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Electron force field (eFF) wavepacket molecular dynamics simulations of the single shock Hugoniot
are reported for a crystalline polyethylene (PE) model. The eFF results are in good agreement
with previous DFT theories and experimental data which is available up to 80 GPa. We predict
shock Hugoniots for PE up to 350 GPa. In addition, we analyze the structural transformations
that occur due to heating. Our analysis includes ionization fraction, molecular decomposition, and
electrical conductivity during isotropic compression. We find that above a compression of 2.4 g/cm3
the PE structure transforms into a atomic fluid, leading to a sharp increase in electron ionization
and a significant increase in system conductivity. eFF accurately reproduces shock pressures and
temperatures for PE along the single shock Hugoniot.

PACS numbers: 82.35.Lr, 31.15.E-, 31.70.Hq, 62.50.Ef, 71.15.Pd

I. INTRODUCTION

The material response of polyethylene (PE) to shock
and its behavior in the warm dense matter (WDM)
regime is important because it is a common ablator ma-
terial in direct-drive inertial confinement fusion (ICF)
experiments!2. Experiments at the National Ignition
Facility (NIF) have demonstrated that the ICF burn effi-
ciency can be non-negligibly impacted by the capsule ma-
terial so it is crucial to understand the properties of this
material>?. Macroscopic modeling of capsule materials
for these experiments requires accurate constitutive engi-
neering material models. Producing quality engineering
models requires a detailed microscopic understanding of
the equations of state (EOS), electrical conductivity, and
optical properties for a given material. Here, we exam-
ine the effects of electronic excitations during hydrostatic
shock of PE.

Theoretical studies of PE in extreme conditions are
abundant. A variety of methods including quantum
mechanics (QM), conventional forcefields, and reactive
forcefields are able to reproduce a common equation
of state gauge: the experimental Rankine-Hugoniot
curve*. Born-Oppenheimer quantum molecular dynam-
ics (BOQMD) methods and conventional forcefields pre-
sume adiabaticity in their approach to simulating the
high energy states of PE. This assumption limits the
scope of these techniques to temperatures well below the
Fermi-temperature, near the electronic ground state of
PE®. Conventional and reactive forcefields are param-
eterized based on Born-Oppenheimer potential energy
surfaces. The result of using Born-Oppenheimer meth-
ods is that the effects of electronic excitations are absent
from the system’s EOS, and along the particular EOS
path corresponding to the Rankine-Hugoniot. Quantum
mechanical finite-temperature density functional theory
(DFT) methods, unlike BOQMD approaches, allow for

electron excitations, however the Kohn-Sham orbital de-
scription precludes these methods from revealing dy-
namic electron effects like Auger processes®?”. Finite-
temperature DFT methods, like those used in* and?!, are
good points of comparison for eFF because they allow for
thermal electron excitations.

II. THE ELECTRON FORCE FIELD

The first-principles-based electron forcefield (eFF) is
a mixed quantum-classical approach for studying nona-
diabatic reactive dynamics based on floating spherical
Gaussian wavepackets®. In the past, eFF was success-
fully applied to non-adiabatic processes such as Auger
decay?, Hy in the WDM regime'?, the hydrostatic'! and
dynamic'? shock Hugoniot, and exo-electron emission
due to fracture in silicon'®. eFF is unique in that elec-
tronic and nuclear degrees of freedom are separate, which
allows for non-adiabatic motion to occur naturally. eFF
is many orders of magnitude faster than QM which allows
us to perform large scale and long-time-scale dynamics
simulations!2.

