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We show that in a quantum wire the effective spin-orbit-induced internal magnetic field leads to
a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An
applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances
the resonance absorption by several orders of magnitude. The component of applied field parallel
to the spin-orbit field separates the resonance frequencies of right and left movers and enables a
linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin
currents.
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I. INTRODUCTION.

Recently nanodevices have been engineered using materials with predesigned properties.1–7 This has revitalized
interest in comparatively weak electron interactions in nanowires and led to many fascinating discoveries. One of the
most important weak interaction is the spin-orbit interaction (SOI). A quantum nanowire with SOI can be formed
during growth,3–7 or from a semiconducting film or heterojunction by a proper configuration of the gate electrodes,8

with a substrate that violates reflection symmetry.
This paper considers electron spin resonance (ESR) in nanowires with SOI. For ESR in metals an applied magnetic

field B gives distinct Fermi surfaces for up and down spins, with the same Zeeman splitting for all electrons. An
almost uniform applied ac-field of frequency equal to the Zeeman energy then induces sharp transitions between states
with the same momentum and opposite spin.

Even a weak SOI changes this picture. It creates an internal “magnetic field” BSO that depends linearly on the
electron momentum for both Rashba and Dresselhaus SOI.9–11 Therefore, for large enough SOI the ESR is smeared
out. As indicated by Shekhter et al,12 for 2D systems with only a Rashba interaction, the smearing is comparatively
small at temperatures well below the Fermi energy, leading to a narrow ESR — a “chiral resonance”. However, Ref.
12 notes that the simultaneous presence of both Rashba and Dresselhaus interactions smears out the resonance since
BSO and resonance frequency ωr depend on the 2D momentum direction.

This paper exploits the fact that anisotropic broadening is completely absent for a quantum wire (1D) as BSO has
the same direction for all right-moving particles and the opposite direction for the left-movers. Since the Rashba-
Dresselhaus SOI is much less than the Fermi energy, the spin-flip energy is well defined. Thus the ESR line is narrow at
low temperatures. The spin-flip resonance adsorption in the wire in the absence of an applied magnetic field B is very
weak since it is magnetic dipole induced. The main predictions of this paper are: i) A component of B perpendicular
to BSO activates electric dipole spin-flip transitions and therefore strongly enhances the resonance effects. Typically
a B that is a tenth of BSO increases the resonance absorption by 4 orders of magnitude, while changing ωr by only
1%. ii) The component of B parallel to BSO has little effect on the absorption, but it does separate the resonances of
the right and left movers. Linearly polarized resonance radiation then produces a net magnetization and dc electric
and spin currents.

The SOI-induced dipole spin-flip excitation in 2D by an ac electric field E polarized in plane was considered in
Ref. 12. Since, because of the SOI, spins in 2D are not collinear the excitation probability is almost independent of
B. Previously Rashba and Efros13 considered a similar problem, but with an ac E polarized perpendicularly to the
plane. To ensure a narrow resonance in this system, B must significantly exceed BSO. The authors concluded that
a tilted B is necessary to activate the electric-field-spin interaction. Due to the very high symmetry of their system,
their spin-flip probability is proportional to the 6-th power of B (instead of the square, as in the present case). The
resulting probability is very small for realistic field values.

This paper is organized as follows: in Section II, we present the electronic spectrum and eigenstates with SOI
included. We show that there is an energy splitting for electrons with different spin projection. In Section III,
we consider the effective interaction of the electron spin with an ac electric field, with certain details presented in
Appendix A. Section IV discusses the dynamic generation of steady-state currents and magnetization. Relaxation
processes are discussed in Section V, with certain details given in Appendix B. Numerical estimates are made in
Section VI. Finally, we present our conclusions in Section VII.

II. ELECTRONIC SPECTRUM AND EIGENSTATES.

We consider type III-V semiconductors and only their electron bands, to avoid complications associated with
degeneracy of the hole band. In p-doped semiconductors, analogous effects of the same order of magnitude should
occur for the light holes (with J = 3/2 and Jz = ±1/2, not dissimilar to the present case of S = 1/2, Sz = ±1/2, where
photons can cause transitions between the two states) but not for the heavy holes (with J = 3/2 and Jz = ±3/2, for
which photons cannot cause transitions between the two states) or the split-off band (with J = 1/2 and Jz = ±1/2 but
too high an energy of excitation). The 1D electron density n is assumed to be sufficiently large and the temperature
sufficiently low to ensure a degenerate Fermi gas. Electron-electron Coulomb interactions, i.e. Luttinger liquid effects
in a 1D electron,14,15 will be neglected.16,17 We also assume that the wire is narrow enough to exclude multiple
channels.

