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Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular
dynamics simulations

Tian Lan, Xiaoli Tang and Brent Fultz
Department of Applied Physics and Materials Science,

California Institute of Technology, Pasadena, California 91125, USA

Raman spectra of rutile titanium dioxide (TiO2) were measured at temperatures from 100K to
1150K. Each Ramanmode showed unique changes with temperature. Beyond the volume-dependent
quasiharmonicity, the explicit anharmonicity was large. A new method was developed to fit the ther-
mal broadenings and shifts of Raman peaks with a full calculation of the kinematics of 3-phonon and
4-phonon processes, allowing the cubic and quartic components of the anharmonicity to be identified
for each Raman mode. A dominant role of phonon-phonon kinematics on phonon shifts and broad-
enings is reported. Force field molecular dynamics (MD) calculations with the Fourier-transformed
velocity autocorrelationmethodwere also used to perform a quantitative study of anharmonic effects,
successfully accounting for the anomalous phonon anharmonicity of the B1g mode.

PACS numbers: 63.20.-e, 63.20.kg, 78.30.-j

I. INTRODUCTION

Rutile is the most common and stable crystal structure
of titanium dioxide (TiO2), and is important for both sci-
ence and technology. Owing to its high refractive index
and strong ultraviolet resistance, it is used extensively
for pigments, optical coatings and sunscreens. In the
past two decades, TiO2 surfaces have been subjects of re-
search as photocatalysts and high efficiency solar cells1–5.
Many questions remain about point defects, vibrational
dynamics, size effects and the recently-reported close
relationship between surface and bulk properties5–7. A
better understanding of the lattice dynamics of rutilewill
help answer many of them.
RutileTiO2 is tetragonalwith the spacegroupP4/mnm.

It is stable to 1800K8. The other two naturally-occurring
phases of TiO2, anatase and brookite, aremetastable and
both convert to rutile upon heating. The 15 optical vibra-
tionalmodes of rutile TiO2 have the irreducible represen-
tation 1A1g+ 1A2g+ 1A2u+ 1B1g+ 1B2g+ 2B1u+ 1Eg+ 3Eu.
The modes of symmetry B1g, Eg, A1g and B2g are Raman
active. The Raman active modes comprise motions of
anions with respect to stationary central cations, either
perpendicular to the c axis (modes B1g, A1g and B2g), or
along the c axis (modeEg). The Raman spectrumof rutile
was first recorded byNarayanan9, and peak assignments
were made by Porto, et al.10. Raman spectrometry has
been used inmany studies of the lattice dynamics, phase
transition and nanostructures of TiO2

11–16.
The present work on rutile TiO2 focuses on anhar-

monicity, one of the most important but poorly under-
stood characteristics of lattice dynamics at elevated tem-
peratures. Anharmonic behavior affects crystal stability,
heat capacity, optical properties and thermal transport.
It causes shifts of phonon energies with temperature be-
cause larger thermal displacements emphasize compo-
nents of the potentialwith higher powers of the displace-
ment. Phonon broadening from decreased lifetimes is
another anharmonic phenomenon, and an anharmonic

model should be able to predict both the broadenings
and shifts of the phonons with temperature. To date
there have been few studies of anharmonicity of rutile
TiO2. Perhaps the most complete experimental results
are from Samara and Peercy’s work in 197311. They
reported frequency shifts of Raman modes with tem-
perature and pressure, although the temperature range
was below 500K and no broadening information was
reported. Their results show that the B1g mode, which
comprises rotatory motions of the four nearest neighbor
oxygen anions around a central titanium atom (Fig. 1) is
especially interesting. Its frequency changes little with
temperature, but softens with pressure. Studies on other
materials with the rutile structure, e.g., SnO2, MgF2 and
FeF2 report similar behavior of the B1g mode17–20. There
are two conflicting views on the physical origin of these
anomalies. One attributes it to an incipient structural
phase transition17,21,22, and the other attributes it to a
thermal- or pressure-induced lattice contraction18–20.
Lattice dynamics calculations based on density func-

tional theory (DFT) were used to study the effect of
pressure on phonons in rutile TiO2

22,23. These calcula-
tionswere for low temperature and in the quasiharmonic
approximation, where phonons are assumed to be har-
monic but their frequencies change with volume. Only
a few studies have used molecular dynamics (MD) to
calculate anharmonic frequency shifts and broadenings
of phononmode of materials24,25, and to our knowledge,
no such investigation has yet been performed on rutile
TiO2.
Here we report measurements of Raman spectra with

high resolution at temperatures from 100 to 1150K. Both
phonon frequency shifts and broadenings were mea-
sured and analyzed. The quasiharmonic effects from
thermal expansion were separated from anharmonic ef-
fects of phonon-phonon interactions by comparing tem-
perature and pressure dependent trends of the Raman
peaks. To identify the effects of cubic and quartic an-
harmonicity, we developed a new anharmonic analysis
that allowsdata fittingwith calculated two-phononkine-
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FIG. 1. Rutile structure and oxygen atom displacements for
Raman-active modes.

matic functionals. Wealsoused force-fieldmolecular dy-
namics (MD) calculations and Fourier-transformed ve-
locity autocorrelation function methods to study the an-
harmonicity. The methods proved quite successful, and
are able to account for the anomalous phonon softening
of the B1g mode.

