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We study the phonon-assisted intraband relaxation of electrons and holes confined in Si nanocrys-
tals. The rates of relaxation processes are calculated as functions of the nanocrystal size and of the
temperature. It occurs that the main contribution to the relaxation is provided by the mecha-
nism where a single acoustic and a number of optical phonons, which is necessary to compensate
the energy difference between the quantized charge carrier levels, are involved. We show that the
phonon-assisted transitions between neighboring, size-quantized levels occur typically on a picosec-
ond timescale, but vary over several orders of magnitude with the nanocrystal size. This results in
a multi-exponential decay of the carrier populations averaged over an ensemble of the nanocrystals
with a given size distribution. When the nanocrystal size is reduced and more than two phonons
are required for the transition, there is a qualitative difference in the behavior of the transition
probabilities between the electrons and the holes. Whereas the electron transition times strongly
oscillate around approximately the same mean values in the picosecond range with some drops to-
wards nanoseconds, there is a clearly pronounced tendency of the relaxation time increase into the
nanosecond time range for the hole transitions when the nanocrystal size is decreased. The increase
of the temperature leads to a moderate decrease of the relaxation times but does not change the
picture qualitatively.

PACS numbers: 72.20.Jv,73.63.Kv,71.38.-k

I. INTRODUCTION

Materials based on Si nanocrystals (NCs) are consid-
ered as potential building blocks for future silicon-based
photonic and photovoltaic devices1–5 fostering an inten-
sive investigation of their properties (see e.g. Refs. 6 and
7 for reviews). Recent observations of a very efficient blue
emission from excited Si NCs on ultrafast time scale and
of other short-living emission bands5,8–10 call for a sys-
tematic description of the relaxation processes following
the excitation of the non-equilibrium charge carriers in Si
NCs. Excitation by light with the photon energy exceed-
ing the optical gap of Si NCs creates mainly hot electrons
and cold holes.11 If several electron-hole pairs have been
created in a NC, the Auger recombination process can
contribute to the dynamics of the confined carriers on
the picosecond time scale.12,13 In the case of a moder-
ate excitation intensity, when only one electron-hole pair
can occur in a NC, the Coulomb interaction would re-
distribute the excess of the excitation energy between
the electron and the hole due to the elastic Auger scat-
tering leading to appearance of hot holes and establish-
ing a joint electron-hole distribution on a subpicosecond
timescale.11,14 It is the phonon emission that controls
the energy relaxation of hot carriers confined in Si NCs.
We may recall that in bulk Si hot carriers can effectively
thermalize due to single-phonon emission processes on

subpicosecond timescales.15–17 The space quantization of
the charge carriers in Si NCs leads to discrete levels. For
moderately excited carriers (excess energies . 1 eV), the
energy spacings between neighboring levels mostly exceed
the phonon energies so that the single-phonon intraband
relaxation is forbidden by the energy conservation. It
is clear that in this case multiphonon transitions should
play an essential role in the hot carrier relaxation whereas
one-phonon transitions are more important for the highly
excited carrier states with smaller energy spacings.11

The issue of the multiphonon-induced charge carrier
relaxation was investigated theoretically and experimen-
tally for semiconductor quantum dots based on A3B5,
A2B6, and A4B6 semiconductors.18–22 Up to date, only
few aspects of the multiphonon charge carrier relaxation
in Si NCs have been addressed theoretically.14,23 The goal
of the present paper is to provide a systematic theoretical
description of the multiphonon relaxation of the moder-
ately excited carriers in the particular case of the Si NCs
embedded in the SiO2 matrix. Certain peculiarities (de-
scribed below) can be expected in this case.

Modeling multiphonon transitions in Si NCs embedded
in the SiO2 matrix requires the knowledge of the charge
carrier states in these NCs as well as the appropriate de-
scription of the phonons and the carrier-phonon interac-
tions. In the past, many various models were used to cal-
culate the charge carrier states in the Si NCs. Ab-initio
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models are limited to very small nanocrystal sizes.6,24–27

Semi-empirical approaches like tight-binding6,14,28 and
pseudopotential29,30 models are a good option in the case
of the free-standing or hydrogen-passivated Si NCs but
they still lack an appropriate description of the Si/SiO2

boundary leading to a strong overestimation of the quan-
tization energies in the case of the Si NCs embedded
in SiO2. In this respect, it seems natural to employ a
model based on the multiband effective mass approxima-
tion supplemented by the appropriate boundary condi-
tions, along the lines of previous studies.31 We model the
hole spectrum in Si by the Luttinger Hamiltonian in the
spherical approximation and the limit of a vanishing spin-
orbit interaction.32 The electron spectrum in Si is con-
tributed by six equivalent ∆-valleys with an anisotropic
dispersion.33 This approach provides a reliable descrip-
tion of the electron and hole states in Si NCs embedded
in the SiO2 matrix leading to a good agreement with the
experimental data on the optical gap and the electron-
hole radiative recombination time.31 It is a good approx-
imation to neglect the effect of the spin-orbit coupling
when calculating the charge carrier states in Si NCs and
modeling their energy relaxation.34 This coupling should
be included when considering the spin relaxation, which
is an important issue for silicon spintronics.35 The spin
relaxation in bulk silicon takes place on nanoseconds to
microseconds times34,36,37 being much longer than the
typical energy relaxation times. The details of the cor-
responding processes are still under an active theoretical
consideration even for the bulk case37. Thus, treatment
of the spin relaxation in the case of Si NCs is clearly be-
yond the scope of the present work but surely would be
an interesting challenge for future investigations. We will
limit our consideration by a moderate excitation level of
the NCs. In this case additional level splittings due to
the valley-orbit interaction and to the anisotropy of the
crystal structure do not significantly modify the typical
energy level separations for not too small NCs.28

In the present study we consider the phonon spectrum
and the electron-phonon interactions using the param-
eters of bulk Si. It was shown in Refs. 38,39 that for
NCs with diameters D & 4 nm the interatomic forces re-
main close to those in the bulk and there are no dramatic
changes in the phonon spectrum. More rigorous treat-
ment of the phonon spectrum is necessary in order to
get better quantitative results for small NCs with diame-
ters on the order of 3 nm and smaller, which is out of the
scope of the present work. We notice, however, that even
for small NC sizes no dramatic effects are expected.40

Our treatment of the multiphonon transitions is based
on the Huang-Rhys model19,32,41,42. Some peculiarities
arise when this model is applied to the relaxation of elec-
trons and holes in Si NCs. We describe the interaction
of the valence-band holes with the zone-centered opti-
cal phonons by the Bir-Pikus Hamiltonian33,43, whereas
the multiphonon transitions within the conduction band
require the emission of intervalley optical phonons.33

Therefore, we need to extend the Huang-Rhys model to

the case of the transitions between the degenerate levels.
In the case of the electrons, where the emitted optical
phonon transfers the electron to the state in the opposite
valley and there is a single final state for the given ini-
tial state and the number of the emitted optical phonons,
the problem is solved using a perturbative approach. For
holes, there are several possibilities for the final state be-
longing to the degenerate multiplet. In this case we will
show how the problem can be approximately reduced to
the case of the nondegenerate levels. The bulk of the re-
laxation processes we consider are triggered by the emis-
sion or the absorption of a “promoting” acoustic phonon
which assures the overall energy conservation.32,44. How-
ever, we also discuss the processes where only optical or
several acoustic phonons are emitted.
The paper is organized as follows. In Section II we in-

vestigate the multiphonon relaxation of the valence-band
holes. Section III is devoted to the phonon-assisted re-
laxation of the conduction-band electrons. In Section IV
we summarize the results and compare the obtained re-
laxation rates with those for competing processes.

II. MULTIPHONON ENERGY RELAXATION

OF HOLES

A. Hole size quantization

We consider the states of holes confined in a spheri-
cal Si NC in the limit of a vanishing spin-orbit splitting.
In this limit the valence band in bulk Si at the Γ-point
has the symmetry Γ25′ and is 3-fold degenerate. The en-
ergy spectrum near the Γ-point is determined by a gen-
eralization of the Luttinger Hamiltonian in the spherical
approximation.32 The three following types of the hole
wave function can be distinguished:

Ψ
hm
FM (r) = RF−1

F (r)YF−1
FM (r̂) +RF+1

F (r)YF+1
FM (r̂) , (1)

Ψ
hh
FM (r) = RF

F (r)Y
F
FM (r̂) , (2)

Ψ
hl
M (r) = R1

0(r)Y
1
0M (r̂) . (3)

Here r̂ = r/r, F is the hole total angular momentum,
M is its projection onto the z-axis, YL

FM (L = F ± 1, F )
are the vector spherical harmonics defined as in Ref. 45
with vector components corresponding to the Bloch func-
tions with the appropriate transformational properties
(see Appendix 1), and RL

F (r) are the radial wave func-
tions formed by spherical Bessel functions with coef-
ficients determined by the boundary conditions. The
boundary conditions are derived assuming the flux conti-
nuity at the NC boundary and an isotropic band for the
corresponding hole states in SiO2 characterized by the
heavy mass mout = 10m0, where m0 is the free electron
mass, and the energy barrier Uh = 4.3 eV. More details
are given in Ref. 31. The calculated dependence of the
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FIG. 1. (Color online) Calculated levels of holes and ∆-
electrons in a spherical Si NC surrounded by SiO2 as functions
of the NC diameter D.

quantized energy levels of the holes in Si/SiO2 NCs on
the NC size is shown in Fig. 1.
The hole states are characterized by the total angular

momentum F and by the parity. The states with the
parity (−1)F are the heavy hole (hh) states while the
states with the parity (−1)F+1 are contributed by both
the light and the heavy hole states (mixed hole states:
hm) with the only exception for F = 0 when the hole
states are only contributed by the light holes (hl). The
hole states are described by the main quantum number
n = 1, 2, 3... followed by the abbreviation hh, hm or hl
and the index denoting the total angular momentum F .
For example, the hole state with the lowest energy is of
the mixed type, namely 1hm1.