In 1D the most general form of the SO interaction, including both Rashba and Dresselhaus terms, is HSO =
(ασx + βσy) p, where p is the 1D momentum along the wire direction x,18 and σ are the Pauli spin matrices. The
total Hamiltonian, without impurity scattering, also includes the kinetic energy p2/2m∗ and the Zeeman term −bσ,
where b = gµBB/2 has units of energy. Let us introduce a unit vector n in the direction αx̂+ βŷ of BSO and define

the longitudinal and transverse components of magnetic field: b = b‖n + b⊥. With γ ≡
√
α2 + β2 the SO velocity,
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FIG. 1. (color online) Left part: Energy vs momentum in given after (1) Thick parts of the spectrum are occupied. The spin
reversing excitations of the occupied states by ac electric field are shown. Two transitions are indicated by long vertical arrows.
Right part: The geometry and directions of the applied magnetic field B and internal BSO ‖ ~n are shown.

the total Hamiltonian then reads:

H = p2/2m∗ +
(
γp− b‖

)
nσ − b⊥σ. (1)

Its eigenvalues are E (p, σ) = p2/2m∗ + σq,where q =

√(
γp− b‖

)2
+ b2

⊥ and σ = ±1 gives the projection of the

electron spin along the total effective magnetic field Be ≡ B + BSO and is the eigenvalue of the operator

Σ =

∣∣γp− b‖∣∣
q

(
n +

b⊥
γp− b‖

)
σ. (2)

For a nonzero transverse magnetic field b⊥, the direction of spin quantization depends on momentum. Fig.1 gives
the energy vs. magnetic field for small magnetic fields |b| � p2

F /2m
∗, with two slightly distorted Rashba parabolas

shifted vertically in opposite directions and an avoided crossing (Fig. 1). Here b‖ causes the reflection asymmetry,
whereas b⊥ causes the avoided crossing. The four Fermi momenta correspond to left and right movers and the two
values of σ.

For a typical experimental setup the SO velocity γ � vF = pF /m
∗. If |b| � γpF then the four Fermi momenta

differ only slightly from ±pF = ±π}n/2 (the Fermi momenta of the wire with BSO = B = 0) and are given by

pστ = τpF − σm∗
[
γ − τ

b‖

pF
+

b2
⊥

2pF
(
γpF − τb‖

)] , (3)

where τ = ±1 indicates right (R) and left (L) movers. In the ground state electrons with spin projection σ fill the
momentum interval from pσ− to pσ+.

All states in the interval (p−−, p++) are doubly occupied; (p+−, p−−) and (p++, p−+) are singly occupied (Fig. 1).
A net spin-flip is possible only in the singly occupied intervals (p++, p−+) and (p+−, p−−), and requires energy

Esf = 2
(
γ|p| − τb‖

)
. (4)

Thus, for b‖ 6= 0, there are two different resonance frequencies corresponding to the right and left movers τ = ±1.

For γ � vF , the spin-flip energies are centered at E0
sf = 2

(
γpF − τb‖

)
and lie in narrow energy bands of intrinsic

width ∆, where

∆ = 4m∗γ
(
γ − τb‖/pF

)
= 2γE0

sf/vF � E0
sf . (5)

Spin-flip processes can be excited by a resonant applied field with frequency ωr = E0
sf/}. The temperature must

satisfy T < }ωr/kB to avoid thermal smearing.

III. TRANSITION RATE DUE TO LINEARLY POLARIZED AC ELECTRIC FIELD

Let an ac field be linearly polarized along x:

E (t) = x̂E0 (t) e−iω0t + x̂E∗0 (t) eiω0t (6)
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and have spectral intensity I (ω) centered about ω0 with extrinsic width ∆ω � ω0. Here E0 (t) is an envelope with
frequencies in the interval ∆ω. Averaged over a time interval t′ satisfying 2π/ωr � t′ � ∆ω−1, the two-time correlator

of field can be represented by an integral: E∗0 (t)E0 (t′) = (2π)
−1 ∫∞

−∞ Iωe
iω(t−t′)dω. E interacts with the spin since

p in the Hamiltonian (1) must be replaced by p+ e
cA, where A is the x−component of vector potential. We employ

the Weyl gauge, where the electric potential Φ = 0, and thus

A = − ic
ω0

(
E0 (t) e−iω0t − E∗0 (t) eiω0t

)
. (7)

