accuracy is
double-passage process can make use of quantum intedererchievable with superconducting qubts.
to increase the sensitivity of our problem through the aagum
lation of the Stiickelberg phagé.
The upper-level excitation probability after the double- C. Multiple passage: stationary solution
passage fs

B. Double passage: Stiickelberg oscillations

(I . Now we assume that what is relevant for our inverse prob-
Py =4Pz(1 — Prz) sin®(G2 + s), (21)  lemis the stationary state of the driven qubit. To analyze th

] ] ) ] analytical expressions, we consider two limiting cases.
where(, is the phase acquired during the evolution between

anticrossings at; andt; + 27 /w:

1. Slow-passage limit

t1427/w
(o = %L/ VA2 4+ 2(¢)? dt, (22)

t2 For the analytical description of the upper-level occuprati
probability in the adiabatic limit, whey > 1, we use the

andys is the Stokes phase. .
following formula from Ref. [9]

Stiickelberg oscillations, described by Eq. (21), are demo
strated in Fig. 4(b) fo0 < &,/A < 1. The respec-
tive sensitivity is shown in Fig. 4(d). The agreement of VR
the analytical formulas and numerical calculations is néma Py = —; /PLZ(I €08 Gy cos /C’) ,
able (as demonstrated in Fig. 4). One can notice that the sin” ¢} + 2Pz (1 — cos () cos ()
sharper the Stiickelberg oscillations, the higher theitens
ity. This is related to the period of the Stiickelberg oseill

tions, which decreases with increasidgw. Here we also

note thatPfI)(so) is not a symmetric function, and the pe-

riod of the Stuickelberg oscillations is smaller fgr< 0 than 1 2
for £ > 0. Therefore, using negative valuesafresults in G =5 / VAZ 4 e(t)2dt, (25)
slightly higher sensitivity than what is shown in Fig. 4(d). 4

(24)

where

er = Cl+<21 C—:<1_427
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FIG. 5: (Color online) Slow-passage and fast-passage LESf@rometry of a qubit. (a) and (d): the time-averaged uibpes| occupation
probabilities, defined in the adiabatiP() and diabatic P.,) bases, as functions of the biasand driving amplituded. The parameters are
the same as for Fig. 3 except for the frequencyw(@r = 6.5 GHz< A/h and (d)w/27 = 20 GHz > A/h. (b) and (e): Cross-sections for
the respective dependencies of the upper-level occupptibabilities as functions of the bias along the horizodtshes shown in red and
greenin (a) and (d). (c) and (f): Inverse graphs, which shmwdependence of the bias on the upper-level occupatiombpitdles (assuming
thateo lies on the right-hand side of the resonance peak).

and(, is given by Eq. (22). Formula (24) is illustrated in resonance line tends to zero, tha2 i/ hiw = 27rn—a,a < 1
Fig. 5(a). Considetj = 0, then for strong drivingA > A, [see the red and green dashes in Fig. 5(a)]. It follows that
we have

2 2
7r<5507 ¢~ 24 bed . (26) P~ 1 Pz (mdeo/hw) N 27
hw hw Ahw 242 + Pz (7‘1’680/}7&))

(- =~

Analyzing the interferogram in Fig. 5(a), we find the possi-
bility to obtain a sensitive working point with a driving am- which is equal to zero atey = 0 and quickly tends td /2
plitude a little bit lower than the one where the width of the with increasingdsy. This is demonstrated in Fig. 5(b).

2. Fast-passage limit in the vicinity of thek-th resonance (wherg, = khw) we
obtain the Lorentzian dependence on the small bias &hjft

In the fast-passage and strong-driving regime (whekre

1), the rotating-wave approximation gives for the uppeelev _ 1 A2
occupation probabilif§#3° Pup = 252+ A (30)
2
Pup = 25— 2 e _
2 v Tt Tf(fo — khw)? + A2 Th|_s dgscrlbes the resonance peﬁlﬁp = 1/2, atdeg =.0, _
Ay = AJy (A/Rw), (29) which is demonstrated graphically in Fig. 5(e). Its width is

defined byA and is minimized for the values of/hw in the
whereJj, is the Bessel function. Formula (28) is demonstratedvicinity of the zeros of the Bessel function. With relaxatio
in Fig. 5(d). If the relaxation is not taken into account,rthe taken into account, the sensitivity is defined by the hatittvi



of the resonances, given by It should be noted here that the measurement pulse, which
. . is essentially a driving signal applied to the qubit, caretak
Aed) _ ¥ AL +h . (31) short duration at the beginning of the measurement process.
0 Ty Afterwards the final state of the qubit is read out in the ab-