II. EXPERIMENTAL

Samples were commercial TiO2 powder (Alfa Aesar,
Ward Hill, MA) with a rutile phase fraction of at least
99.9%. The sample powder was packed loosely inside
a quartz sample cell in a furnace with several electrical
resistance heating elements insulated by ceramic rods26.
The heating assembly was supported by stainless steel
flanges and surrounded byheat shieldsmade of niobium
foil. The assembly was mounted in a quartz optical tube
of 1mm thickness, and evacuatedwith a turbomolecular
pump. Both the interior and exterior of the tube were
covered by aluminum foil for thermal radiation shield-
ing. A temperature controller drove a 1kWdirect current
power supply for heating power. For low temperature
measurements, the sample cell wasmounted on the cop-
per cold finger of a liquid nitrogen filled cryostat and
evacuated. Uniformity of sample temperature was con-
firmed by multiple ultrafine thermocouples mounted at
different locations inside the sample cell, and the tem-
perature resolutionwas±1K. Samplesweremeasured at
temperatures from 100 to 1150K, with intervals of 100K
below 700K and 50K above 700K.
The Raman spectrometer used the 532 nm line from

a solid state laser at power levels of 100mW or less.
A high efficiency longpass edge filter was used to block
the laser line. The single pass spectrometer (Princeton In-
strumentsActon Series 500mm)used a two-dimensional
charge-coupled device camera with thermoelectric cool-

ing (Princeton Instruments PIXIS 400B). The instrument
resolution was 1.4 cm−1. Each Raman spectrum was ac-
cumulated in 10 measurements with 1 s exposure times.

III. MOLECULARDYNAMICS CALCULATIONS

Our classical molecular dynamics (MD) calculations
used simulation tools in the GULP software package27.
Rutile TiO2, with its relatively small ionicity and large
dipole moments on anions, is a challenging system for
developing an interatomic potential. Few of those we
tried28–31 could simultaneously provide the crystal struc-
ture, elastic properties, thermal expansion and phonon
vibrational frequencies. The best results for phonon
propertieswere obtainedwith the Buckinghampotential
(Model 3) developed by Mostoller and Wang (MW shell
model)31. The MW shell model was parameterized by
fitting the phonon spectra over thewhole Brillouin zone,
and the model also gives reasonable bulk properties. We
altered slightly this model to improve its transferability
and stability at different temperatures and pressures (the
shell charge of titanium atoms was increased to 0.37 |e|).
The parameters of the force field model were fixed for
all the calculations presented below.
To extract anharmonic information on individual

phonon modes from the atomic trajectories of the MD
simulations, the phonon spectral energy density func-
tion g(~k,ω) was obtained by the velocity autocorrelation
technique32,33

g(~k,ω) =
∫

dt e−iωt
∑

n,b

ei
~k·~Rn 〈~vn,b(t) ~v0,0(0)〉 (1)

where 〈 〉 is an ensemble average, ~vn,b(t) is the velocity of
the atom b in the unit celln at time t, ~Rn is the equilibrium
position of the cell n, and ~k is the phonon wavevector.
Equation 1 is both a time and space Fourier transform,
and gives the frequency and lifetime of each phonon
mode with a resolution determined by the size of the
supercell used in the simulation.
Our MD simulations were performed with a 2×2×20

supercell containing 960 atom cores and shells. We used
the Verlet algorithm, an NPT ensemble, and a modi-
fied Nosé-Hoover thermostat for control of temperature
and pressure. Both the isobaric temperature-dependent
phonon peaks and the isothermal pressure-dependent
phonon peaks were obtained in ranges of 300K to 900K
and 0GPa to 6GPa. The run time for each set was 100ps
with time steps of 0.5 fs and sampling periods of 10 fs.
The time-dependent atomic trajectories of velocity were
post-processedby the velocity autocorrelationmethod to
obtain mode frequencies and linewidths. The resolution
of the wavevector ~k along the Γ-Z direction was there-
fore kz/20, where kz is the magnitude of the reciprocal
lattice vector. The frequency resolution was approxi-
mately 0.5 cm−1.
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FIG. 2. Raman spectra of rutile TiO2 at selected temperatures
from 100K to 1150K.

IV. RESULTS

A. Experiment

Representative Raman spectra are shown in Fig. 2.
Three of the four Raman active modes, B1g, Eg and
A1g, have enough intensity for extracting quantitative
information on phonon frequencies and linewidths. The
strong high-order Raman band around 235 cm−1 is also
observed clearly, consistent with the results of Porto, et
al.10. Mode B2g proved too weak for obtaining quantita-
tive information (and is even difficult to resolve at low
temperature with polarized Raman scattering10,11).
After background subtraction, each peak in each spec-

trum was fitted to a Lorentzian function to obtain a
centroid and full-width-at-half-maximum (FWHM). The
FWHM data from the experiment were corrected for the
finite resolution of the spectrometer34. Figure 3 presents
these results of peak shifts and widths versus tempera-
ture. At room temperature, the Raman peak frequencies
were 143 cm−1, 447 cm−1 and 612 cm−1, consistent with
the well-accepted data from Porto, et al.10. We also find
good agreement with the frequency shift data reported
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FIG. 3. Temperature dependence of (a) frequency shifts, (b)
FWHM, of the Raman modes B1g, Eg and A1g. Data of Ref. [11]
are shown as open triangles in panel a.

by Samara and Peercy11 at temperatures below 480K.
TheEg mode undergoes a large phonon softeningwith

temperature. The A1g mode has a small thermal soften-
ing at high temperature, but below 400K the A1g mode
tends to stiffen slightly with temperature, as also re-
ported by Samara and Peercy11. The B1g mode appears
to have no thermal shift. The thermal broadenings of Eg

and A1g peaks are large, but the B1g mode shows far less
broadening.