The interaction between electric field and spin arises from the middle term of (1), and is given by

Hint = − ieγ
ω0

(
E0 (t) e−iω0t − E∗0 (t) eiω0t

)
nσ. (8)

For b⊥ = 0, the interaction Hamiltonian is proportional to the same spin projection nσ that enters Eq. (1), and
therefore does not produce spin reversal. Then only magnetic dipole transitions can reverse the spin.19 P. Upadhyaya et
al19 note that the SOI makes the magnetization and the internal “magnetic” field depend on the transverse coordinate,
which could couple the electric field along y to the spin. We find that to first and the second order in the small SOI
parameter γ/vF the contribution of this variation to the electric dipole coupling vanishes. The remaining, third order,
coupling is comparable to or less than the magnetic dipole coupling and can be neglected. (The details of our analysis
are given in Appendix A.) This property is specific to 1D systems. In 2D the direction of BSO changes along with
the momentum direction. Thus almost any spin interacts with a linearly polarized electric field. In 1d b⊥ 6= 0 makes
electric field induced spin reversals not only possible, but more probable than, magnetic dipole spin reversals. The
matrix element 〈+|nσ |−〉 = 2 |b⊥| /E0

sf of the operator nσ produces spin reversal between the two eigenstates of
the operator Σ. Time-dependent perturbation theory gives that the spin-flip transition rate for an electron with

momentum p is w = 4e2γ2

}2ω2
0

(b⊥/E
0
sf )2I(2γ|p|/})−ω0

. On resonance, Iω ≈ 4E2
0/ (∆ω), which implies that

w ≈ 4e2E2
0

(
b⊥/E

0
sf

)2
/p2
F∆ω. (9)

The ratio of the electric and magnetic transition rates is (cb⊥/vFE
0
sf )2. For InGaAs the ratio c/vF is about 103.

Thus, for b⊥ ∼ 10−1E0
sf the transition rate (9) exceeds the magnetic dipole induced rate by 4 orders, whereas the

resonance frequency changes by only 1%.
The perturbation theory used above is valid if the average excited electron occupation number nex is small, i.e.

wτeff � 1, where τeff is a characteristic lifetime. In the ballistic regime the time of flight τf = L/vF plays the role
of τeff . If the back-scattering time τb is much less than τf , then diffusion occurs, with lifetime τeff = τ2

f /τb � τf .

Saturation occurs for all excitation processes subject to recombination at a rate w > τ−1
eff , so the probability of

excitation is min(wτeff , 1). For a narrow spectral width ∆ω, Rabi oscillations occur. The density of right-moving
states subject to spin-resonant excitation is

nsr = n∆ω/4ωr. (10)

IV. DYNAMIC GENERATION OF STEADY-STATE CURRENTS AND MAGNETIZATION.

Although we assume that b‖ � γpF , by Eqs. (4) and (5), if b‖ is greater than 1/4 of the linewidth ∆ ≈ 4m∗γ2, then
the resonance frequencies for right and left movers are distinct (with separation 4b‖/~) and can be excited separately.
Thus a resonant linearly polarized ac field can produce a magnetization as well as steady-state electric and spin
currents.

Consider a linearly polarized ac field that causes spin flips of right movers, so nex = δnR↑ = −δnR↓. For electrons

nex = min(wτeff , 1)nsr, (11)

with equal hole density. The spin per electron is s = nex/n. For wτeff < 1, nex = nsr, in the ballistic regime

je = −e(vR↑δnR↑ + vR↓δnR↓) = −2γenex = −enwτfγ2/vF , (12)

where vR↓ is negative.
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To show how diffusion affects the currents, for simplicity we neglect both spin-flip back-scattering and energy
relaxation, but retain back-scattering by impurities. Then a simplified set of kinetic equations reads:

dneR↑/dt = wnsr − (τ−1
eff + τ−1

b )δneR↑ + τ−1
b δneL↑, (13)

dneL↑/dt = −(τ−1
eff + τ−1

b )δneL↑ + τ−1
b δneR↑. (14)