B. Hamiltonian of the problem

Our aim is to calculate the time of the hole multi-
phonon nonradiative transition between the initial state
2 and the final state 1. Note that in our model both
the states 1 and 2 are degenerate with respect to the
total angular momentum projection M . In what fol-
lows we will use the notation |i,M〉 ≡ |nσF,M〉, where
σ = hm, hh, hl and i = 1, 2, to specify one of the func-
tions (1)–(3) for the initial and final states. The Hamil-
tonian of the problem can be represented as follows:

H = H1 +H2 +H(ac) +H(phon)
0 , (4)

Hi =
∑

M,M ′

c†i,Mci,M ′

[
εiδM,M ′

+
∑

q,ν

〈i,M |V̂opt(uopt)|i,M ′〉
]
,
(5)

where i = 1, 2; ci,M are the annihilation operators of the

holes, and V̂opt(uopt) is the lattice scattering potential for

holes due to the interaction with optical phonons in Si.
The Hamiltonian of the interaction of holes with acoustic
phonons is given by

H(ac) = H2→1 +H1→2, (6)

where

H2→1 =
∑

M,M ′

c†1,Mc2,M ′〈1,M |V̂ac(uac)|2,M ′〉 , (7)

H1→2 = H†
2→1, and V̂ac(uac) is the lattice scattering

potential for holes due to the interaction with acoustic
phonons in Si. In what follows we consider transitions
from the state 2 to the state 1 promoted by the emission
or by the absorption of a single acoustic phonon. In this
case the part H1→2 of the Hamiltonian (6) can actually
be neglected in the calculation. The free phonon part of
the Hamiltonian (5) reads

H(phon)
0 = ~ωopt

∑

q,ν

b†qνbqν + ~

∑

q,ν

sνqa
†
qνaqν , (8)

where bqν and aqν are, respectively, the annihilation op-
erators of optical and acoustical phonons with wave vec-
tor q and polarization ν; ~ωopt is the optical phonon
energy close to 60 meV for Si. We use the Debye
model for the dispersion of longitudinal acoustic (LA)
and transversal acoustic (TA) phonons with the sound
velocity sLA = 9 × 105 cm/s (sTA = 5 × 105 cm/s) and
the Debye energy ~ωD

LA = 50 meV (~ωD
TA = 20 meV) for

LA (TA) phonons.46 It was shown in Refs. 38,39 that for
NCs with diameters D & 4 nm the interatomic forces re-
main close to those in the bulk and there are no dramatic
changes in the phonon spectrum. Therefore, we consider
the electron-phonon interaction using the parameters of
bulk Si. A more rigorous treatment of the phonon spec-
trum is in order for obtaining better quantitative results
for small NCs with diameters on the order of 3 nm and
smaller, which is out of the scope of the present work.
The lattice scattering potential for holes due to the

interaction with the optical phonons in Si reads:43

V̂opt(uopt) =
1√
3

d0
a0

uopt · K̂ , (9)

where a0 = 5.4 Å is the lattice constant, d0 is the inter-
action constant, and

uopt =
∑

q,ν

√
~

2ρ0ωoptV

(
b†qνν

∗
qe

−iqr + bqννqe
iqr
)

(10)

is the continuous field of the sublattice displacement in-
duced by optical phonons, being equal to the half of the
relative atomic displacement of the two sublattices. Here
V is the normalization volume and ρ0 = 2.3 g/cm3 is the

density of silicon. K̂x component of K̂ is given by

K̂x = ĴyĴz + Ĵz Ĵy , (11)
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while K̂y and K̂z are given by the cyclic permutations.
As the spin-orbit interaction is neglected, the angular
momentum matrices Ĵx, Ĵy, and Ĵz correspond to J = 1,
and we take d0 = 70 eV.14,47,48 Special care has been
given to the choice of the notations and parameters14

which resulted in slightly different notations as compared
to some of our previous works.23,31

The lattice scattering potential for holes due to the
interaction with acoustic phonons is given by

V̂ac(uac) =

(
a− 2

3
b

) ∑

α=x,y,z

εαα + b
∑

α=x,y,z

εααĴ
2
α

+ b(εxyK̂z + εyzK̂x + εzxK̂y),

(12)

where a and b are the constants of the deformation po-
tential. For Si it was calculated that a = −10 eV and
b = 3 eV.48 The deformation tensor components εαβ are
given by

εαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
, (13)

and the atomic displacement field induced by acoustic
phonons equals to

uac =
∑

q,ν

√
~

2ρ0sνqV
(a†qνν

∗
qe

−iqr + aqννqe
iqr) . (14)

The polarization vectors νq in Eqs. (10) and (14) are
orthonormalized and can be chosen to be either purely
real or purely imaginary.
The Hamiltonian (4) describes the multiphonon relax-

ation promoted by the emission or the absorption of a
single acoustic phonon.44 The operator given by Eq. (7)
supplies a matrix element between the final and initial
electronic states necessary to trigger the multiphonon
transition. This operator will be treated in the lowest
order of the perturbation theory. The multiphonon part
of the total Hamiltonian determined by Eq. (5) accounts
for the energy difference between the levels ε2 and ε1 and
is responsible for the transition efficiency. In Sec. II C we
will show that this efficiency can be described by the
Huang-Rhys factor.
The operators H1 and H2 can be rewritten as

Hi =εi
∑

M

c†i,Mci,M

+


 ∑

M,M ′

c†i,Mci,M ′

∑

qν

VMM ′

i,qν bqν + h.c.


,

(15)

with

VMM ′

i,qν =
d0
a0

√
~

6ρ0ωoptV
〈i,M |eiqrνq · K̂|i,M ′〉 , (16)

and H2→1 takes the form

H2→1 =
∑

M,M ′

∑

qν

c†1,Mc2,M ′

[
VMM ′

12,qν aqν + (VM ′M
21,qν )∗a†qν

]
,

(17)

where

VMM ′

ii′,qν =

√
~

2ρ0sνqV
〈i,M |V̂ac(νqe

iqr)|i′,M ′〉 . (18)

C. Reduction of the problem to the Huang-Rhys

model

The calculation of the multiphonon transition rate
within the present model is greatly complicated by the
degeneracy of the initial and final states with respect
to the hole total angular momentum. As the electron-
phonon interaction lifts this degeneracy, the exact solu-
tion of the problem should proceed, at first, by diag-
onalizing the Hamiltonians (5) for each given phonon
mode (q,ν) and a proper summation over the phonon
modes afterwards. Instead, we choose to simplify the
problem by reducing it to the well-known Huang-Rhys
model19,41,42 allowing for an analytical solution in a
closed form. To that end we will replace each multiplet
{|i,M〉; M = −F, ..., F} by a single state |i〉. Then the
operators Hi take the form

Hi = c†ici

[
εi +

(
∑

q,ν

Vi,qνbqν + h.c.

)]
, (19)

where we have introduced the annihilation operators ci
of the states i and the effective matrix elements Vi, in-
dependent of the angular momentum projection. The
operator H2→1 reduces to

H2→1 =
∑

q,ν

c†1c2[V12,qνaqν + V ∗
21,qνa

†
qν ] . (20)

A justification of this approximation will be discussed in
Sec. II D and Appendix 3.

It is useful to introduce the canonical transformation

U(α) = exp
[
c†c(αb† − α∗b)

]

acting on the fermionic c, c† and bosonic operators b, b†

as follows:

UbU−1 = b− αc†c , Ub†U−1 = b† − α∗c†c ,

UcU−1 = exp[−(αb† − α∗b)]c ,

Uc†U−1 = exp[(αb† − α∗b)]c† .

In particular, the transformation

U = exp

{∑

q,ν

1

~ωopt
(c†2c2 + c†1c1)

×
[
V ∗
2,qνb

†
qν − V2,qνbqν

]}
(21)
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changes H2 +H1 to

c†2c2

[
ε2 −

∑

q,ν

|V2,qν |2
~ωopt

]

+ c†1c1

[
ε1 +

∑

q,ν

|V2,qν |2− 2Re
[
V2,qνV

∗
1,qν

]

~ωopt

]

+

{
c†1c1

∑

q,ν

[V1,qν − V2,qν ]bqν + h.c.