B. MD Simulations

Table I presents results from our MD simulations and
experimental data on lattice parameters, Raman fre-
quencies, thermal expansion and volume compressibil-
ity. The calculated lattice parameters and Raman fre-
quencies were from MD simulations at 300K. The ther-
mal expansion and compressibility were from isobaric
(0 GPa) MD calculations to 900K and isothermal (300K)
MD calculations to 6GPa. The agreement with experi-
mental data is good. The good agreement for the thermal
expansion is encouraging for the use of the MD calcula-
tions for predicting anharmonic behavior.



4

TABLE I. Properties of rutile TiO2 from present calculations,
compared to experimental data. Units: lattice parameters in
Å, Raman frequencies in cm−1, thermal expansion coefficients
in 10−6K−1, volume compressibility in 10−3GPa−1.

Experiment a Calculation
Crystal Structure

a 4.593 4.499
c 2.959 3.077
u 0.3048 0.3059

Raman Frequency
B1g 143 169
Eg 447 400
A1g 612 558
B2g 826 803

Thermal Expansion
βa 8.25 8.13
βb 10.86 9.85
βV 27.35 26.1

Compressibility
κ 4.73 4.09

a Crystal structure data are from Ref. [35], Raman frequencies are
from measurements in the present work, thermal expansion data
are from Ref. [36] and compressibility data are from Ref. [11].

Figure 4a presents simulated Raman peaks of the B1g
mode at elevated temperatures at 0GPa, and at elevated
pressures at 300K. The small thermal shift and broaden-
ing seen in the experimental results of Fig. 2 are apparent
in the simulated results. Figure 4b, c presents simulated
Raman peaks of the Eg and A1g modes at elevated tem-
perature. The large thermal broadening of both modes,
and the large thermal shift of theEg mode are in apparent
agreement with the experimental results of Fig. 2.

V. EXPERIMENTAL DATA ANALYSIS

A. Analysis of Quasiharmonicity and Anharmonicity

Both quasiharmonicity and explicit anharmonicity
contribute to the non-harmonic lattice dynamics of ru-
tile TiO2. In the quasiharmonic model, phonon modes
behave harmonically with infinite lifetimes, but their
frequencies are changed by the effects of volume on
the interatomic potential. Explicit anharmonicity origi-
nates with phonon-phonon interactions, which increase
with temperature. Explicit anharmonicity contributes
to shifts in phonon frequencies, but also causes phonon
damping and lifetime broadening of phonon peaks with
temperature. The large peak broadenings and peculiar
differences in shifts of the Raman peaks in rutile TiO2
suggest there are important effects from explicit anhar-
monicity.
To separate the effects of quasiharmonicity and ex-
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FIG. 4. (a) The B1g Raman peak calculated from the velocity
trajectories of MD simulations, at temperatures as labeled and
constant pressure of 0GPa, and at pressures from 0 to 6GPa
at 300K. (b) Calculated Eg Raman peak, and (c) Calculated A1g
Raman peak at temperatures as labeled and constant pressure
of 0GPa. Solid red curves are the Lorentzian fits.

plicit anharmonicity, we treat the mode frequency ω j =

ω j(V,T) as a function of volume and temperature11

(

∂ lnω j

∂T

)

P

= −
β

κ

(

∂ lnω j

∂P

)

T

+

(

∂ lnω j

∂T

)

V

(2)

where j is the phonon mode index, β is the volume ther-
mal expansivity and κ is the isothermal compressibil-
ity. The left-hand side gives the temperature-dependent
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isobaric frequency shift, including both quasiharmonic
and explicit anharmonic behavior. The first term on the
right-hand side, the isothermal frequency shift as a func-
tion of pressure, is the quasiharmonic contribution to the
frequency shift. By defining a mode Grüneisen param-
eter as the proportionality of the relative change of the
mode frequency to the relative change of volume, i.e.,
γ j = −∂(lnω j)/(∂(lnV)), this term can be written as γ jβ.
The second term on the right of Eq. 2 is the pure temper-
ature contribution to the frequency shift from the explicit
anharmonicity. From the difference of the isobaric and
isothermal frequency shifts, the explicit anharmonicity
can be determined experimentally.
We used the mode Grüneisen parameters γ j reported