The ac field creates equal numbers of electrons and holes with parallel spins, and this property is maintained by the
back-scattering if spin flip processes are negligible. The pumped spin is polarized approximately along n+b⊥/γpF . Its
steady-state absolute value per unit length is seff = wτeffnsr. The spin current js is js = gµBvFwnsrτeffτb/(2τeff +τb)
and je is

je = −2eγwnsr
τeffτb

2τeff + τb
+ ewnsr

b2⊥τeff(4τeff + τb)

γp2
F (2τeff + τb)

. (15)

Eq (15) shows that the electric current changes sign in the diffusive regime at b⊥ > γpF
√
τb/2τeff . This happens

because back-scattering equalizes the number of left and right moving excitations, whose velocities differ. For resonance
of left movers, at frequency ωLr = 2(γpF + b‖)/~, the magnetization and currents are reversed.

The generation of currents by an ac field is similar to the photogalvanic effect predicted by Ivchenko and Pikus20

and by Belinicher.21 More recently many clever modifications of this effect have been proposed and experimentally
observed (see the review22, and the articles23,24). They are mostly realized in 2D systems, but more importantly,
unlike 1D, non-resonant optical or infrared radiation is used. In most cases, dynamic magnetization and electric
current generation require a circularly polarized pumping field, whereas for a quantum wire in B 6= 0 the same effect
can be produced by a linearly polarized source. The 1D geometry implies a strong dependence of the resonance line
and transition probability on B.

V. RELAXATION PROCESSES

At low temperature the main mechanism for electron energy relaxation is phonon emission. If the corresponding
relaxation time τep becomes comparable to or less than τf , energy relaxation occurs before electrons and holes leave
the wire. The total spin is not changed but the excitation velocities may decrease because lower energy means lower
p and lower v. On the other hand, energy relaxation removes particles from the excited states and fills the depleted
states. This makes an increase of power in the applied ac field more effective. The electron-phonon interaction is
modeled by a standard Hamiltonian Hep = U

∫
∇u(x)ψ†(x)ψ(x), where u(x) is the displacement vector, ψ(x) is the

electron field operator and U is the deformation potential. Electrons in the wire are always 1D, but phonons can be
1D, 2D, or 3D depending on the experimental setup. Let M and a be the lattice cell mass and lattice constant, and
let u be the sound velocity. Then for an electron with momentum deviating by ξ from the Fermi-point, and emitting
3D phonons, the relaxation rate is

τ−1
ep =

U2

6π}MuvF

(
vF ξa

u}

)3

. (16)

The detailed calculation is given in Appendix B.
In 2D and 3D systems elastic scattering (diffusion) leads to spin relaxation by the Dyakonov-Perel mechanism25,26

because the direction of BSO depends on the direction of the p and is randomized by diffusion. In 1D for b⊥ = 0
the direction of BSO is the same for all electrons, so the Dyakonov-Perel mechanism does not apply. A suppression
of Dyakonov-Perel relaxation in 1D was found in numerical calculations27. However, for b⊥ 6= 0, spin flip does occur
in back-scattering, but its probability is of the order of (b⊥/E

0
sf )2 and can be neglected. Other spin relaxation

mechanisms, such as phonon emission combined with SOI, are much weaker.

VI. NUMERICAL ESTIMATES

All numerical estimates are for In0.53Ga0.47As. We take m∗ = 4.3 × 10−29 g ≈ 0.05me, α = 1.08 × 106 cm/s, and
g = −0.5.28–30 A typical 2D electron density is 2× 1012 cm−2. Take wire thickness a = 5 nm and width d = 10 nm.
Then we find 1D density n = 106 cm−1, pF = 1.65 × 10−21g·cm/s and vF = 0.38 × 108 cm/s. Assuming α = β, we

have ωr = 4.8 × 1012 s−1 (∼ 0.8 THz) and intrinsic width δ = ∆/~ ≈ 3.8 × 1011 s−1. The value E2
0 in Eq. (9) is

determined by the source power in the terahertz range. Although standard cascade lasers have power in the range
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1 mW - 1 W,31,32 the power can be strongly enhanced by non-linear devices, and in very short pulses (1 ps) it can
reach 1 MW.33–36 The free-electron laser at UCSB provides a continuous power of 1-6 kW for the frequency range
0.9-4.75 THz. On focusing, the energy flux rises to 40 kW/cm2.36 For the moderate flux S = 1 kW/cm2 , we find

E2
0 = 4πS/c = 4.19 erg·cm−3. For B⊥ = 10 T we have b⊥/E

0
sf = 0.05, and Eq. (9) yields w = 0.92 × 1010 s−1.