This means that to increase the sensitivity, which is rdlate sence O.f any dr|v_|ng fields. AS aresult, issues that (_)nly:affe
%qublt on relatively large timescales, e.g. dephasiniglaa

to the sharpness of the resonances, one has to decrease ET: . .
decoherence rate. slow measurement of the qubit’s state, do not affect thetgubi

Here we note that it was assumed that the measuremeﬁpi”ty to accurately measure the instantaneous posifidine
time is much smaller than the resonator's perido,. < resonator. It should also be noted that this measurement pro
27 Jwng. ON the other hand, to reach a stationar;a;tate th(gedure is a single-shot type of measurement and not a contin-

measurement time should be larger than the relaxation timeous measurement. One could in principle use multiple qubit

T\s < Thews. This means that the results presented in thism order to perform multiple measurements on the state of the

subsection are relevant for qubits with short relaxatiores resonator.
and for resonators with small frequencies. Alternativehe

should solve the problem which explicitly takes into acdoun

x = z(t).

Formula (31) allows us to make estimates, as we did at the V. CONCLUSIONS
end of the previous subsection. Fdyhw equal to one of
the Bessel-function zeros and s = 4ns < 27 /wNgr, We
obtain that the probability?,, changes by about/4 when
the bias changes ey /h ~ 0.25 GHz. On the other hand,
we have seen thak/h ~ 100(z/¢) GHz. This means that
in order to observe changes- 10~°¢, one has to distinguish
changesiP,, ~ 10~3, which is also possible, in principfé.

We have analyzed a measurement scheme where a qubit
is probed via a quantum capacitance. We demonstrated the
sign-changing behavior of the quantum capacitance where th
strongly-driven qubit exhibits a LZS interferogram. Oumse
classical calculations were used to describe recent erperi
tal result§ for the LZS interferometry of the qubit probed by
aNR.

D. Inverse interferometry: qubit probes resonator Then, motivated by the experimental work by LaHaye et
al. [8], we formulated the inverse problem. The inverse LZS

The idea of the measurement procedure, presented in Fig. Broblem in our approach was formulated for the driven qubit
could be as follows. Driving the qubit in a wide range of pa-aS finding its bias, assuming its state to be known. More
rameters is done first to plot the interferogram as in Fig) 5(asSPecifically, we have split the quasi-constant bigsnto an
and/or (d). Then a region of high sensitivity, where small€Xternally-controlled pat;(n,) and a small pardeo () that
changes in the qubit bias result in large changes in the findf 10 be measured. For the qubit-NR system the former can be
state, is chosen. Examples of such high-sensitivity regse ~ €hanged through the gate voltage to realize the most efficien
shown in Fig. 5(b) and/or (e). measurement Workmg point; the latter was assumed to be a

From Fig. 5 we can see that both the slow-passage limitunction of the NR’s displacement
demonstrated in Fig. 5(a-c), and the fast passage limit We have shown how the inverse problem can be used for
[Fig. 5(d-f)] can be used for the solution of the inverse prob defining the NR’s displacement. First, one should find (mea-
lem. The choice of the optimal working point and its vicinity sure) the direct LZS interferogram (in a wide range of parame
will depend on the specific parameters of the problem. Foters). This allows finding the qubit’s parameters and chapsi
illustration, in Fig. 5(a) and (d) we marked by red and greerthe optimal biag{. Then, fixing the qubit’s parameters at the
small dashes two possibilities of having the dip in Fig. %(b) optimal working point, small changes due to the slow NR’s
the peak in Fig. 5(e) being narrow (red curves) or relativelymotion may be used for measuring its displacement.
wide (green curves).

In principle, a low-amplitude slice near the bottom of
Fig. 5(d) can be used to obtain a sharp resonance peak, as
in Fig. 5(e). However, based on the results of Refs. [9,31],
it seems that the width of the resonances might be increased
more for low-amplitude driving due to the influence of the
noise and decoherence. From the experimental point of view SNS thanks V.I. Shnyrkov, O.G. Turutanov, and A.M.
the best strategy is probably to obtain a wide range interfer Zagoskin for useful discussions. SNS was partly supported
gram and then choose a narrow resonance. by the NAS of Ukraine (Project No. 04/10-N) and DKNII