}
(22)

and does not change the form of the Hamiltonian H(ac)+

H(phon)
0 . As a result of this transformation, the diagonal

electron-phonon interaction is present only for the lower
state and the Hamiltonian H2 + H1 is similar to that
considered in Ref. 19 after the substitutions

ε2 → ε2 −
∑

q,ν

|V2,qν |2
~ωopt

,

ε1 → ε1 +
∑

q,ν

|V2,qν |2 − 2Re
[
V2,qνV

∗
1,qν

]

~ωopt

are made. Thus, the rate Wp of a transition assisted
by the emission of p optical phonons and promoted by a
single acoustic phonon is given by19,32,41,42

Wp(T ) =
1

τac(T )
Jp(T, S) . (23)

Here S is the Huang-Rhys factor, T is the temperature,
τac(T ) is the time determined by the acoustic phonon
emission,

Jp(T, S) = exp

[
−2S

(
N~ωopt

+
1

2

)]
exp

(
p

2

~ωopt

kBT

)

× Ip

(
2S
√
N~ωopt

(N~ωopt
+ 1)

)
,

(24)

where

NE =
1

exp E
kBT

− 1
(25)

is the Bose-Einstein factor at the optical phonon energy
E, with kB being the Boltzmann constant, and Ip is the
modified Bessel function. For S ≪ 1 and kBT ≪ ~ωopt

the value of Jp(T, S) can be well approximated by

Jp(T, S) ≈
[
S(N~ωopt

+ 1)
]p

p!
, (26)

which has only a very weak temperature dependence as,
under these conditions, N~ωopt

≪ 1. One can see that
in this case the transition rate strongly depends on S
while its temperature dependence is mainly determined
by τac(T ). The Huang-Rhys factor can be expressed as

S =
1

(~ωopt)2

∑

q,ν

|V2,qν − V1,qν |2 . (27)

The number of emitted optical phonons p is given by the
integral part of

ε2 − ε1
~ωopt

+ (δp,2 − δp,1) (28)

where the total polaron correction δp = δp,2 − δp,1 is
determined by the difference of the polaron corrections
corresponding to the single levels involved in the transi-
tion:

δp,i = − 1

(~ωopt)2

∑

q,ν

|Vi,qν |2 . (29)

The reciprocal time of the single acoustic phonon emis-
sion (absorption) process is given by

1

τac(T )
=

2π

~

∑

q,ν

|V21,qν |2
[
(N~sνq + 1) δ(∆ε− ~sνq)

+N~sνq δ(∆ε+ ~sνq)
]
,

(30)

where the energy excess (or deficit) ∆ε is given by

∆ε = ε2 − ε1 − (p− δp)~ωopt . (31)

The key feature of the Huang-Rhys model is the factor-
ized form of the transition rate with the acoustic-phonon
transition rate and the multiphonon factor entering as
the multipliers. Thus, we can calculate the two factors
independently.

D. Multiphonon factor

It is convenient to formally introduce the wave func-
tions Ψ1,2 by writing the matrix elements V1,qν and V2,qν
in the form

Vi,qν =
d0
a0

√
~

6ρ0ωoptV
〈i|eiqrνq · K̂|i〉 , (32)

analogous to Eq. (16). As shown in Appendix 1, this
enables one to express the Huang-Rhys factor (27) in the
form

S = σhR
3

∫
dr

∑

α=x,y,z

|Ψ†
1KαΨ1 −Ψ

†
2KαΨ2|2 , (33)

where R is the NC radius and we have introduced the
dimensionless factor

σh =
d20

6~ω3
opta

2
0ρ0R

3
. (34)

Similarly, the polaron corrections, given by Eq. (29), can
be written as

δp,i = −σhR3

∫
dr

∑

α=x,y,z

|Ψ†
iKαΨi|2 . (35)
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FIG. 2. (Color online) (a) Dependence of the hole Huang-
Rhys factor S on the NC diameter for the transitions between
the six lowest hole levels. (b) Dependence of the polaron
energy shifts −δp,i~ωopt determined by Eq. (37) on the NC
diameter for the transitions between the six lowest hole levels.

We have already mentioned that an exact calculation
of the relaxation time would require the diagonalization
of the operators (5). This would involve the evaluation of

quadratic forms such as Ψ†
iKαΨi using the correct basis

of the wave functions in the zeroth-order approximation.

However, the quadratic form
∑

M Ψ
σ,†
F,MKαΨ

σ
F,M does not

depend on the choice of the basis. Therefore, as an ap-

proximation, we replace the matrix elements Ψ†
iKαΨi by

their values averaged over M :

S = σhR
3

∫
dr

∑

α=x,y,z

∣∣∣ 1

2F1 + 1

∑

M1

Ψ
σ1,†
F1,M1

KαΨ
σ1

F1,M1

− 1

2F2 + 1

∑

M2

Ψ
σ2,†
F2,M2

KαΨ
σ2

F2,M2

∣∣∣
2

.

(36)

Possible derivation procedures justifying this type of av-
eraging are discussed in Appendix 3.
Dependence of the hole Huang-Rhys factor S given by

Eq. (36) on the NC diameter D for the transitions be-
tween the six lowest hole levels is shown in Fig. 2a. One

can see that for all the transitions the value of the Huang-
Rhys factor increases as the NC diameter decreases, ap-
proximately as 1/D3, but remains below 0.05 for all con-
sidered transitions and NC sizes. Therefore, Eq. (26)
provides a good approximation of the multiphonon fac-
tor which is suitable for the estimation of its contribution
to the total transition rate. Nevertheless, in our numeri-
cal calculations we use the full form of Eq. (24).

The polaron corrections (35) for each level have now
the form

δp,i = −σhR3

∫
dr
∑

α=x,y,z

∣∣∣ 1

2Fi + 1

∑

Mi

Ψ
σi,†
Fi,Mi

KαΨ
σi

Fi,Mi

∣∣∣
2

.

(37)

One can see from Fig. 2b that the values of δp,i are small.
This guarantees that the splittings of each multiplet
|i,M〉 induced by the hole coupling to optical phonons
are also small and our two-level approximation (15) is
justified. Since the polaron corrections are significantly
smaller than the optical phonon energy, we have ne-
glected them in the numerical calculations of the relax-
ation times.

E. Acoustic phonon part

The acoustic phonon transition rate 1/τac is given by

1

τac
=

1

F2 + 1

∑

M1,M2

(
1

τac

)

M2,M1

, (38)

where the partial rates (1/τac)M2,M1
describing the tran-

sitions |2,M2〉 → |1,M1〉 and given by Eq. (30) after the

substitution V21,qν → VM2M1

21,qν are averaged over the ini-
tial and summed over the final states.

After the integration over q in Eq. (30) we obtain

(
1

τac

)

M2,M1

=

∫
dΩq

4π

∑

ν

|∆ε|3 [N~ω + 1/2 + sgn(∆ε)/2]

2π~4ρ0s5ν

×Θ(~ωD
ν − |∆ε|)

×
∣∣∣∣
∫
drΨσ2,†

F2,M2
(r)Hq̂

ν e
iqr

Ψ
σ1

F1,M1
(r)

∣∣∣∣
2

,

(39)

where sgn(∆ε) = ±1 corresponds to the phonon emis-
sion (absorption), and the absolute value of the vector q
equals to |∆ε|/sν . The function Θ(x) in Eq. (39) is the
Heavyside function, q̂ = q/q, and the matrices H

q̂
ν are

given in Appendix 2. The plane wave expansion45

eiqr = 4π
∑

lm

ilY ∗
lm(q̂)Ylm(r̂)jl(qr) (40)

allows one to integrate over dΩq and to rewrite Eq. (39)
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as
(

1

τac

)

M2,M1

=
∑

ν=L,T1,T2

|ω|3 [N~ω + 1/2 + sgn(∆ε)/2]

2π~ρ0s5ν

×Θ(ωD
ν − |ω|)

×
∑

lml′m′

∑

γδγ′δ′

Ωlml′m′

γδγ′δ′ (ν)J
γδ∗
lm Jγ′δ′

l′m′ ,

(41)

where γ, δ, γ′, δ′ = −1, 0, 1. Here we introduced ω =
∆ε/~,

Jγδ
lm =

∫
dr [Ψσ2

2,M2
]γ∗(r)jl(qr)Ylm(r̂)[Ψσ1

1,M1
]δ(r) , (42)

and

Ωlml′m′

γδγ′δ′ (ν) = 4πil
′−l

∫
dΩq Ylm(q̂)Y ∗

l′m′(q̂)

× [Hq̂
ν ]

∗
γδ[H

q̂
ν ]γ′δ′ .

(43)

The calculated rate of the acoustic phonon emission
(absorption) 1/τac is shown in Fig. 3 as a function of the
phonon energy. One can see that the rate varies with ∆ε
over several orders of magnitude. The rate has disconti-
nuities at ∆ε = ±20 eV corresponding to the maximum
TA phonon energy, and vanishes at |∆ε| > 50 eV, where
the LA phonon dispersion saturates. Fig. 3a shows the
rate of the transition 1hh1 → 1hm1 at room tempera-
ture. Various curves correspond to different NC diame-
ters D. One can see that, for the processes describing the
phonon emission, the maximum of the rate decreases with
the NC size and shifts towards lower energies. Fig. 3b
shows the rate of the transition between the same hole
states in a NC of the diameter D = 4 nm but for vari-
ous temperatures. The dependence on the temperature
appears solely due to the temperature-dependent equilib-
rium phonon population, N~ω, leading to a considerable
asymmetry between the processes involving the phonon
emission and the absorption below T = 77 K. In Fig. 3c
we compare the emission rate for the transitions between
the six lowest levels of the holes.