The eFF method provides an approximate descrip-
tion of quantum dynamics by describing every elec-
tron as a floating spherical Gaussian orbital whose po-
sition and size varies dynamically while the nuclei are
treated as classical point charge particles'*. Here the
total N-electron wavefunction is written as a Hartree
product of one-electron orbitals (rather than as an an-
tisymmetrized product). Orthogonality resulting from
the Pauli Principle is enforced with a spin-dependent
Pauli repulsion Hamiltonian that is a function of the
sizes and separations of these Gaussian orbitals. The
Pauli potential accounts for the kinetic energy change
due to orthogonalization, arising from the Pauli princi-
ple (antisymmetrization)®'5. An additional quantum-



derived term in the eFF Hamiltonian is the kinetic en-
ergy for each orbital, which accounts for the Heisenberg
principle. The full Hamiltonian in eFF also incorporates
classical electrostatic terms between nuclei or electrons.

eFF energies and forces are used to propagate the
nuclei and electron wavefunction in time using semi-
classical wavepacket molecular dynamics'®. The Gaus-
sian wavepackets are subject to the potential produced
by neighboring nuclei and electrons; this potential is an-
harmonic so the size of each Gaussian is stable at low
and intermediate energies. The fact that the wavepack-
ets are stable is vindication of the harmonic assumption
made during the derivation of the wavepacket transla-
tional and radial equations of motion®'%16, If an elec-
tron is excited sufficiently it may escape its local poten-
tial and its radius may expand causing the collapse of the
wavefunction; this is the eFF analogue of electron delo-
calization. A radial restraint is used to prevent excited
electrons from expanding infinitely (which would lead to
infinite kinetic energy): Eyes = 1/2ks(s — Lypin/2)? for s
> Lynin/2, where Ly, is the smallest box bound, and s is
the Gaussian radius. k, is arbitrarily set to 1 Hartree per
bohr, and the resulting force is Fyes = —ks(s — Limin/2).
The conditions that invoke this restraint were not en-
countered in our simulations, though had they been, the
affect on the faithfulness of the simulation would be min-
imal. A large electron imparts a force on those electrons
and nuclei which it overlaps with which is manifested
in an increase in pressure. Invoking the radial restraint
limits the increase in pressure and kinetic energy.

For this study we used a parallel version of eF'F which
is included in the LAMMPS software package'?!'”. The
LAMMPS website provides performance comparisons of
eFF and other conventional and reactive forcefields'®.
eFF is roughly 300 times slower (cpu time per timestep
per particle) than a conventional Lennard-Jones poten-
tial, yet it has been demonstrated to have linear strong
and weak scaling over a broad range of system sizes and
number of processors in LAMMPS. It is important to
note that electrons are explicitly described in eFF, i.e. it
takes one carbon, two hydrogen, and eight electrons to
describe a single CHs unit. Consequently, using the true
electron mass in eFF requires the use of much shorter
integration timesteps; on the order of attoseconds.

III. COMPUTATIONAL DETAILS

A crystalline PE model was created by truncating and
hydrogen passivating the chains in a 2 X 6 X 3 super-
cell of orthorhombic polyethylene. Truncating the chains
in this fashion prevents unnatural stresses from forming
along the length of each chain. The final cell contained
12 C,5Hy4 molecules: 1,632 particles total, 144 carbon,
312 hydrogen and 1,176 electrons. In real samples of
crystalline PE the chains are finite in length and the PE
is only crystalline in small domains with lamella rang-
ing from 70 to 300 A in thickness and extending sev-

eral microns laterally'®2?. Because eFF lacks van der

Waals forces, the equilibrium volume of crystalline PE is
30% too large in eFF. To counter this, the volume of the
PE cell was adjusted so that the ground state reference
has a density of 0.95 g/cm?; this produced 1.3 GPa of
stress which was subtracted from all subsequent pressure
computations. To generate points along the Hugoniot
path, we prepared samples of increasing density up to
3.0 g/cm? by isothermally and isotropically compressing
the reference cell at 300 K. The temperature was con-
trolled with a Nosé-Hoover thermostat so that the tem-
perature, number of particles and volume (NVT) were
defined. Each cell was then ramped to 1,500 K over the
course of 500 fs and it was allowed to equilibrate as a mi-
crocanonical ensemble with a fixed energy, volume, and
number of particles (NVE) at 1,500 K for another 500
fs. After heating, each cell was cooled by decreasing the
temperature in 30 K steps during which 200 fs of NVT
dynamics was followed by 200 fs of NVE dynamics.