As noted above, w can be increased by changing the power or the focus area. For length L = 1 − 10 µm the
time of flight is τf = 2.6 × (10−12-10−11) s. The back-scattering time τb can be estimated from typical mobilities
µ = eτ/m∗ = (2 × 104 − 4 × 105) cm2/V-s in the bulk or film.37 Since the scattering cross-section area is much less
than the wire cross-section area, τ can be identified with τb. Typical values are τb = 5× 10−13− 10−11 s. In this case
the regime is either diffusive or marginally diffusive-ballistic.

First consider a ballistic regime with τf = 1.1 × 10−11 s. By Eq. (12) the electric current equals 1 nA. The ratio
of spin current to the electric current in units of elementary charges per second is vf/(2γ) ≈ 12. The magnetization
per electron, in Bohr magnetons, is nsr

n wτeff ∼ 0.004. Now consider a diffusive regime with τb = 1.1 × 10−12 s and

τf = 1.1×10−11 s, so τeff = 1.1×10−10 s. By Eq.(15) the electric current is I = je = 0.12 nA and the magnetization per
electron is 0.02µB . The temperature must be maintained below 2γpF /kB ≈ 35K. wτeff in this case is approximately
1, indicating that saturation has been attained. For energy relaxation we assume 3D phonons. For InGaAs we take
U = 16 eV, u = 3.3 × 105 cm/s,38 a = 5Å, M = 1.8 × 10−22 g and ξ = m∗γ. Then by Eq.(8) τep = 1.4 × 10−12 s.
With 2D and 1D phonons the formulae differ, but numerical estimates give the same order of magnitude. This result
shows that, even in the ballistic regime, τep is usually much shorter than τf , so energy relaxation is substantial, which
decreases the currents.

VII. CONCLUSIONS

In a 1D degenerate Fermi gas the SOI gives rise to a spin resonance. We predict that in 1D this resonance is
extremely sensitive to the component of the applied magnetic field perpendicular to the internal BSO. The resonance
frequency is typically in the terahertz region with relative width depending linearly on the Dresselhaus and Rashba
SO constants. The applied longitudinal magnetic field (parallel to the internal SO field) separates the resonance
frequencies of the left and right movers, producing charge and spin currents. A non-zero component of the applied
magnetic field B perpendicular to BSO couples an ac electric field to the spin providing a very efficient spin-flip
mechanism. Otherwise, electron spin is flipped only by the weak magnetic dipole interaction. On resonance an ac
electric field linearly polarized along the wire produces a steady-state charge current, spin current, and magnetization.
These effects can be easily controlled by the static applied magnetic field and the gate voltage.
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Appendix A

In this appendix we present the calculation referred to in Sect. III, of the matrix element responsible for the spin
flipping due to coupling to the transverse electric field. We treat the spin-orbit interaction as a perturbation and show
that the matrix element is zero in the first and second order of the SOI coupling constants α and β. The first nonzero
contribution comes in the third order in spin-orbit interaction. We start from the same Hamiltonian as before. We
introduce the frame of reference with the x−axis along the wire, y−axis along the wide side of the cross section whose
linear size is denoted as W. Because we are only interested in the linear coupling to the y component of the electric
field, we take Ax, Az and the magnetic field B to be zero. Then the Hamiltonian, up to linear terms in the ac field,
reads:

H = Hkin +Hso +Hac (A1)
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where

Hkin =
p2
x + p2

y

2m∗
(A2)

Hso = px(ασx + βσy)− py(ασy + βσx) (A3)

Hac =
e

c
Ayυy (A4)

Here υy =
py
m∗ − (βσx + ασy) and we assume that the effective mass m∗ is the same in both x and y directions. Let

us represent the Hamiltonian (A1) without the last term as H = H0 + V, where H0 = Hkin + px(ασx + βσy) and the
perturbation is V = −py(ασy + βσx). The stationary states |n, px, τ〉0 of the Hamiltonian H0 are direct products of
the eigenstates of px, p

2
y and the spin operator τz = (ασx + βσy)/γ. The corresponding wave functions are