F. Transitions with emission of multiple acoustic

phonons

We have considered the relaxation processes due to
the emission of multiple acoustic phonons. Calculations
based on Refs. 23, 32, and 49 show that the main con-
tribution to the transition rate comes from the acoustic
phonons with energies being about 20 meV. For such
phonons

∣∣〈1|eiqr|1〉 − 〈2|eiqr|2〉
∣∣ is at maximum. The

multiphonon processes can be described by a Huang-
Rhys factor, which is of the same order as for the op-
tical phonons. However, the emission of several acoustic
phonons instead of one optical phonon is much less effi-
cient and may be neglected for both electrons and holes.
In the case of small energy spacings between the consid-
ered levels, i.e. less than the half of the maximal acoustic

phonon energy, processes involving two acoustic phonons
are less effective than the emission of a single acoustic
phonon, as it can be expected.22

G. Transitions without acoustic phonon emission

or absorption

Next we consider relaxation processes where only op-
tical phonons are emitted. Such transitions become pos-
sible if one goes beyond the Condon approximation and
takes into account the non-adiabaticity of the electron-
phonon system.19,32,44 To that end we include the matrix
elements of the hole coupling with optical phonons taken
between the hole states 1 and 2 into the Hamiltonian (4).
Using the result of Ref. 19 in the limit S ≪ 1, kBT ≪ 1
and generalizing it to include the degeneracy of the hole
states, we obtain the average value of the transition prob-
ability:

W p = 2πωopt(N~ωopt
+ 1)p

Sp−1

(p− 1)!

(
Z + Y

p− 1

S

)
,

(44)
where p ≥ 1 is the number of emitted optical phonons
and the averaging is produced over the transition energy
in the range of the optical phonon energy ~ωopt. Here we
defined

Z =
1

2F2 + 1

∑

M1,M2

ZM1,M2
, (45)

Y =
1

2F2 + 1

∑

M1,M2

YM1,M2
, (46)

where

ZM1,M2
= σhR

3

∫
dr

∑

α=x,y,z

∣∣∣Ψσ1,†
F1,M1

KαΨ
σ2

F2,M2

∣∣∣
2

, (47)

YM1,M2
=σ2

hR
6

∫
dr

∑

α=x,y,z

∣∣∣∣
(
Ψ

σ1,†
F1,M1

KαΨ
σ2

F2,M2

)

×
(
Ψ

σ1,†
F1,M1

KαΨ
σ1

F1,M1
−Ψ

σ2,†
F2,M2

KαΨ
σ2

F2,M2

) ∣∣∣∣
2

.

(48)

Calculations using Eq. (44) lead to very high average
transitions rates: e.g. for the transition 1hh1 → 1hm1
with a single optical phonon emission we get the transi-
tion time on the order of 0.1 ps for NCs with diameters
close to 5 nm. However, as it was noticed previously,18

such transitions are effective only if the difference in the
level energies is confined to very narrow energy intervals
close to the multiple integer of the optical phonon en-
ergy at the Γ-point. As in the case of acoustic phonons,
the transition matrix element contains an oscillating form
factor exp(iqr) [cf. Eq. (16) and Eq. (18)]. This matrix
element decays rapidly when q exceeds a value on the
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FIG. 3. (Color online) Dependence of the acoustic phonon transition rate 1/τac on the energy of the acoustic phonon (a) for
the 1hh1 → 1hm1 transition at the temperature T = 300 K and different NC diameters D, (b) for the 1hh1 → 1hm1 transition
in a NC of D = 4 nm at different temperatures T , and (c) for different transitions in a NC of D = 4 nm at T = 300 K. Positive
(negative) acoustic phonon energies correspond to the phonon emission (absorption).

order of π/D that limits the energy intervals where the
transition is efficient (see Fig. 3 concerning the acous-
tic phonons). These intervals are much narrower for op-
tical phonons than for acoustic phonons. This occurs
because of the following reasons. First, the energy dis-
persion of the optical phonons is significantly flatter as
compared with the case of the acoustic phonons. As a
consequence, for the same value of the wave vector q the
deviation of the phonon energy from the phonon energy
at the Γ point is much smaller. Secondly, the wave-
vector-dependent matrix element of the charge carrier
interaction with acoustic phonons is proportional to q3

whereas it is only q2 for optical phonons.50

In what follows we will neglect phonon-induced re-
laxation processes involving emission of only optical
phonons. However, one should bear in mind that for each
pair of neighboring levels such processes can be efficient
for a very small part of NCs in a realistic NC ensemble
with a certain size dispersion.

H. Total transition rate

The results of the preceding sections have been im-
plemented to calculate the total multiphonon relaxation
rate. The size dependencies of the total rates for mul-
tiphonon transitions between the six lowest hole levels
are summarized in Fig. 4. Fig. 4a shows the interlevel
energy intervals in units of the optical phonon energy
~ωopt. Fig. 4b sketches the relative energy positions of
the valence-band electron levels. Figs. 4c and d give
the size dependencies of the total transitions rates at
T = 300 K and T = 77 K, respectively. In Figs. 4a – d the
same color code is used to distinguish various transitions.
The multiphonon transition rate given by Eq. (23) van-

ishes when the energy of the promoting acoustic phonon

∆ε tends to zero. This occurs whenever one of the curves
in Fig. 4a (determining the size dependence of the energy
corresponding to a given transition) intersects with one
of the horizontal grid lines separated by the energy of
the optical phonon. This would lead to dips in the size
dependence of the corresponding transition rate like the
one shown in Fig. 4c, upper panel, by the dotted line.
In reality such dips should not be expected because of
the small but not vanishing dispersion of the (bulk-like)
optical phonon. In order to take this effect into account
approximately, we have “cut” the dips for |∆ε| < 2.5 meV
while calculating the dependencies presented in Figs. 4c
and d.

Analyzing the general trend of the dependence of the
transition rate with decreasing the NC diameter we see
that the rate stays more or less the same on average for
the transitions 1hh1 → 1hm1 and 1hh2 → 1hm2 whereas
it decreases for transitions 1hm2 → 1hh1, 1hm3 → 1hm1
and 2hm1 → 1hm2. In order to understand this dif-
ference in the behavior we notice that the transition
energy dependence on the NC diameter is stronger for
the last three of these transitions than for the first two
(see Fig. 4a). The multiphonon factor decreases rapidly
with the number of the required optical phonons p [see
Eq. (26)] because of very small Huang-Rhys factors (see
Fig. 2). Although in the same time the acoustic phonon
transition rate increases with the NC size decrease (see
Fig. 3a) for a fixed phonon energy the NC size depen-
dence of the multiphonon factor is stronger. Therefore
we observe a strong decay trend in the transition rate
by decreasing the NC size for transitions 1hm2 → 1hh1,
1hm3 → 1hm1 and 2hm1 → 1hm2. The situation is dif-
ferent for transitions 1hh1 → 1hm1 and 1hh2 → 1hm2
because the transition energy dependence on the NC di-
ameter is weaker in this case and the number of the
required optical phonons p changes only slowly. For
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FIG. 4. (Color online) (a) Size dependence of the transition
energies between the six lowest hole levels; (b) Scheme of the
valence-band electron energy levels; (c) Size dependencies of
the multiphonon transition rate for transitions between the
six lowest hole levels at T = 300 K; (d) same as (c) but for
T = 77 K. The vertical dashed line in (a) and (c), upper panel,
indicates the diameter for which ∆E1hh1→1hm1 = ~ωopt. The
solid (dotted) line in (c), upper panel, gives the transition
rate calculated with (without) dip exclusion (see text). The
dip exclusion has been implemented for all other calculated
dependencies of (c) and (d).

the smallest considered NCs it reaches only p = 1 for
1hh1 → 1hm1 and p = 2 for 1hh2 → 1hm2 transitions,
respectively. As a consequence, the increase in the acous-
tic phonon transition rate roughly compensates the de-
crease in the multiphonon factor.
The effect of temperature on the total transition rate

can be estimated comparing Fig. 4c, where T = 300 K is
used, and Fig. 4d with T = 77 K. We see that the rate is
smaller in the case of T = 77 K by a factor less then 10.
This moderate decrease correlates with the temperature
dependence of the acoustic phonon transition rate (see
Fig. 2). Some of the jumps in the dependencies of the
rate on the NC size become larger because contributions
with the acoustic phonon absorption (∆ε < 0) become
much smaller in the case of T = 77 K.
A particular feature of the transition rates shown in

Figs. 4c and d is their strong dependence on the NC
size: The rate may change by several orders of magni-
tude when the NCs size changes by 10%. It is known
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FIG. 5. (Color online) Multiphonon relaxation kinetics for
the transitions between the hole levels 1hm1, 1hh1, 1hm2,
1hh2 (cf. Fig. 4b). The three left and the three right panels
correspond to average NC diameters of 〈D〉 = 3.0 nm and
〈D〉 = 5.5 nm, respectively. The upper boundary of the red
area for each panel shows the signal decay as a function of
time (normalized to the value at t = 0). The calculation has
been performed for an inhomogeneously broadened ensemble
of NCs with the size dispersion σD = 0.14〈D〉. The upper
boundary of the blue area represents the exponential curve
exp(−t/Tfast), where the relaxation rate 1/Tfast is given by
Eq. (50). The ratios of the areas under the blue and red
curves, representing the relative fraction of the fast compo-
nent in the signal, are indicated for each panel.

that such dependencies can lead to multi-exponential or
stretched-exponential population decays if the size dis-
persion is taken into account.51–53 The population decay
of a particular selected level within an ensemble of NCs
can be found as

f(t) =

∫
P (D) exp [−tW (D)] dD , (49)

where f(t) is the time-dependent level population nor-
malized to its value at t = 0, P (D) stands for the NC size
distribution, and W (D) is the size-dependent total tran-
sition rate. The corresponding kinetics of the hole level
population decay due to the relaxation up to the next
neighboring level is illustrated in Fig. 5. We see that
only the initial part of the decay is single-exponential
with the time Tfast determined by