In the eFF method the electron mass is defined in three
separate locations: 1) in the electronic kinetic energy,
(i.e. wavefunction); 2) in the spin-dependent Pauli en-
ergy; and 3) in the equations of motion®'2. The effect
of modifying the electron mass in 1) and 2) affects the
sizes of electrons in atoms and the lengths of bonds in
molecules therefore we keep these fixed to avoid disrupt-
ing the chemistry of the system. In all potential energy
terms the electron mass is set to the true electron mass
(5.486 x10~* amu). However, the user may define a dif-
ferent dynamic electron mass to evolve the kinetic equa-
tions of motion®'2. Changing the mass in the equations
of motion varies the overall time scale of excited electron
motions, with the time scale of excitation relaxations and
energy transfer proportional to y/m.. We refer to this as
changing the dynamic masses. This does not affect the
net partitioning of energy in the system nor the magni-
tude of the thermodynamic parameters we are interested
in measuring. This does not alter the system’s chemistry,
just its evolution in time. We verified this by comput-
ing a few Hugoniot points with 1.0 amu, 0.1, and 0.01
amu dynamic mass and found negligible differences in
pressure and temperature at these points. An artificially
heavy electron mass enables the use of longer integration
time steps. For this study we set the dynamic electron
mass to 0.1 amu. To conserve mass in the system we
subtracted the mass of each atom’s electrons from the
standard atomic mass (e.g. we set carbon atom masses
to 11.4107 amu and hydrogen atom masses to 0.90794
amu). With this dynamic electron mass we used an in-
tegration time step of 0.5 attoseconds (0.0005 fs).

The temperature in eFF (like pressure) is extracted
from the dynamics simulation using classical virial ex-
pressions summing the kinetic energies of all the nuclear
and electronic degrees of freedom:

3
Eje = S NkpT (1)

The kinetic contribution to the heat capacity is set to
%k B by setting N to the number of nuclei, which is valid



for temperatures well below the Fermi temperature. The
temperatures presented in this manuscript were com-
puted using equation 1.

A Hugoniot curve is the locus of thermodynamic states
that can be reached by shock compression of a specific
initial state. These states satisfy the Rankine-Hugoniot
energy condition?!:22

U-Uy= %(P + Py)(Vo = V) (2)

where U is the internal energy, P is the pressure of the
system, and V is the cell volume. It is assumed that each
point along this curve corresponds to a state of thermo-
dynamic equilibrium wherein the stress state is hydro-
static. For solids, this latter condition is only valid when
the yield stress is much lower than the mean stress2?.
When the initial state variables Py, Vy, and Uy are those
of the uncompressed sample at room temperature, the
Rankine-Hugoniot curve is called the principal Hugoniot.
We generated states on the principal Hugoniot using the
following iterative procedure. First the volume of the
system 1is specified, representing a particular degree of
compression. How each density point was prepared is de-
scribed in the preceding paragraph. The temperature of
the system is quickly increased by changing the set-point
of the thermostat. 100 fs of dynamics are run after the
thermostat jump, during which averages of the energy,
temperature and pressure of the new state are obtained.
These values are used to evaluate the residual energy for
a time step 7, Ey.cs i, given by

1
Eres,i = (U - UO) - §(P + PO)(VO - V) (3)
When |Eyesi|/Eke; < 0.05 the Hugoniot condition is
considered satisfied. If this inequality is not satisfied an
additional 100 fs iteration is performed. The new ther-

mostat setpoint is calculated from:

Er S,t
Tipr =T, <1 - 0.05e"> (4)

ke,i

where Ej. ; is the average kinetic energy of the system
at step 4. Once this iterative procedure has converged,
the thermostat is turned off and the system is allowed
to evolve for an additional 3 ps. This calculation ensures
that the Hugoniot condition is actually met and the prop-
erties of the systems were obtained from these dynamics.