by Samara and Peercy11 from Raman measurements un-
der pressure. Since the γ j are very weakly dependent
on temperature11,17, as is the thermal expansion above
300K36, the γ j can be assumed to be constants for iden-
tifying the volume dependent quasiharmonic contribu-
tion. The results, summarized in Table II, separate the
frequency shifts from quasiharmonicity and explicit an-
harmonicity. Samara and Peercy’s results at 296K are
also shown for comparison. For the B1g mode, Table II
shows that the quasiharmonic and explicit anharmonic
contributions are both large but opposite in sign, and
their near-perfect cancellation causes the B1g mode to
have a small thermal frequency shift to 1150K. Thequasi-
harmonic softening of theB1gmodewith increasingpres-
sure (or equivalently, with decreasing temperature), and
its negative Grüneisen parameter, are anomalous. The
A1g mode has a similar cancellation of quasiharmonic
and explicit anharmonic contributions, but the signs of
two contributions are reversed. The positive explicit
anharmonic shift of the A1g mode is unusual. We find
this explicit anharmonicity at higher temperature to be
smaller than Samara and Peercy’s result below 400K.
There is a similar difference for the Eg mode but with an
opposite trend, where the explicit anharmonic contribu-
tion increases by an order of magnitude when averaged
over a larger range of temperature. It becomes compa-
rable to the quasiharmonic contribution, hastening the
softening of the Eg mode at temperatures above 400K.

B. Analysis of Cubic and Quartic Anharmonicity

The previous section showed how the comparison of
temperature-dependent and pressure-dependent shifts
of phonon frequencies can be used to separate quasi-
harmonic and anharmonic behavior. The anharmonic
behavior can be resolved further. When phonon an-
harmonicities are treated as perturbations that cause in-
teractions of quasiharmonic phonons, it is known how
the cubic anharmonicity associated with three-phonon
processes and the quartic anharmonicity of four-phonon
processes affect differently the shift and broadening of
quasiharmonic phonons. The Feynman diagrams for the
leading-order contributions to the phonon self-energy

TABLE II. Frequencies of the three Raman modes, their log-
arithmic pressure and temperature derivatives, and mode
Grüneisen parameters. The measured isobaric temperature
derivatives are separated into the pure volume and pure tem-
perature contributions. Samara and Peercy’s results are listed
in the lower row for each mode.

ω γ j
(

∂ lnω
∂T

)

P
= −γ jβ

a +
(

∂ lnω
∂T

)

V

Mode (cm−1) (10−5K−1) (10−5K−1) (10−5K−1)

B1g
143 -5.03 0.788 11.82 -11.03
143 0.6 -11.22

Eg
447 2.43 -11.17 -5.71 -5.46
450 -6.3 -0.59

A1g
612 1.59 -1.42 -3.72 2.3
612 0.6 4.32

a Mode Grüneisen parameters are from Ref. [11]

are37

The lowest order contributions to the shifts, ∆, and
broadenings, Γ, of the Raman mode j, are derived from
the real and imaginary parts of the cubic and quartic
self-energies Σ(3), Σ(3

′) and Σ(4)

∆(3)( j;Ω) = −
18
~2

∑

~q1 j1

∑

~q2 j2

∣

∣

∣V( j;~q1 j1;~q2 j2)
∣

∣

∣

2

×℘
[ n1 + n2 + 1
Ω+ ω1 + ω2

−
n1 + n2 + 1
Ω − ω1 − ω2

+
n1 − n2

Ω − ω1 + ω2
−

n1 − n2
Ω+ ω1 −ω2

]

(4a)

∆(3
′)( j) = −

72
~2

∑

j1

∑

~q2, j2

V( j; j;~0 j1)V(~0j1;−~q2 j2; ~q2 j2)

×℘
( 1
ω1

)

(

n2 +
1
2

)

(4b)

∆(4)( j) =
24
~

∑

~q1, j1

V( j; j;~q1 j1;−~q1 j1)
(

n1 +
1
2

)

(4c)

Γ(3)( j;Ω) =
18π
~2

∑

~q1 j1

∑

~q2 j2

∣

∣

∣V( j;~q1 j1;~q2 j2)
∣

∣

∣

2

×
[

(n1 + n2 + 1) δ(Ω − ω1 − ω2)
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+ 2(n1 − n2) δ(Ω+ ω1 − ω2)
]

, (4d)

where Ω is the phonon frequency and ℘ denotes the
Cauchy principal part. The V(.)’s are elements of the
Fourier transformed anharmonic tensor, denoting the
coupling strength between the Raman mode j to other
modes {~qi ji} having quasiharmonic frequencies {ωi} and
occupancies {ni}. The broadening of the Raman peaks is
2Γ(3)( j;Ω). The simplicity of the first-order shift∆(4)( j;Ω)
is partly a consequence of zero momentum transfer in
Raman spectroscopy.
For crystals having atoms without inversion symme-

try, as is the case for the rutile structure, an additional
low-order cubic term ∆(3

′)( j), expressed in Eq. 4b, is pos-
sible. It corresponds to the second diagram in Eq. 3
with instantaneous phonons at a three-phonon vertex37.
Group theory further showed that the only nonzero con-
tribution to Eq. 4b arises from the j1 mode that belongs to
the identity representation38. Owing to the rigorous re-
strictions on the existence of instantaneous three-phonon
processes, ∆(3

′) is generally much smaller than ∆(3). For
rutile TiO2, this term needs to be evaluated only for the
A1g mode because it does not have inversion symmetry
for oxygen atom motions (see Fig. 1c).
Including all shifts, the frequencies of the Raman

peaks are

ω j(T,Ω) = ω j0 exp
[

−γ j

∫ T

0
β(T) dT

]