1

Tfast
=

∫
P (D)W (D)dD . (50)

At a later stage of the relaxation process the kinetics is
governed by a much slower decay tail which can be ap-
proximately described by the Williams-Watts stretched
exponential law.51,52
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III. INTERVALLEY MULTIPHONON

RELAXATION OF CONFINED ELECTRONS

A. Electron size quantization

The conduction-band states in Si NCs originate from
the six equivalent ∆-valleys in the conduction band of
bulk Si. To calculate their energy levels we employed
the approach of Ref. 31. This approach accounts for
the strong anisotropy of the conduction band effective
mass but neglects the non-parabolicity of the band. This
provides a good approximation for moderately excited
electrons with energies close to the band minimum. We
further neglect the splitting of the electron energy lev-
els arising from the intervalley mixing. The latter is due
to the finite size of the NC and depends on the bound-
ary conditions.28 Our estimations based on the sp3d5s∗

empirical tight-binding method11,54 have shown that this
orbit-valley splitting is considerably smaller than the in-
terlevel energy gaps for NCs with diameters D > 3 nm.
However, for smaller NCs it can considerably change the
transition energies and affect so the results for the tran-
sition rates.
Our approach also takes into account the effect of the

electron tunneling into the SiO2 matrix. We assign a fi-
nite energy barrier of 3.2 eV55,56 to ∆-electrons at the
Si/SiO2 interface and use the mass m ≈ m0 for the elec-
trons in SiO2

57. This leads to the considerable decrease
of the energies of confined electrons, and allows for an ex-
ceptionally good agreement with the experimental data
on indirect photoluminescence.31 For very small NCs, the
effect of tunneling can be dramatic,25,26,58 leading to con-
siderable penetration of the carrier density beyond the
NC boundary and its localization near the NC bound-
ary. The calculated energy levels of ∆-electrons confined
in a spherical Si NC surrounded by SiO2 are shown in
Fig. 1. The notation for different electron states is the
same as in Ref. 31. The electron states are characterized
by the angular quantum number m = 0, 1, 2, ... and the
main quantum number n = 1, 2, 3, .... The states have
the degeneracy of 12m, including the spin degeneracy.
The four lowest electron states ordered by their energies
are labeled as 1e0, 2e0, 1e1, and 3e0, respectively (see
Fig. 1).

B. Relaxation via emission of intervalley optical

phonons

The intravalley electron scattering on optical phonons
is absent in bulk Si,43 so the ordinary multiphonon
processes,19 described within the framework of the
Huang-Rhys model,32,41,42 are ruled out for electrons in
Si NCs. However, the optical phonons in bulk Si can
cause scattering of the electrons between different ∆ val-
leys in the conduction band.59,60 Such processes play an
important role the in energy relaxation in bulk Si.61–64

In this work we analyze their contribution to the energy

relaxation in Si NCs. We consider emission of p ≥ 1 in-
tervalley optical phonons accompanied by the emission
or the absorption of a single intravalley acoustic phonon.
The participation of the acoustic phonon in the relax-
ation process ensures the overall energy conservation.

It was shown in Refs. 38 and 39 that for NCs with sizes
4 nm < D < 8 nm the interatomic forces remain close to
those in the bulk and there are no dramatic changes in
the phonon spectrum. These results enable us to analyze
the electron-phonon interaction using the bulk values of
the deformation potential. Since the conduction band of
bulk Si has six equivalent ∆-valleys, each state of the
confined electron has an additional sixfold degeneracy.
We restrict ourselves to the so-called g processes respon-
sible for the coupling of the electron states in opposite
∆ valleys.33,61 Three groups of the electron states can
be distinguished, as there are three degenerate pairs of
opposite ∆ valleys. The interaction of the electrons with
the g phonons takes place within each group indepen-
dently. The energy of the g optical phonon in bulk Si
is ~ωopt = 63 meV.65 We use the approximate value of
60 meV. The energy difference between the initial and the
final states is not necessarily equal to the integral number
of optical phonon energies ~ωopt. Therefore, we also take
into account the acoustic phonons; their close-to-linear
energy dispersion allows one to fulfill the energy conser-
vation law. We consider the intravalley matrix elements
of the electron interaction with the acoustic phonons via
the deformation potential. Similar to the case of holes
(cf. Sec. II H), we take into account the weak optical
phonon energy dispersion46 when the energy of the pro-
moting acoustic phonon is close to zero.

Let us restrict our consideration by a given pair of
valleys. In this case the relaxation problem involves a
total of four electron states, which are pairwise valley-
degenerate. The pair of initial (final) states is character-
ized by the envelope function |i〉 (|f〉), and the energy Ei

(Ef ). We will use the notation (n, v) to label the electron
states, where the index n = i, f stands for the envelope
function and the valley index v = 1, 2 specifies the loca-
tion of the particular ∆ extremum in the Brillouin zone,
either at the point k1 = (k0, 0, 0) or at the opposite point
k2 = (−k0, 0, 0), where k0 = 0.85× 2π/a0 .

The processes accompanied by the optical phonon ab-
sorption can be safely neglected even at room tempera-
ture; ~ωopt ≫ kBT . Thus, we consider the energy relax-
ation with the emission of p intervalley optical phonons,
assisted by single acoustic phonon emission (or absorp-
tion). The relaxation process can be thought of consist-
ing of p+ 1 virtual transitions: p transitions of the type
(i, 1) ↔ (i, 2) or (f, 1) ↔ (f, 2) (with the emission of the
intervalley optical phonon) and one intravalley transition,
either (i, 1) → (f, 1) or (i, 2) → (f, 2), involving an acous-
tic phonon with energy ~ωac = |Ef − Ei − p~ωopt|. The
relaxation process is described by the following Hamilto-
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nian:

H =
∑

v=1,2

(Eic
†
i,vci,v + Efc

†
f,vcf,v) +H(phon)

0

+H(opt)
i +H(opt)

f +H(ac) .

(51)

The terms in Eq. (51) are as follows: (i) the free-
electron Hamiltonian, where ci,v and cf,v are the cor-
responding electron annihilation operators, (ii) the free-

phonon Hamiltonian H(phon)
0 , (iii) the Hamiltonian of

the electron interaction with intervalley optical phonons

H(opt)
i +H(opt)

f and (iv) the Hamiltonian of the electron

interaction with intravalley acoustic phonons H(ac) =

H(ac)
i→f + H(ac)

f→i, whereby H(ac)
f→i = (H(ac)

i→f )
† can be ne-

glected due to the problem formulation. The free-phonon
Hamiltonian reads

H(phon)
0 =

∑

q

[~ωac(q)a
†
qaq + ~ωoptb

†
qbq] , (52)

where aq and bq are the annihilation operators of the
acoustic and the optical phonons, having the energies
~ωac(q) = ~sq and ~ωopt, respectively. We take into
account only LA phonons and disregard the polarization
of intravalley optical phonons. The interaction parts of

the total Hamiltonian H(ac)
i→f and H(opt)

i,f are characterized
by the deformation potentials Ξ and Div, respectively. In
particular,

H(ac)
i→f = (c†f,1ci,1+c

†
f,2ci,2)

∑

q

[
aqAfi,q + a†qA

∗
if,q

]
, (53)

where the complex coefficients Ajj′ ,q are given by

Ajj′,q = −iΞ

√
~q

ρ0sV
〈j|eiqr|j′〉 (54)

with V being the normalization volume. The opera-

tors H(opt)
i and H(opt)

f , contributing to the Hamiltonian
of the electron interaction with the intervalley optical
phonons,62 are

H(opt)
n = c†n,1cn,2H

(opt)
n,2→1 + c†n,2cn,1H

(opt)
n,1→2 , (55)

where

H
(opt)
n,2→1 = H

(opt)†
n,1→2 =

∑

q

(
Bn,qbq+k2,1

+B∗
n,qb

†
q+k1,2

)
,

(56)

Bn,q = Div

√
~

2ρ0ωoptV
〈n|eiqr|n〉,

and the letter n = i, f denotes the initial and final
states. In the summation over q we have singled out
the wave vectors k2,1 = −k1,2 = (2π/a0)(0.3, 0, 0). The
optical phonon wave vector approximately equals either
k2,1 or k1,2, since the overlap integrals with the enve-
lope functions 〈n|eiqr|n〉 rapidly decay when the value

of q exceeds 1/R . k0. Consequently, we distinguish be-
tween the two types of intervalley optical phonons partic-
ipating in the transition, having approximately opposite
wave vectors and characterized by annihilation operators

b
(2→1)
q ≡ bq+k2,1

and b
(1→2)
q ≡ bq+k1,2

.
Following Ref. [19] we use the quantum tunneling

formalism66 to obtain the transition rate. The electronic
wave function is given by

Ψ̂(t) = [v̂1(t)c
†
i,1 + v̂2(t)c

†
i,2 + ŵ1(t)c

†
f,1 + ŵ2(t)c

†
f,2]|0〉 ,

(57)
where |0〉 is the electronic vacuum and v̂1,2(t), ŵ1,2(t)
are the operators acting on the phonon subsystem. The
Schrödinger equation for the wave function (57) in the in-
teraction representation with respect to the free-phonon

Hamiltonian H(phon)
0 leads to the following system of

equations:

i~
dv̂1
dt

= Eiv̂1 + H̃
(opt)
i,2→1v̂2,

i~
dv̂2
dt

= Eiv̂2 + H̃
(opt)
i,1→2v̂1,

i~
dŵ1

dt
= Ef ŵ1 + H̃

(opt)
f,2→1ŵ2 + H̃

(ac)
i→f v̂1,

i~
dŵ2

dt
= Ef ŵ2 + H̃

(opt)
f,1→2ŵ1 + H̃

(ac)
i→f v̂2 ,

(58)

where

H̃
(opt)
n,2→1 =

∑

q

(
Bn,qe

−iωopttb(2→1)
q +B∗

n,qe
iωopttb(1→2)†

q

)
,

H̃
(opt)
n,1→2 =

∑

q

(
B∗

n,qe
−iωopttb(1→2)

q +Bn,qe
iωopttb(2→1)†

q

)
,

H̃
(ac)
i→f =

∑

q

(
Aqe

−iωac(q)taq +A∗
qe

iωac(q)ta†q

)
.