One can now bias the qubit at a high-sensitivity point, apply(Project No. M/411-2011). SA and FN were partially sup-
a “measurement pulse” to the qubit, measure its state at thgorted by the Laboratory for Physical Science, NationalSec
end of the pulse and extract the resonator’s positimmthe  rity Agency, Army Research Office, NSF grant No. 0726909,
measured qubit’s state, see Fig. 5(c) and (f), whgr@vhich  JSPS-RFBR contract No. 09-02-92114, Grant-in-Aid for Sci-
parametrically depends ar) is plotted as a function of the entific Research (S), MEXT Kakenhi on Quantum Cybernet-
qubit’s occupation probability. ics, and the JSPS-FIRST program.
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Appendix A: Semi-classical theory for the qubit-resonator In what follows this time averaging is assumed.
system Denoting the sum of the constant terms in Egs. (A2, A3) as
Fy, we obtain

In this Appendix we consider the semi-classical theory for
the qubit-NR system. The equation for the displacement F=F+ 8_Fx — F coswyet, (A8)
of the classical NR with effective mass, quality factor@, Ox
eigenfrequency, and driven by the external fordeg, is

d’c  mwg dz 9 oF 2 (CneVar )\’ 0 (n)
mos + Q0 di + mwyx = F. (A1) Frimiares <T) {1 ~ Oy } . (A9)

In our problem, presented in Fig. 2, the NR is influenced byTh . . .

: . . e termFj results in an (irrelevant) constant displacement
the voltage difference from both sides. On one side (to th%f the NR, while the linear term results in the resonance fre-
right of the NR in Fig. 2) the voltage difference contains thequency shiftin Eq. (A1) as follows

large constant partAV = Vyr — Vanr, and the small rf

driving componentVgr = Va cosw,st. The force due to , OF ,
these voltages is MW — 5 = MWNR- (A10)
Fonr = %aﬂ [Canr(Var — Vanr — Var)?) Then we obtain the NR’s frequency shift
X
1 /0C 1 r
I 5 ( (;;NR) AVQ _ FA COS erta (A2) A&NR = &NR — Wy ~ 2mw0 ?‘)_x = Awl + AQJQ, (All)

whereFy = (9Canr/dx) - AV - Vy. From the other side \yhereny,; andAw, correspond to the two terms in Eq. (A9).
(left side of the NR in Fig. 2) the voltage difference is define 1,0 termAw; does not depend on the state of the qubit; we

by the island’s voltagé}. The respective force is therefore define the qubit-state-dependent frequency shif
10
Fyr = 55— [Oxn(Vm — )% Awnr = AR — Aw; = Aws (A12)
1 (9CNgr 3] :
~ 3 (—817 ) VﬁR _ VNRa_x (CxrVE). (A3) which leads to Eq. (6).
In the Coulomb-blockade regime, the voltages defined
by the quantum-mechanically averaged island’s chaigyen, Appendix B: Quantum capacitance
which is given by the sum of the charges on the plates of the
capacitors that define the island, In addition to the theory presented in the previous Ap-
_ . _ _ pendix, it is useful to consider the system qubit-resoniayor
2en = Qun + Q2 — Qor — Qg (A4) introducing the quantum capacitance, which is the subject o
For the island’s voltage it follows that this Appendix.
. Let us introduce the effective (differential) capacitaras
Vi = 2¢(Ng + ny sinwt — ")7 (A5) it is shown in Fig. 6(a), by differentiating the chargar
Cs of the capacitanc€ng as follows? Ceg = OQNr/OVNr.
Then, for the charg@nr = (Var—V1)Cnr With the island’s
Cne Wi Cep Vo ' '
N, = Nl;e NR cp;e CPB _ Nxi 4+ Nops.  (A6) voltage given by Eq. (A7), we obtain

Here we note that to obtain the charging Hamiltonian of Cett = Cgeom + Cq; (B1)

the CPB in the two-state approximation, we considgr =
N + ng close to a half-integer number, whekeis the integer
part of N, andn, = {N,} is the fractional part. Then, with
n = N +nandn, < 1, we obtain forHcpg = CxV{%/2 _

the charging part of Hamiltonian, Eq. (1). Here the operator — Cyeom = Cn(Cs — Oxr) o 2C)Cxr ,
for the extra Cooper-pair numbgér= (1 + o,)/2 acts on the Cs 2Cy + Oxr

“charge” basis states as follows0) = 0 andn |1) = |1). where the latter a PRUT -

. ; o 1 pproximation is valid fétpg < Cj, Cngr.

f 'At‘t thtﬁ pol[?]t \':vefat?]surr?e th_at Ithl\(laFgub|t?hdynam|$s |sfmutchh Alternatively to the approach of the previous Appendix, one
aster than that ot the classical i, SO the equation o’r %an consider the forcEng as the electrostatic force from the
NR can be averaged over the peribd/w and then the NR'’s effective capacitance [see Fig. 6(bfur — %g (C'cﬁ'Vl\?R)-

dynamics is defined by the time-averaged voltage Then the term with the quantum capacitance, in widigh, ~