+ ∆(3)( j;Ω)

+∆(3
′)( j) + ∆(4)( j) . (5)

The first term on the right of Eq. 5 is the integral
form of the quasiharmonic phonon shift (discussed after
Eq. 2) and from the last term of Eq. 5, (∂ω j/∂T)V δT =
∆(3)( j;Ω)+∆(3

′)( j)+∆(4)( j) is the explicit anharmonic shift.
To obtain β(T), experimental data from 4K to 1200K11,36

were fitted with a well-accepted analytical form39

β(T) =
(

A

T
+

B

T2

)

sinh−2
(

T1

T

)

(6)

giving A = 7.16 × 10−5, B = 0.524K and T1 = 146.2K.
In what follows, we use Eqns. 4a - 4d, to identify the

magnitudes and signs of the cubic and quartic anhar-
monicities from the thermal shifts and broadenings of
the Raman modes in rutile TiO2. We do not calculate
the V(.)’s, which are complicated tensor quantities, but
instead we treat them as parameters in fitting the exper-
imental trends of the Raman modes. We do a full calcu-
lation of the two-phonon density of states, however, as
described below.
From Ipatova, et al.40, an anharmonic tensor element

for a process with s phonons is

V( j;~q1 j1; ...;~qs−1 js−1) =
1
2s!

(

~

2N

)
s
2

N∆(~q1 + · · · + ~qs−1)

×[ω j0ω1 · · ·ωs−1]
1
2C( j;~q1 j1; ...;~qs−1 js−1) (7)

where ∆(~q1 + · · · + ~qs−1) enforces momentum conserva-
tion. Ipatova, et al.40, suggest that the C(.)’s are slowly-
varying functions of their arguments. Several studies
used this assumption to calculate or fit approximately
the anharmonic broadening40–42. Klemens assumed the
frequency independent part of the coupling tensor for
a Raman mode j was a constant that depended on the
strain field of the mode43. Likewise, we consider the
term C( j;~q1 j1; ...;~qs−1 js−1) to be a constant of the Raman
mode j, and we use it as a fitting parameter. This ap-
proximation is not rigorous because C( j;~q1 j1;~q2 j2) and
C( j; j;~q1 j1;−~q1 j1) change with j1 and j2, but an average
over modes, 〈C(.)〉 =

∑

1,2 C( j;~q1 j1;~q2 j2)/
∑

1,2 1, is found
by the fitting, where 1, 2 under the summation symbol
represent ~qi ji. We define the cubic and quartic fitting
parameters as

C
(3)
j
= 〈C( j;~q1 j1;~q2 j2)〉 (8a)

C(4)
j
= 〈C( j; j;~q1 j1;−~q1 j1)〉 (8b)

While the anharmonic tensor describes the coupling
strength of phonon-phonon interactions, a prerequisite
is that the phonons in these processes satisfy the kine-
matical conditions of conservation of energy and mo-
mentum (as explicitly written in Eqs. 4 and 7). Central
to phonon linewidth broadening from the cubic anhar-
monicity, 2Γ(3), is the two-phonon DOS, D(Ω), defined
as

D(Ω) =
∑

~q1, j1

∑

~q2 j2

D(Ω,ω1,ω2)

=
1
N

∑

~q1, j1

∑

~q2, j2

∆(~q1 + ~q2)
[

(n1 + n2 + 1) δ(Ω − ω1 − ω2)

+ 2(n1 − n2) δ(Ω+ ω1 − ω2)
]

(9)

which depends on temperature through the phonon oc-
cupancy factors, n. The first and second terms in square
brackets in Eq. 9 are from down-conversion and up-
conversion processes, respectively44. The two-phonon
kinematical functional for the anharmonic frequency
shifts from the cubic anharmonicity, ∆(3), is P(Ω)

P(Ω) =
∑

~q1, j1

∑

~q2, j2

P(Ω,ω1,ω2)

=
1
N

∑

~q1, j1

∑

~q2, j2

∆(~q1 + ~q2) ℘
[ n1 + n2 + 1
Ω+ ω1 + ω2

−
n1 + n2 + 1
Ω − ω1 − ω2

+
n1 − n2

Ω − ω1 + ω2
−

n1 − n2
Ω+ ω1 − ω2

]

(10)

Both D(Ω) and P(Ω) were calculated at various tem-
peratures for the phonon dispersions calculatedwith the
MW shell model, sampling ω~qj with a 16×16×16 q-point
grid, givinggood convergence. Figure 5 shows represen-
tative results for D(Ω) and P(Ω). The down-conversion
and up-conversion subspectra of D(Ω) are shown for
1000K. The up-conversion processes are skewed to
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conversion contributions to D(Ω) at 1000K are shown in green
dash and red dash curves, respectively. The overtone process
at 1000K is highlighted as the filled area under the blue curve.
(b) P(Ω) of Eq. 10 at 300 K (black) and 1000K (red).

lower frequencies, and disappear above 800 cm−1, con-
sistent with the highest phonon frequency of rutile TiO2
being about 800 cm−1.
With Eqs. 7, 8, 9 and 10, the anharmonic frequency

shifts and linewidth broadenings are rewritten as func-
tions of P(Ω) and D(Ω), weighted by average anhar-
monic coupling strengths