We note that for the energy relaxation problem the in-
teraction with acoustic phonons for the initial state can
be neglected. Initial conditions for the system (58) are

v̂1(t = 0) = 1, v̂2(t = 0) = ŵ1,2(t = 0) = 0 . (59)

The relaxation rate is given by

Wp = lim
t→∞

1

t
[〈〈ŵ†

1(t)ŵ1(t)〉〉 + 〈〈ŵ†
2(t)ŵ2(t)〉〉] , (60)

where the double angular brackets denote the averag-
ing over the thermal distribution of the phonon states.
The presence of the two sets of optical phonons, b(1→2)

and b(2→1), distinguished by the sign of the wave vec-
tor projection to the intervalley direction, is the spe-
cific feature of the many-valley problem. Therefore,
the techniques developed for the single-valley problem
case19,32,41,42 cannot be used to solve it. Nevertheless,
in the realistic case of a weak interaction, the relaxation
rate can be found by means of the perturbation theory.
The perturbation scheme involves the iterative procedure
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applied to the system (58) with the expansion of the so-

lution in powers of the operators H̃(opt) and H̃(ac).
Note that, for a given number p of the emitted optical

phonons, the valley number of the final state is j = 1+ p
mod 2. Therefore, only one of the terms in Eq. (60) is
non-zero:

Wp = lim
t→∞

1

t
〈〈ŵ†

j (t)ŵj(t)〉〉 . (61)

The quantity wj is proportional to the matrix elements
of the electron-phonon interaction, wj ∝ ABp. Since we
consider dispersionless optical phonons, the energy of the
promoting acoustic mode is fixed. The factor describing
the interaction with the acoustic phonons can then be
separated out. Similar to the case of holes, the resulting
expression for the transition rate,

Wp =
1

τac
Jp , (62)

can be written as a product of the acoustic phonon-
related prefactor 1/τac and the multiphonon factor Jp
(see Appendix 4). Equation (62) is also valid for the case
of p = 0 when no optical phonons are involved. In this
case we have J0 = 1. The time τac is given by

1

τac
=

Ξ2

2π~

ω3
ac

ρ0s5
(N~ωac

+ 1/2± 1/2)

∫
dΩq

4π
|〈f |eiqr|i〉|2 .

(63)
Here Ξ is the deformation potential for acoustic phonons,
s ≡ sLA is the longitudinal sound velocity. The integra-
tion in Eq. (63) is performed over the angles of the wave
vector q having the absolute value |q| = ωac/s. The
energy of the promoting acoustic phonon reads

~ωac = |Ef − Ei − p~ωopt| . (64)

The sign +(−) in Eq. (63) corresponds to the emission
(absorption) of an acoustic phonon. The multiphonon
factor Jp is given by

Jp = σp
e (N~ωopt

+ 1)pα̃i→f (p) , (65)

where the dimensionless factor

σe =
D2

iv

2~ρ0ω3
optR

3
, (66)

describes the strength of the electron interaction with the
optical phonons. The value of the dimensionless quan-
tity α̃i→f (p) depends on the initial and final states and
on the number of the emitted optical phonons p. The
corresponding expressions are derived and discussed in
Appendix 4. The factor σeα̃i→f (1) in Eq. (65) plays
essentially the same role as the Huang-Rhys factor in
the single-valley problem.19 The perturbation theory
used to derive Eqs. (62) and (65) is applicable since
σeα̃i→f (1) ≪ 1. As we checked numerically, the tran-
sition rate decreases rapidly, namely approximately as[
σe(N~ωopt

+ 1)α̃i→f (1)
]p
/p!, when the number p of the
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FIG. 6. (Color online) Calculated size dependencies of the to-
tal relaxation rate for the following transitions: (a) 1e1 → 3e0
(orange line), 2e1 → 3e0 (brown line), and 2e1 → 1e1 (violet
line) and (b) 2e0 → 1e0 (blue lines), 3e0 → 2e0 (red line), and
1e1 → 2e0 (olive line). (c) Size dependence of the transition
energies between the lowest electron levels. Inset: Scheme
of the conduction-band electron energy levels outlining the
color code used to distinguish between various transitions.
The vertical dashed lines in (b) and (c) indicate the diame-
ters for which ∆E2e0→1e0 is equal to an integer number of the
optical phonon energies, ~ωopt. The solid (dotted) blue line
in (b) gives the transition rate calculated with (without) dip
exclusion.

emitted optical phonons increases, similarly to Eq. (26).
For example, the deviation of this approximation from
the result given by Eq. (65) is in the range of ±15% for
the transition 1e1 → 2e0, depending on the NC size and
the number of the emitted phonons.

C. Calculation results

We have calculated the multiphonon factors, the acous-
tic phonon transition times and the total transition rates
between the five lowest electron levels as functions of the
NC diameter. The calculations were produced for the
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case of room temperature and for the parameter values
Ξ = 10 eV, Div = 2 × 109 eV/cm.33,63 The final re-
sults for the total transition rate as a function of the
NC diameter are illustrated in Fig. 6. As compared to
the case of holes, the typical number of required optical
phonons increases more rapidly when decreasing NC size
(see Fig. 6c). However, the average transition rates re-
main relatively high even for small NCs (see Figs. 6a and
6b). This a consequence of a stronger effective electron-
phonon interaction leading to larger multiphonon factors
as compared to the case of holes.67

Similar to the case of holes, we observe that the tran-
sition rates as functions of the NC size typically demon-
strate a well-pronounced oscillatory behavior, with vari-
ations over several orders of magnitude. This leads again
to a non-exponential decay of level populations in a NC
ensemble.14 The situation is different when the transi-
tion energy is relatively small and the relaxation process
involves solely a single acoustic phonon. An example of
such process is provided by the 1e1 → 3e0 transition. In
this case the electron relaxes rapidly to the lower neigh-
boring level on a time scale of some hundreds of fem-
toseconds or even faster. The transition time smoothly
depends on the NC size.

IV. CONCLUSIONS

We have extended the Huang-Rhys model to the case
of the transitions between the degenerate electron and
hole levels in Si nanocrystals. Expressions for the mul-
tiphonon factors have been found for the electrons us-
ing the perturbation theory, which is a good approach
as far as we have shown that the electron-phonon in-
teraction is small enough for all considered nanocrys-
tal sizes. These factors contain interference contribu-
tions from different possible pathways through the virtual
states when multiple intervalley and a single intravalley
acoustic phonons are emitted. For holes we have reduced
the problem to the Huang-Rhys model introducing aver-
age values for the Huang-Rhys factors. We have shown
that phonon-induced relaxation of moderately excited
electrons and holes in Si nanocrystals occurs typically
on the picosecond timescale. The transitions can be even
faster if the interlevel energy separation is smaller than

50 meV, which corresponds to the largest possible acous-
tic phonon energy. The transition times on the order of
a nanosecond or even slower are also possible for certain
pairs of neighboring levels and nanocrystal sizes. For a
given pair of levels the variation of the relaxation rate
with the nanocrystal size can amount to several orders
of magnitude. Our results suggest that these variations
are usually larger for the electron transitions than for the
hole transitions. We predict a stretched-exponential be-
havior of the decay rates in ensembles of Si nanocrystals
characterized by a certain size dispersion. The tempera-
ture leads to a moderate decrease of the relaxation times
due to the increased acoustic phonon populations but
does not qualitatively change the their dependencies on
the nanocrystal size.

Our results suggest that the carrier relaxation induced
by the emission of one or several phonons is a very ef-
ficient energy relaxation mechanism for moderately ex-
cited carriers in Si nanocrystals. Whereby, in the case
of the multiphonon transition, the most effective relax-
ation pathways are provided by the emission of one or
several optical phonons and the emission or the absorp-
tion of a single acoustic phonon. Emission of multiple
acoustic phonons without optical phonons is relatively
ineffective and emission of a single or multiple optical
phonons without acoustic phonons can be effective only
for a vanishingly small fraction of the nanocrystals. Com-
peting relaxation mechanisms due to radiative intraband
transitions23 and due to transitions induced by the in-
teraction with vibrational modes of the amorphous polar
environment68 lead in most cases to considerably smaller
transition rates. One should mention that defects at the
NC boundary can introduce competing and even faster
relaxation channels. For Si nanocrystals with diameters
below 3 nm picosecond and even subpicosecond relax-
ation lifetimes were predicted under certain conditions.69

However, these conditions can be very restrictive, espe-
cially for moderately excited carriers. The role of the
defects in Si NCs surrounded by the SiO2 matrix needs
further detailed investigation.