Céro (1 + z/€)?, results in the same frequency shift as ob-
tained in the previous Appendix, Eq. (A12).

which consists of the quantum capacitarCg, given by
Eqg. (8), and the geometric capacitarégom

(B2)

V= 26("%07;@)) (A7)
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FIG. 6: (Color online) Scheme showing how the charge qubittia

described as an effective capacitance coupled either thifther to FIG. 7- (Col i L7S interf t bed Vi ¢
LCR resonator. (a) To the left, the charge qubit (CPB) is shownto "~ - (Color online) INterierometry probed via a qua
be described as the capacitan, controlled by the voltag&cpp capacitance. (a) The quantum capacitafigeof the qubit versus the

: : h bias.) and the driving amplituder(,). Arrows show the
and coupled through the coupling capacitanéez: to a measuring energy & )
circuitry. This is described as the effective capacitafige as shown values ofn,, andn, at which the graphs (b) and (c) are plotted as

to the right. (b) The effective capacitance is coupled to¥Rewhich functions ofn, andn,, respectively. The upper curves were shifted

can be used to model our system shown in Fig. 2. (c) The eféecti for clarity.
capacitance is coupled to the electfi€ R tank circuit.
1 1 /Lt
wo = v Aw = wip —wo, Qo = 5/ = (C2)
Appendix C: Qubit probed by tank circuit Vv L1Co RtV Co

The measured value can be either the voltage 8hattreso-
In this Appendix we consider a qubit coupled capacitivelynance frequencyw = 0)1213.15

to the seried.C' R (tank) circuit [see Fig. 6(c)]. The tank cir-
cuit consists of an inductdir and a capacitof't, while dis- tanf = Q % (C3)
sipation is described by the resistBr. The qubit is con- Cy’
sidered to be coupled to the tank circuit through the cogplin
capacitance, which for uniformity we again denote @Gy 8
(even though there is no NR in the scheme considered in thid = 0):
Appendix), in parallel to the tank’s capacitan€e. The ef- Aw Cq
fect of the qubit on the tank circuit can be described by re- PO Yo
placing the tank capacitan¢é- with Ct = Ct + Cegr, Where 0 0
the effective capacitance of the Cooper-pair box is given byBoth are proportional to the quantum capacitafige
Eg. (B1). The geometric capacitanCg.om gives only a con- For the sake of illustration, in addition to Fig. 3, we also
stant contribution to the tank capacitar@@g, while the quan- demonstrate in Fig. 7 the direct LZS interferometry calteda
tum capacitanc€q < Cy = Ct + Cyeom is defined by the  for the quantum capacitance for the parameters of Ref. [14]:
derivative of the average extra Cooper-pair number on the isEjo/h = 12.5 GHz, Ec/h = 24 GHz, w/27m = 4 GHz,
land (n). ksT/h = 1 GHz, and also we have taken= 0.005, B =
The tank circuit is biased by the curreht = 14 cos wi¢t. 0.5. We note that besides the difference in the parameters,
The output voltage is given biyr = V4 cos(w,st + 6). Then  in Fig. 3 the frequency shifw was plotted, while in Fig. 7
from the equation for the voltage we obtain for the phasa shifthe quantum capacitancg, was shown. Both figures were
calculated by numerically solving the Bloch equation.
tanf = Q (2& n @) (C1) Finally, it is worthwhile emphasizing that for simplicityen
0 ’ have assumed that the qubit’s dynamics is much faster tiean th

or the resonance frequency shift (at which the voltage shift

(C4)

wo Co
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resonator’s dynamics. In the general case, the coopertive influence of the qubit as shifts of both the effective damping
namics of the qubit-resonator system should be studiedgas e factor and the effective coefficient of elasticity. In argtdo

in Ref. [32]. However, a simplification can be made becausehe results of Ref. [17], for the system considered hers, thi
the stationary oscillations in th@nlinear system (either NR means that not only the voltage sHifis related to the qubit’s
or tank circuit), influenced by the qubit’s dynamics, cande r capacitanc€’y [see Eq. (C1)], but also the voltage magnitude
duced to oscillations in thinear system, as was studied in Vj, is defined byCq. This, in particular, explains the experi-
Ref. [17]. In that work, the Krylov-Bogolyubov technique of mental results presented in Fig. 3 by Pailal. [15].

asymptotic expansion was used. This technique descrikes th
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