∆(3)( j;Ω) = −
~

64
ω j0

∣

∣

∣C
(3)
j

∣

∣

∣

2 ∑

~q1, j1

∑

~q2, j2

ω1ω2 P(Ω,ω1,ω2) (11a)

∆(3
′)( j) = −

~

16N
ω j0

∣

∣

∣C
(3)
j

∣

∣

∣

2 ∑

~q2 j2

ω j2 (~q2)
(

n~q2 j2 +
1
2

)

(11b)

∆(4)( j) =
~

8N
ω j0C

(4)
j

∑

~q1 j1

ω j1 (~q1)
(

n~q1 j1 +
1
2

)

(11c)

Γ(3)( j;Ω) =
π~

64
ω j0

∣

∣

∣C
(3)
j

∣

∣

∣

2 ∑

~q1, j1

∑

~q2, j2

ω1ω2 D(Ω,ω1,ω2) (11d)

It is an approximation to use the same |C(3)
j
|2 for ∆(3)
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FIG. 6. Temperature dependence of parameters for fittings to
Raman peaks of mode B1g (a) frequency shift, and (b) FWHM.
Solid circles are experimental data. Solid curves are the fittings
of the experimental points to Eq. 5 and Eq. 11d. Dotted line is
the quasiharmonic contribution to the frequency shift. Dash-
dot line is the explicit anharmonicityω0+∆

(4)+∆(3), and dashed
line is ω0 + ∆

(3).

and ∆(3
′), but ∆(3

′) is expected to be small, and is nonzero
for only the A1g mode. Using Eq. 11 and Eq. 5, for each
Raman mode both its frequency shift and its broaden-
ing were fitted simultaneously with the two parameters,
|C

(3)
j
|2 andC

(4)
j
. The best fits for the shifts andbroadenings

are shown in Figs. 6, 7 and 8, and the fitting parameters
are given in Table III. Figure 6a, 7a and 8a also present
contributions to the shift from the quasiharmonic and
explicit anharmonicity as dashed curves.

TABLE III. Fitting parameters for the temperature dependence
Raman modes (unit: 1011 erg−1)

B1g Eg A1g

|C(3)|2 0.21 0.63 0.34
C(4) 0.45 3.0 2.4
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VI. DISCUSSION

A. Anharmonicities from Experimental Trends

Two factors determine the explicit anharmonicity –
the anharmonic coupling strength described by the cou-
pling tensor, and the two-phonon kinematical processes
described byD(Ω) and P(Ω). The two are approximately
separable if the anharmonicity tensor does not vary sig-
nificantly for different phonon processes, and some fea-
tures of the fits of Figs. 6, 7 and 8 suggest this is approx-
imately true. Figure 5 shows that D(Ω) has a peak at the
frequency Ω0 = 600 cm−1. The cubic anharmonicity and
hence the broadening of the mode Eg and especially A1g
are large because they are near this peak inD(Ω). On the
other hand, the B1g mode can have only a small cubic
anharmonicity because its frequency is far from Ω0. For
the Eg and A1g modes good fittings to the broadenings
are obtained, indicating the dominance of cubic anhar-
monicity. The unusual concave downwards curvature
of broadening of Eg in Fig. 3b is caused by the large
frequency shift of this mode with temperature, which
rapidly moves the Eg mode away from Ω0, and down
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FIG. 8. Temperature dependence of parameters for fittings to
Raman peaks of mode A1g (a) frequency shift, and (b)FWHM.
Dotted line represents the quasiharmonic contribution to the
frequency shifts. Dash-dot line is the explicit anharmonicity
ω0+∆
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(3)+∆(3′)

and dashed line is ω0 + ∆
(3).

the steep slope of D(Ω) in Fig. 5. This causes the broad-
ening of the Eg mode to have a trend with temperature
that is less than linear.
Starting with the same cubic fitting parameters used

for the broadenings, the frequency shifts of the Eg and
A1g modes are fit well by adding the quasiharmonic and
quartic anharmonic effects. As illustrated in Fig. 7 and
Fig. 8, the quartic contribution ∆(4) is of the same order
as the cubic one∆(3), consistent with the fact that∆(4) and
∆(3) are both the leading order terms for the anharmonic
frequency shifts. They are opposite in sign, however,
because ∆(3) enters with a negative sign times the square
of the cubic coupling tensor. The net anharmonic shift is
usually negative, as for the Eg mode. For the A1g mode,
the additional contribution from the instantaneous three-
phonon processes,∆(3

′) is also considered, but owing to a
symmetry restriction, this term is small. TheA1g mode is
unusual, having a net anharmonic shift that is positive,
indicating the quartic contribution to the shift is larger
than the cubic. Figure 5 shows that, at the frequency of
mode A1g, P(Ω) is close to zero. The cubic anharmonic
shift ∆(3) is therefore attenuated for the A1g mode.
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For the B1g mode, Fig. 6a shows that the fitting de-
viates substantially from the experimental data. The
discrepancies may originate with anharmonic contribu-
tions beyond the leading termswe considered. The rapid
increase of the linewidth of the B1g mode above the De-
bye temperature (≃780K for rutile TiO2) further supports
this argument (a T2 dependence is typical of broadening
from higher-order quartic anharmonicity40).
The ratio of cubic to quartic anharmonicity is some-

times evaluated by fitting Raman spectra to a simplified
Klemens model, in which the shifts and broadenings
from phonon-phonon interactions (Eq. 4) include only
overtone processes (one optical phonon at the Γ point
decays into two or three phonons of equal energy on the
same branch)45. In this simplified model, the tempera-
ture dependence of the Raman peak linewidth is