This work was supported in part by the Russian
Foundation for Basic Research. The work of SVG was
supported in part by the NSF under grant No. HRD-
0833178.

Appendix 1.

The matrix element in Eq. (32) can be written explicitly as

〈i|eiqrνq · K̂|i〉 =
∫
dr eiqrνq · si(r) ,

where

si(r) = Ψ
†
i (r)KΨi(r) (A1.1)
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and the matrices Kα (α = x, y, z) are defined in Eq. (11). The phonon polarization vectors can be chosen as (in the
Cartesian basis)

νL =
q

q
, νT1 =

1√
q2x + q2y

(qy,−qx, 0)T , νT2 =
1

q
√
q2x + q2y

[
qx qz , qy qz ,−

(
q2x + q2y

)]T
. (A1.2)

The orthogonality of the vectors ν leads to the equation
∑

ν

|ν · s|2 = s2

and the following identity

1

V

∑

q,ν

∣∣∣∣
∫
dr eiqrν · si(r)

∣∣∣∣
2

=
1

V

∑

q,ν

∫
dr

∫
dr′ [ν·si(r)] [ν·si(r′)] eiq (r−r′)

=

∫
dr
∑

ν

|ν·si(r)|2 ≡
∫
dr

∑

α=x,y,z

|Ψ†
iKαΨi|2 .

(A1.3)

Equations (A1.3) allows one to represent Eqs. (27) and (29) as Eqs. (33) and (35) , respectively.

To find the values of Ψσ1,†
F1,M1

KαΨ
σ1

F1,M1
in Eqs. (36) and (35) we rewrite the solutions (1)–(3) as

Ψ
hm
FM (r) = Φ

F−1
FM (r) + Φ

F−1
FM (r), (A1.4)

Ψ
hh
FM (r) = Φ

F
FM (r), Ψ

hl
FM (r) = Φ

1
00(r),

where

Φ
L
FM (r) = RL

F (r)
∑

σ

[YL
FM (r)]σeσ, [YL

FM (r)]σ = CFM
L,M−σ,1,σYFM−σ(r/r) , (A1.5)

eσ are the covariant cyclic orts composed of the Bloch functions, CF,M
L,M−σ,1,σ are the Clebsch-Gordan coefficients, and

YFM−σ(r/r) denote the corresponding spherical harmonics.45 In the basis of (e1, e0, e−1) we get

Kx = (i/
√
2)
(

0 −1 0
1 0 1
0 −1 0

)
,Ky = (1/

√
2)
(

0 1 0
1 0 −1
0 −1 0

)
,Kz = i

(
0 0 −1
0 0 0
1 0 0

)
. (A1.6)

Therefore, we arrive at the following expressions for the solutions of type hm:

Ψ
hm,†
FFz

KxΨ
hm
FFz

= i
∑

L1,L2=F±1

∑

M1,M2=Fz,Fz±1: M1−M2=1

Λ∗
FL1M1

(r) ΛFL2M2
(r) + c.c. , (A1.7)

Ψ
hm,†
FFz

KyΨ
hm
FFz

=
∑

L1,L2=F±1

∑

M1,M2=Fz ,Fz±1: M1−M2=1

Λ∗
L1M1

(r) ΛL2M2
(r) + c.c. ,

Ψ
hm,†
FFz

KzΨ
hm
F,Fz

= i
∑

L1,L2=F±1

Λ∗
F,L1,Fz−1(r) ΛF,L2,Fz+1(r) + c.c. ; (A1.8)

whereas, for the solutions of type hh, one obtains

Ψ
hh,†
FFz

KxΨ
hh
FFz

= iΛ∗
F,F,Fz−1(r) ΛF,F,Fz

(r) + i Λ∗
F,F,Fz

(r) ΛF,F,Fz+1(r) + c.c. ,

Ψ
hh,†
FFz

KyΨ
hh
FFz

= −Λ∗
F,F,Fz−1(r) ΛF,F,Fz

(r)− Λ∗
F,F,Fz

(r) ΛF,F,Fz+1(r) + c.c. ,

Ψ
hh,†
FFz

KzΨ
hh
FFz

= iΛ∗
F,F,Fz−1(r) ΛF,F,Fz+1(r) + c.c. ; (A1.9)

and, finally, for the solutions of type hl, one gets

Ψ
hl,†
Fz

KxΨ
hl
Fz

= i
∑

M1,M2=Fz ,Fz±1: M1−M2=1

Λ∗
0,1,M1

(r) Λ0,1,M2
(r) + c.c. ,

Ψ
hl,†
Fz

KyΨ
hl
Fz

=
∑

M1,M2=Fz,Fz±1: M1−M2=1

Λ∗
0,1,M1

(r) Λ0,1,M2
(r) + c.c. ,

Ψ
hl,†
Fz

KzΨ
hl
Fz

= iΛ∗
0,1,Fz−1(r) Λ0,1,Fz+1(r) + c.c. . (A1.10)
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For the optical-phonon transition matrix elements between the hh and hm states (nonadiabatics) we get

Ψ
hh,†
FFz

KxΨ
hm
F ′F ′

z
= i

∑

L′=F ′±1

∑

M=0,1

[
Λ∗
F,F,Fz−1+M (r) ΛF ′,L′,F ′

z+M (r)− Λ∗
F,F,Fz−1−M (r) ΛF ′,L′,F ′

z−M (r)
]
,

Ψ
hh,†
FFz

KyΨ
hm
F ′F ′

z
= −

∑

L′=F ′±1

∑

M=0,1

[
Λ∗
F,F,Fz−1+M (r) ΛF ′,L′,F ′

z+M (r) + Λ∗
F,F,Fz−1−M (r) ΛF ′,L′,F ′

z−M (r)
]
,

Ψ
hh,†
FFz

KzΨ
hm
F ′F ′

z
= i

∑

L′=F ′±1

[
Λ∗
F,F,Fz−1(r) ΛF ′,L′,F ′

z+1(r)− Λ∗
F,F,Fz+1(r) ΛF ′,L′,F ′

z−1(r)
]
. (A1.11)

The functions Λ introduced above are related to the contravariant cyclic components of the vectors Φ given by
(A1.5) as follows

ΛF,L,M∓1 = ∓[ΦL
FM ]±1 , ΛF,L,M = [ΦL

FM ]0/
√
2 . (A1.12)

Appendix 2.

The matrices Hq̂
ν can be found from Eq. (12) after substitution of the polarization vectors (A1.2):

H
q̂
L =




a+
b

6
(3 cos2 θ − 1)

b

2
√
2
sin 2θe−iϕ b

sin2 θ

2
e−2iϕ

b

2
√
2
sin 2θeiϕ a− b

3
(3 cos2 θ − 1) − b

2
√
2
sin 2θe−iϕ

b
sin2 θ

2
e2iϕ − b

2
√
2
sin 2θeiϕ a+

b

6
(3 cos2 θ − 1)



, (A2.1)

H
q̂
T1

=
b

2




0
i

2
√
2
sin 2θe−iϕ i sin2 θe−2iϕ

− i

2
√
2
sin 2θeiϕ 0 − i

2
√
2
sin 2θe−iϕ

−i sin2 θe2iϕ
i

2
√
2
sin 2θeiϕ 0



, (A2.2)

H
q̂
T2

=
b

2




−1

2
sin 2θ

1√
2
cos 2θe−iϕ sin(2θ)e−2iϕ

1√
2
cos 2θeiϕ sin 2θ − 1√

2
cos 2θe−iϕ

sin(2θ)e2iϕ − 1√
2
cos 2θeiϕ −1

2
sin 2θ



, (A2.3)

where θ and ϕ are, respectively, the polar and the azimuthal angles of the vector q.

Appendix 3.

Here we discuss the derivation of Eq. (36) for the effec-
tive Huang-Rhys factor accounting for the multiphonon
transitions between the degenerate hole levels. We use
the Hamiltonian (4) and write the hole wave function as

Ψ̂(t) =

[
∑

M2

v̂M2
(t)c†2,M2

+
∑

M1

ŵM1
(t)c†1,M1

]
|0〉 (A3.1)

where |0〉 is the hole vacuum and v̂M2
(t), ŵM1

(t) are the
operators acting on the phonon subsystem. Here the in-
dex Mi runs over values −Fi, . . . , Fi (i = 1, 2). The wave
function (A3.1) satisfies the system of equations [follow-

ing from the Schrödinger equation written in the interac-
tion representation with respect to the free-phonon part
of the Hamiltonian (8)]:

i~
dv̂M2

dt
= ε2v̂M2

+
∑

M ′

2

H̃
M2M

′

2

2,opt v̂M ′

2
,

i~
dŵM1

dt
= ε1ŵM1

+
∑

M ′

1

H̃
M1M

′

1

1,opt ŵM ′

1
+
∑

M ′

2

H̃
M1M

′

2

2→1,acv̂M ′

2
,

(A3.2)
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where

H̃
MiM

′

i

i,opt =
∑

q,ν

[
V

MiM
′

i

i,qν bqνe
−iωqνt + (V

M ′

iMi

i,qν )∗b†qνe
iωqνt

]
,

H
M1M

′

2

2→1,ac =
∑

k,ν

[
V

M1M
′

2

12,kν akνe
−isνkt + (V

M ′

2M1

12,kν )∗a†kνe
isνkt

]
.