IV. RESULTS AND DISCUSSION
A. The Principal Hugoniot

Figure 1 is the principal Hugoniot projected onto the
pressure-density plane. For densities below 2.0 g/cm?
eFF matched the experimental and DFT Hugoniot points
quite closely (see figure 1b). At higher densities the
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FIG. 1. (Color online) (a) The principal Rankine-Hugoniot
for PE. Experimental data from the LASL shock compression
handbook?* and Nellis®® is provided along with data for the
classical MD potentials, OPLS*, and AIREBO?, a reactive
force field, ReaxFF*, and quantum mechanical approaches,
DFT/AMO5 and tight binding®®, are included for compari-
son. (b) An expansion of the low compression region of the
Hugoniot.

eFF simulations overpredicted the shock pressure rela-
tive to DFT. Above 2.0 g/cm® the results show that
eFF is systematically “stiffer” than the experimental and
DFT/AMO05%7 data. However, eFF provides better agree-
ment with the experimental Hugoniot points than typical
classical MD potentials such as AIREBO?%, OPLS?°, and
exp-6 (not shown)?°; the data for these can be found in*.
eFF also outperformed the tight-binding QM method
above 2.0 g/cm®. These results demonstrate the diffi-
culty in modeling the behavior of materials under shock
compression. Figure 2 shows the temperature-pressure
plane of the Hugoniot calculated by the methods in fig-
ure 1 for which temperature data was available. The sys-
tem temperatures produced by the eFF calculations are
in good agreement with conventional forcefields, reactive
forcefields and QM.
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FIG. 2. (Color online) (a) The pressure-temperature locus of the Hugoniot curve for the eFF, DFT/AMO05, OPLS, AIREBO
and ReaxFF methods. (b) An expansion of the pressure-temperature seam for lower pressures.

At high compression interesting material features ap-
pear in the principal Hugoniot. In the AMO05 data series a
shoulder feature appears at 2.3 g/cm3. This feature is not
as pronounced in the eFF Hugoniot, however, for both
methods inflections in the temperature-density plane of
the Hugoniot curve indicate structural transitions (see
figure 1 of the supplemental material). Subtle temper-
ature suppression is evident in the eFF temperature-
density curve at 2.0 and 2.6 g/cm?. These data features
correspond to tangible transitions in the the molecular
structure. Mattsson reported that the AMO05 shoulder at
2.3 g/cm? corresponded to PE backbone bond breaking?.
The causes for the eFF data features will be discussed
shortly.

B. Structural Decomposition

An analysis of the pairwise radial distribution func-
tions (RDFs) for different degrees of compression demon-
strates that significant structural decomposition occurs
upon shock3!. Figure 3(a) shows that carbon bonds are
compressed as the sample is compressed. As the density
of the material increases the nearest neighbor C-C pair
peak (1.55 A) broadens and the next nearest neighbor
C-C pair distance (2.6 A) is lost indicating that the car-
bon backbone is fragmented. The C-H pair distribution
function in figure 3b also demonstrates that tetrahedral
order is lost due to shock compression. The H-H pair
distribution function in figure 3¢ also shows that gem-
inal (normally 1.95 A), synclinal (2.4 A) and antiperi-
planar (3.2 A) nearest neighbor hydrogen peaks are lost
at high compression. The 2.9 g/cm?® series resembles a
classical Lennard-Jones fluid. For densities between 2.0-
2.1 g/cm? corresponding to temperatures around 3,000
K, small peaks in the H-H data in figure 3¢ near 0.7 A
reveal the formation of molecular hydrogen. Mattsson

and collaborators also found Hs formation when their
shocked PE reached 2,800-3,100 K32. In their simula-
tions and in the eFF simulations this temperature range
corresponded to densities of 2.2-2.3 g/cm®. Select pair
correlation functions near DFT/AMO05 Hugoniot points
are available in the supplemental material. For tempera-
tures higher than 3,100 K the molecular hydrogen disso-
ciates while, and at lower temperatures the hydrogen do
not have enough energy to dissociate from their polyethy-
lene backbone. At high degrees of compression ( > 2.2
g/cm?®) the RDFs collectively reveal a fluid phase. The
eFF results are consistent with MD and DFT results for
equivalent temperatures.