Γ j(T) = Γ j(0) + A
(

1 +
2

e~ω j0/2kBT − 1

)

+ B

(

1 +
3

e~ω j0/3kBT − 1
+

3
(e~ω j0/3kBT − 1)2

) (12)

where Γ j(0) is the FWHM extrapolated to 0K, and A
and B are fitting parameters for three-phonon and four-
phonon processes, respectively. A similar expression is
used to fit the frequency shift, with fitting parameters
C, D replacing A, B, and the quasiharmonic frequency
shift replacing Γ j(0) in Eq. 12. This approach often gives
good fits to experimental Raman data, but the results can
be misleading owing to the oversimplified approxima-
tions. In performing such fits for our data on rutile TiO2,
we found a cubic anharmonicity for the B1g mode that
was large compared to the quartic, which we know to
be incorrect. This approach also gave a negative fitting
parameter B for the quartic anharmonicity to explain the
concave curvature of the thermal broadening of the Eg

mode, which is unreasonable. The independent fits to
thermal trends of linewidth and frequency shift (using
Eq. 12 and its equivalent) offer no correlation between
these quantities, even though they share a dependence
on the same cubic anharmonic coupling tensor. Fur-
thermore, it has been shown that the contributions from
overtone processes are usually very small34, as is shown
by the lowest curve in Fig. 5(a) for rutile TiO2.

B. Anharmonicities fromMD Simulations

Figure 9 shows the effects of temperature on the fre-
quency shifts and broadenings of the B1g mode, obtained
from MD results such as those of Fig. 4a. Also shown
is the effect of pressure on the frequency shift of the B1g
mode. These results are in excellent agreement with the
experimental data. From Fig. 9c, the Grüneisen param-
eter of the B1g mode is found to be −4.23, which com-
pares well to the experimental value of −5.03 reported
by Samara and Peercy11.
To further study the anomalous anharmoncity of the

B1g mode, the frozen phonon method was used with the
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FIG. 9. (a) Temperature dependent frequency shift, (b) FWHM
broadening, and (c) pressure dependent frequency shift, of the
B1g mode from MD calculations (red), compared with experi-
ment data (black).

force field of MW shell model, allowing us to obtain the
effective potential energy curve of the B1g mode at dif-
ferent temperatures and pressures, as shown in Fig. 10.
Three sets of lattice parameterswere used,obtained from
MDcalculations at 300K and 0GPa, 300Kand 6GPa, 800
K and 0 GPa. These correspond to the volume at ambi-
ent conditions, a volume contraction of about 2.4%, and
a volume expansion by about 1.3%, respectively. The
quadratic potential dominates, and there is no cubic an-
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FIG. 10. Frozen phonon potential of the B1g mode calculated
with the MW shell model, and its response to the volume in-
crease (indicated as the dash arrow). The potential is decom-
posed into the harmonic component and quartic component.
The three potentials are for lattice parameters corresponding to
300K at 0GPa (black), 300K at 6GPa (blue), and 800K at 0GPa
(red). The inset shows theB1g modeof rutile TiO2 structure pro-
jected along the c-axis. Small arrows indicate the polarization
vectors of this mode.

harmonic contribution, as expected from symmetry. The
quartic anharmonic potential is significant, however.
Figure 10 shows that the harmonic part of the B1g po-

tential has a curvature that increases with volume, con-
trary to the usual trend. This anomalous quasiharmonic
response to volume reduces the force constant with in-
creasing pressure, giving an anomalous mode softening.
This phenomenon can be explained by the transverse
motion of oxygen anion in the B1g mode, perpendic-
ular to the Ti-O bond. This transverse motion makes
the mean interatomic distance 〈R〉 = |〈~rO − ~rTi〉| greater
than the distance between the mean atomic positions
R0 = |〈~rO〉 − 〈~rTi〉|. An increase in volume increases the
tension in the bond, tending to bring 〈R〉 closer toR0. The
restoring force for transverse motion is thus increased,
and the mode is stiffened46. For most materials this ten-
sion effect is hardly seen because the stretching along the
bond direction is usually dominant, and bond stretching
weakens the force constant. Rutile TiO2 is special owing
to its open structure, which reduces the coordination of
atoms around the oxygen, allowing it large transverse
amplitudes. Moreover, the Ti-O bonds are strong (vibra-
tional modes along this bond direction, such as mode
B2g, are at the highest frequencies). The rigidity of the
Ti-O bond suppresses bond stretching for the B1g mode.
A similar mechanism was used to explain the negative
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FIG. 11. Temperature dependence of the (a) frequency shift,
and (b) FWHM broadening, of the Eg mode from MD simula-
tions (red) and experimental data (black).