The initial conditions for the system (A3.2) are

v̂M2
(t=0)=1, v̂M ′

2
(t=0)= ŵM1

(t=0)=0 , M ′
2 6=M2,
(A3.3)

in the case when the state |2,M2〉 is initially populated.
The relaxation rate is given by

W (M2) = lim
t→∞

1

t

[
∑

M1

〈〈ŵ†
M1

(t)ŵM1
(t)〉〉

]
, (A3.4)

where the double angular brackets denote averaging over
the thermal distribution of the phonon states. The prob-
ability averaged over the multiplet of the possible initial
hole states is given by

W =
1

2F2 + 1

∑

M2

W (M2) . (A3.5)

For a given number p of emitted optical phonons one
can employ a perturbation theory to find the transition
probability Wp (cf. Sec. III, B). Let us consider the case
when exactly one optical and one acoustic phonons are
emitted. For non-degenerate levels one would get

W1 =
1

τac
(N~ωopt

+ 1)S , (A3.6)

i.e. the result is proportional to the Huang-Rhys factor
S.
Generalization of Eq. (A3.6) for the case of the degen-

erate initial and final levels leads to the following expres-
sion

W1 =
2π

ω2
opt~

3
(N~ωopt

+ 1)
1

2F2 + 1

×
∑

M1,M2

∑

q,ν

∑

k,η

∣∣∣MM1M2

qν,kη

∣∣∣
2

× (N~sηk + 1)δ(ε2−ε1−~ωopt−~sηk) ,

(A3.7)

where

MM1M2

qν,kη=
∑

M ′

1

V
M1M

′

1

1,qν V
M ′

1M2

12,kη −
∑

M ′

2

V
M1M

′

2

12,kη V
M ′

2M2

2,qν . (A3.8)

We would like to stress that the transition probabil-
ity is determined by a superposition of the two dis-
tinct processes with different intermediate virtual states:

|2,M2〉 ~ωac−−−→ |1,M ′
1〉

~ωopt−−−→ |1,M1〉 and |2,M2〉
~ωopt−−−→

|2,M ′
2〉

~ωac−−−→ |1,M1〉.
We proceed by diagonalizing the Hamiltonians (5) for

each optical phonon mode (q,ν) and find the correspond-

ing eigenstates |1, M̃1(q,ν)〉 and |2, M̃2(q,ν)〉 such that

the matrices V
M̃2(q,ν)M̃

′

2(q,ν)
i,qν become diagonal. To sim-

plify notations we omit the indices (q,ν) in the super-
scripts. In the new basis the matrix (A3.8) takes the
form

MM̃1M̃2

qν,kη = V M̃1M̃2

12,kη

(
V M̃1M̃1

1,qν − V M̃2M̃2

2,qν

)
. (A3.9)

In order to decouple the acoustic phonon and the opti-

cal phonon contributions we replace V M̃iM̃i

i,qν by its value
averaged over the multiplet:

Vi,qν =
1

2Fi + 1

∑

M̃i

V M̃iM̃i

i,qν . (A3.10)

This leads to the following expression

MM̃1M̃2

qν,kη = V M̃1M̃2

12,kη (V1,qν − V2,qν) . (A3.11)

As a result, we achieve factorization of the matrix ele-
ment in Eq. (A3.7):

1

2F2+1

∑

M̃1,M̃2

∣∣∣MM̃1M̃2

qν,kη

∣∣∣
2

= |V1,qν − V2,qν |2

× 1

2F2+1

∑

M̃1,M̃2

∣∣∣V M̃1M̃2

12,kη

∣∣∣
2

.

(A3.12)

This expression is invariant under the basis transforma-
tions for both the initial and the final hole multiplets. In
particular, these basis states may be chosen to be inde-
pendent of the phonon mode. Finally, we arrive at the
result

W1 =
1

τac
(N~ωopt

+ 1)Sav , (A3.13)

where Sav is given by Eq. (36) and 1/τac is given by
Eq. (38). Comparing Eq. (A3.13) to Eq. (A3.6) one can
identify Sav with an effective Huang-Rhys factor for mul-
tiphonon transitions between the hole multiplets.

Appendix 4.

Generally, Vp is given by the sum of p + 1 terms,
describing the interference between the Hamiltonians

H̃
(opt)
i and H̃

(opt)
f ,

Vp =
1

(~ωopt)p

∑

q1,q2...qp

p∑

m=0

(−1)m

p!(m− p)!

× b(2→1)†
q1

b(1→2)†
q2

. . . b(j→3−j)†
qp︸ ︷︷ ︸

p factors

×Bi,q1
. . . B∗

i,qm︸ ︷︷ ︸
m factors

Bf,qm+1
. . . B∗

f,qp︸ ︷︷ ︸
p−m factors

.

(A4.14)
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It is instructive to analyze the cases when p = 1, 2 and
Eq. (A4.14) can be presented in a compact form. For
p = 1 the value of Vp is obtained by a single iteration

over the Hamiltonians H̃
(opt)
i,f :

V1 =
1

~ωopt

∑

q

b(2→1)†
q (Bi,q −Bf,q) . (A4.15)

The two terms in Eq. (A4.15) stem from the diagonal
electron-phonon interaction in the initial and the final
states. These two channels of relaxation are schemati-
cally illustrated in Figs. 7(a) and 7(b): an electron can
either subsequently emit one optical and one acoustic

phonon or vice versa. The correlator 〈V †
1 V1〉 is given by

〈V †
1 V1〉 =

N~ωopt
+ 1

(~ωopt)2

∑

q

|Bi,q −Bf,q|2 . (A4.16)

Using the identity

∫
d3q

(2π)3

∣∣∣∣
∫

d3rf(r)eiqr
∣∣∣∣
2

=

∫
d3r|f(r)|2 (A4.17)

we recast Eq. (A4.16) as

〈V †
1 V1〉 = (N~ωopt

+ 1)σeα̃i→f (p = 1) , (A4.18)

where α̃i→f (p = 1) is given by

α̃i→f (p = 1) ≡ S = R3

∫
d3r(|ψi(r)|2 − |ψf (r)|2)2 .

(A4.19)
This expression is exactly the same as in the single valley
case, with the Huang-Rhys factor S = σeS, since the
relaxation process shown in Fig. 7 involves only one of
the two types of intervalley phonons. A more interesting
case is realized for p = 2, when two intervalley phonons
are emitted. The three possible relaxation channels for
p = 2 are illustrated in Fig. 8. They are described by

V2 =
1

2(~ωopt)2

∑

q,q′

b(2→1)†
q b

(1→2)†
q′

× (Bi,qB
∗
i,q′ − 2Bi,qB

∗
f,q′ +Bf,qB

∗
f,q′) .

(A4.20)

so that the result can be expressed in powers of S. The

correlator 〈V †
2 V2〉 is calculated using the identity

〈b(2→1)
q b

(1→2)
q′ b

(2→1)†
k b

(1→2)†
k′ 〉 = (N~ωopt

+ 1)2δk,qδk′,q′ .

(A4.21)
The result reads

〈V †
2 V2〉 = (N~ωopt

+ 1)2σ2
e α̃i→f (p = 2) . (A4.22)

Here

α̃i→f (p = 2) ≡ 1

4
(S2 + 2SU − 2C2) , (A4.23)

valley 1 valley 2 valley 1 valley 2

(a) (b)

FIG. 7. Schematic illustration of relaxation processes with
emission of one optical and one acoustic phonons, contribut-
ing to Eq. (A4.15). Inclined and vertical lines indicate inter-
valley optical and intravalley acoustic phonons, respectively.

valley 1 valley 2 valley 1 valley 2

(a) (b)

valley 1 valley 2

(c)

FIG. 8. Schematic illustration of relaxation processes with
emission of two optical and one acoustic phonons, contribut-
ing to Eq. (A4.20). Inclined and vertical lines indicate inter-
valley optical and intravalley acoustic phonons, respectively.

while the integrals U and C are given by

U = R3

∫
d3r|ψi(r)|4 , (A4.24)

C = R3

∫
d3r|ψi(r)|2(|ψf (r)|2 − |ψi(r)|2) . (A4.25)

Equation (A4.23) is different from the simple single-
valley expression S2/2!, because both types of phonons
are involved in the transition. Indeed, in the single-valley

case, when b
(2→1)
q ≡ b

(1→2)
q′ ≡ bq, Eq. (A4.20) can be fac-

torized:

V2 =
1

2(~ωopt)2

∑

q

b†q(Bi,q−Bf,q)×
∑

q′

b†q′(B
∗
i,q′−B∗

f,q′) .

(A4.26)
We have also obtained the quantities

〈V †
p Vp〉 = (N~ωopt

+ 1)pσp
e α̃i→f (p) (A4.27)

for p = 3 . . . 5. For p = 3 the factor α̃i→f is given by

α̃i→f (p = 3) =
1

3
SU2 − 1

3
UC2 +

1

3
UCS − 1

3
C3

− 1

12
C2S +

1

12
S2U +

1

18
S3 .

(A4.28)

The cases of p = 4, 5 are also trivial but the results are
too cumbersome to be given here. It is worth to note,
however, that the factor α̃i→f (p) can be always presented
in powers of the integrals U ,S, and C.
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The relaxation process considered above is similar to
that studied in Ref. [18]. In the latter work the virtual
intermediate states for the multiphonon transitions orig-
inated from the levels of the size quantization different
from the initial and the final levels. In our case the vir-
tual intermediate electron states originate from different
valleys but are characterized by the same envelope func-
tions as the initial or the final states.
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9 F. Trojánek, K. Neudert, M. Bittner, and P. Malý, Phys.
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