One of eFF’s greatest assets is its ability to separate
electron degrees of freedom, energies, positions, momen-
tum, and forces from those of the nuclei. This gives us
unrivaled ability to measure electronic physical quanti-
ties. In our investigation of PE we have used this to
measure the ion fraction at each stage of shock. To do
this we measure the kinetic and potential energy of each
electron at each timestep in our simulations. Figure 4
shows the onset of electron ionization at 2.5 g/cm3. Ton-
ization increases exponentially for higher densities. The
rapid increase in the ionization fraction above 2.6 g/cm?
is evidently the cause of the shoulder in the temperature-
density Hugoniot between 2.6 and 2.7 g/cm?. Above this
threshold electron ionization draws energy from the sys-
tem and this affects the pressure and temperature of the
Hugoniot. The production of carriers in our simulations
implies that PE is conductive at high states of compres-
sion. The production of ions is precipitated by the break-
ing of C-C bonds, and this relationship is evident in figure
4. The percentage of intact backbone for the DF'T/AMO05
study is also presented in figure 4. eFF predicts that the
polymer backbone begins to fracture at 2.4 g/cm? and
DFT/AMO5 predicts that fracture begins at 2.0 g/cm?.

Curiously, both the DFT/AMO05 and eFF structural
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FIG. 3. (Color online) Radial distribution functions for (a) C-
C atom pairs, (b) C-H pairs, and (c) H-H pairs. Each curve
corresponds to a different density point (g/cm?) defined by
the colors in the legend.

analyses show that the hydrogen modes are excited con-
currently with the carbon modes. From bond dissocia-
tion energies alone one would expect C-C bonds (Do egpt
= 83 kcal/mol) to break more readily than C-H bonds
(Do,ezpt = 98 keal/mol). eFF overestimates the strength
of carbon-carbon o-bonds (for ethane the bond dissoci-
ation energy is 140 kcal/mol versus 110 kcal/mol zero-
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FIG. 4. (Color online) Structural decomposition along the

PE Hugoniot. The circles correspond to the % intact C-C
backbone for the eFF simulations. The open diamonds show
the results from DFT/AMO05. The secondary axis shows the
% ionization along the Hugoniot calculated from the eFF sim-
ulations in open circles.

point energy-corrected snap bond energy)®. The loss of
order in the C-H and H-H RDF functions indicates sig-
nificant excitation in the hydrogen modes. Likewise, the
C-C RDF functions are excited, but for DFT/AMO05 and
eFF the nearest neighbor peaks are well defined up to 2.6
g/cm®. We believe that an entropic effect is the cause
of this phenomenon. Carbon atoms are constrained to
the polymer backbone by two heavy atoms while hydro-
gens are only bound to a single heavy atom. This effec-
tively reduces the vibrational flexibility of carbon atoms
to pseudo one-dimentional phonon modes while hydrogen
atoms are free to pivot and vibrate in any direction. With
a larger phase space the hydrogen atoms have greater
entropy, which might decrease the free energy of dissoci-
ation. Additionally, hydrogen atoms may be excited by
collisions with neighboring polyethylene chains since they
are more likely to collide before their carbon-backbone.