thermal expansion in polyethylene and Cu2O47,48. The
temperature dependence of the B1g mode is also anoma-
lous – for both experiment andMD calculations, thermal
expansion does not stiffen or soften the mode. As dis-
cussed following Eq. (2), this results from a quartic an-
harmonicity that increases with temperature, cancelling
the stiffening trend from quasiharmonicity.
The success of the MD calculations at elevated tem-

perature and pressure shows that a shell model with a
Buckingham potential can reproduce both the anoma-
lous quasiharmonicity and the explicit anharmonicity of
the B1g mode of rutile TiO2, giving a detailed picture
than can be compared to results from uniaxial-stress
experiments49, zero-pressure extrapolations of phonon
frequencies19,20, and DFT calculations within the quasi-
harmonic approximation22. No orthorhombic or other
distortion was found for our supercell at any tempera-
ture or pressure. The anomalous anharmonic behavior
of the B1g mode can be explained by volume effects on
quasiharmonic force constants, and by the quartic an-
harmonicity. We need not invoke an incipient phase
transition to the orthorhombic structure to explain this
anharmonic behavior.
For the Eg and A1g modes, the force field of the MW
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FIG. 12. Temperature dependence of the (a) frequency shift,
and (b) FWHM broadening, of the A1g mode fromMD simula-
tions (red) and experimental data (black).

shell model qualitatively s for the large anharmonicity.
As shown in Fig. 11 and Fig. 12, we obtain the trends of
the large linewidth broadenings and the thermal soften-
ing of the Eg mode, but theMD calculations significantly
underestimate the amount. The Eg and A1g modes are
more anharmonic thanpredictedby theMWshellmodel.
For each Raman mode, Fig. 13 compares the anhar-

mononic potential to the harmonic potential, both ob-
tained from the frozen phonon method with the MW
shell model. The B1g mode shows a large quartic poten-
tial. TheA1g mode is dominated by cubic anharmonicity.
(A cubic contribution is not allowed by symmetry for
the B1g and Eg modes.) Since the MW shell model sig-
nificantly underestimates the anharmonicity of the A1g
mode, the actual cubic potential energy could be larger.
Evidently the frozen phonon potential cannot itself ex-
plain the large anharmonic effects, especially for the Eg

mode, due to the fact that the frozen phonon potential
does not account for phonon-phonon interactions. The
large anharmonic effects of the Eg mode may originate
from themany couplings between anharmonic phonons.
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potential, with increasing temperature.

TABLE IV. Entropy in J/(molK) of rutile TiO2 from MD calcu-
lations and experimental data of Ref. [52].

T [K] MD Experimental
300 48.01 50.69
500 80.28 82.21
700 101.79 105.51
900 119.22 123.65

C. Vibrational Entropy of Rutile TiO2

Vibrational entropy is important for thermophysical
properties of materials, and for the thermodynamic sta-
bilities of different solid phases as reviewed recently50.
The vibrational entropy Svib is

Svib = 3kB

∫ ∞

0
g(ǫ)

[

(n(ǫ) + 1) ln(n(ǫ) + 1) − n(ǫ) ln(n(ǫ))
]

dǫ

(13)
where g(ǫ) is the single phonon DOS at the temperature
of interest, and n(ǫ) is the phonon occupancy. Although
Eq. 13 is derived from the harmonic model, it is known
to be valid for anharmonic systems to first order in per-
turbation theory51. From the phonon DOS obtained by
MD simulations at elevated temperatures, Svib was cal-
culated with Eq. 13 and the results are presented in
Table IV. The calculated results are in general agree-
ment with the experimental data, but the discrepancies
suggest that the average phonon frequencies from the
MD calculations are about 3.7% too small.

VII. CONCLUSIONS

Raman spectra were measured on rutile TiO2 at tem-
peratures to 1150K, and giant anharmonic behaviors
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were found for the shifts and broadenings of the three
measurable Raman peaks. The pressure-dependence
and temperature-dependence of the Raman peak shifts
were used to separate the anharmonic behavior from
the quasiharmonic behavior. Individual assessments of
the cubic and quartic contributions to the anharmonicity
were performed with a new data fitting method based
on the kinematics of 3-phonon and 4-phonon processes,
with the phonons calculated from a shell model in this
case. In fitting the anharmonic behavior, mode broad-
ening is from effects of cubic anharmonicity, while the
anharmonic shifts are from the same cubic factor plus
a quartic anharmonicity. The quartic anharmonicity of
the B1g mode was found to be large, and its cubic an-
harmonicity small, unlike the large cubic anharmonic-
ity found for the Eg and A1g modes. From successes
of the fitting method, we suggest that the observed an-
harmonic effects are dominated by considerations of the
kinematics of energy and momentum conservation in
the phonon-phonon scattering processes, and less by the
details of the anharmonicity tensor.
Force field molecular dynamics (MD) calculations

were performed with the same shell model. Both the
anomalous quasiharmonic behavior and the explicit an-
harmonic behavior of the B1g mode fromour calculations
were in excellent agreementwith the experimental obser-
vation. No orthorhombic distortion was found, suggest-
ing that the anomalous anharmonicity originates with
the phonon responses to temperature and pressure, and
not an incipient phase transition. Discrepancies for the
Eg and A1g modes suggest that the shell model potential
may not be sufficient for obtaining accurate anharmonic-
ities from molecular dynamics calculations, however.
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