C. Conductivity

In order to quantify the conductivity of the shocked
system we determined the direct current conductivity us-
ing a classical Green-Kubo analysis®*34. We determined
the electrical conductivity from our NVE Hugoniot states
using the Green-Kubo integral of the electric current cor-
relation function:

e B CR I G

where j(t) is the electric current flux, and the integral ar-
gument corresponds to the electric current velocity cor-



relation that is expressed as,
N
) = G- 50)) = S° 5 (aigvilt) - v;0))  (6)
i=1 j=1

where ¢ and j are different particles, ¢ is the charge on
each particle, v(¢) is the velocity of each particle. Fig-
ure 5 shows the results of this analysis for eFF Hugo-
niot points. eFF predicts that conductivity increases
exponentially along the Hugoniot curve until the tem-
perature reaches roughly 5000 K at which point it levels
off. Indeed, FT-DFT studies of PE in the warm dense
matter! regime find conductivities between 3,000 and
10,000 S/cm for samples at 1 g/cm® and 11,605 K to
3 g/cm?® and 34,815 K. Figure 5a shows the temperature
dependence of the conductivity. Comparing the eFF and
FT-DFT data as a whole, there is a clear transition to a
metallic state in the vicinity of 5000 K. The downward
slope connecting the density points 2.4, 2.8, and 2.9 re-
flects the sensitivity of the classical Green-Kubo method
to thorough equilibration. Outliers were omitted from
5a, but all the data points are provided in 5b. Between
5000 K and 20391 K the sample has a conductivity of
2100 S/cm which is roughly equivalent to the conduc-
tivity of shocked fluid hydrogen at 140 GPa3®. Above
2.5 g/cm?, in the metallic PE regime, the RDF analysis
suggests that hydrogen is fluid. This suggests that our
conductivity analysis might be applicable to hydrogen-
rich fluids at high temperatures and pressures.

The quality of our quasi-classical Green-Kubo analysis
is a result of the accuracy of the eFF potential. Despite
not being formulated in terms of occupied bands near the
Fermi level, eFF produces the correct excitations. The
eFF potential is rigorously derived from a solution to
Schrodinger’s time-dependent equation of motion, which
integrates two quantum-derived potential terms and clas-
sical electrostatics into its Hamiltonian. In particular,
the Pauli function is parametrized based on the orthogo-
nalization of valence bond-type orbitals. When a sample
is well described by valence bonding, like polyethylene,
eFF will succeed in modeling the potential of each elec-
tron. Each electron “feels” the correct potential, thus
ionization potentials are accurate for Carbon and Hy-
drogen. In extreme conditions, the distribution of va-
lence and core electronic states spreads and eventually
the highest energy electrons become unbound much like
the tail of a Fermi-Dirac distribution above the Fermi
level. This behavior explains why we observe the correct
carrier mobilities, ionization yields, and conductivities
for eFF simulations in extreme conditions.

V. CONCLUSIONS

We have simulated the response of PE to hydrostatic
shock compression using the eFF wavepacket molecular
dynamics method. eFF accurately reproduces previously
published experimental and theoretical findings for high

10000

1000
L

FIG. 5. (Color online) The direct current electrical conductiv-
ity of points along the eFF Hugoniot curve (circles) and finite
temperature DFT (diamonds) from Horner 2010*. (a) Con-
ductivity plotted against temperature with densities (g/cm?)
provided. (b) Conductivity plotted against density with tem-
peratures (K) provided.

energy shock Hugoniots of PE and provides further in-
sight into the effects of electron excitations and ionization
at extreme pressures and temperatures (e.g. above 2.4
g/cm?® the polymer backbone begins to break and elec-
trons begin to ionize which increases with temperature
along the Hugoniot). We find that by 300 GPa signifi-
cant structural deterioration and ionization occur. eFF
also enabled us to study the electronic conductivity of
PE as it transitions at high temperatures into a plasma
phase; a unique feature that is impossible to obtain via
conventional force fields or BOQMD. The fidelity of the
eFF Hugoniot indicates that van der Waals interactions
are not important under extreme shock conditions. We
expect the results presented in this paper will stimulate
further work on the applicability of eF'F to open problems
in high energy-density physics.
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