ψ(0)
n,px,τ = fn(y)eipxxχτ (A5)

Here fn(y) is the transverse part of the wave function, and χτ is a eigenspinor of τz with the eigenvalue τ = ±1.
The energy of the state |n, px, τ〉0 is E0

n,px,τ = E0
n,px + γpF , where E0

n,px = 0〈n, px, τ |Hkin |n, px, τ〉0. The first-order
perturbation theory correction to the wave function (A5) is:

ψ(1)
n,px,τ = −

∑
m 6=n,τ ′

|m, px, τ ′〉0

× 0〈m, px, τ ′ |(ασy + βσx)py|n, px, τ 〉0
E0
n,px − E0

m,px

(A6)

where we neglect the contribution of the first SOI term px(ασx + βσy) to the energies in denominator retaining the

leading term E0
n,px − E0

m,px . In order to calculate the sum in Eq.(A6) we note that py = im∗

~ [Hkin, y].Then this
equation can be simplified to read

ψ(1)
n,px,τ =

im∗

~
∑

m 6=n,τ ′
|m, px, τ ′〉0

× 0〈m, px, τ ′ |(ασy + βσx)y|n, px, τ 〉0 (A7)

Finally by choosing the frame of coordinates so that 〈n| y |n〉 = 0 and using the completeness relation
∑
m,τ ′
|m, px, τ ′〉0 0〈 m, px, τ ′| =

I, we find the first order correction to the eigenstate |n, px, τ〉0

|n, px, τ〉1 =
im∗

~
(ασy + βσx)y |n, px, τ〉0 (A8)

Now we consider the effect of the transverse ac electric field. We are interested in the off-diagonal term of the operator
e
cAyυy for the states of a fixed band, i.e. in the matrix element

e

c
Ay 〈n, px,−| υy |n, px,+〉 (A9)

where + and − represent the upper and down eigenstates for the spin opeartor τz, respectively. Again employing the
Heisenberg equation υy = i

~ [Hkin +Hso, y], one can transform the matrix element (A9) as follows:

〈n, px,−| υy |n, px,+〉

=
i

~
(En,px,− − En,px,+) 〈n, px,−| y |n, px,+〉 (A10)

The energies belonging to a fixed band n and different spin projections differ only because of the SOI. Therefore, an
expansion of the difference En,px,−−En,px,+ in terms of SOI coupling constants begins with a linear term of α and β:

En,px,− − En,px,+ ≈ −2γpx (A11)

Thus, to obtain the contribution to the matrix element (A10) linear in SOI coupling constants, it is necessary to
calculate the matrix element of y with the zeroth-order wave function |n, px, τ〉0 (τ = ±) for which the space and spin
variables are factored. Therefore, the matrix element of y contains the scalar product 〈−| +〉, which equals zero. To
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find the matrix element in Eq. (A10) to second order in α and β, we need to use |n, px, τ〉1 for the matrix element of
y. Then, using Eq.(A8), one finds

1 〈n, px,−| y |n, px,+〉0 + 0〈n, px,− |y |n, px,+〉1

=
im∗

~ 0〈n, px,− |(ασy + βσx)[y, y] |n, px,+〉0 (A12)

Since this matrix element is zero, the y component of the electric field produces no spin-flip processes in the second
order in α and β as well.

The quickest way to calculate the Hamiltonian Hac in the third order or, equivalently, the matrix element of y in
the second order goes through a unitary transformation U = eF , where F = −im

∗

~ y(ασy + βσx). Applying it to the
Hamiltonian (without the ac field term), and truncating the Baker-Hausdorff series at the second order of α and β

(recall that γ =
√
α2 + β2), we find:

HU = U(Hkin +Hso)U
−1 ≈ H + [F,H]

= H0 + VU + const (A13)

where

H0 =
p2
x + p2

y

2m∗
+ pxγτz (A14)

is the starting approximation Hamiltonian introduced earlier and

VU =
2m∗

~
(β2 − α2)ypxσz (A15)

is the transformed perturbation that is proportional to squares of the SOI constants. Note that the transformed
eigenstate |n, px, τ〉U obeys the same boundary conditions as the initial one. Thus, the transformed state |n, px, τ〉U
differs from zero approximation state |n, px, τ〉0 by the second order correction

|n, px, τ〉U,2 =
2m∗px

~
(β2 − α2)

∑
m6=n,τ ′

|m, px, τ ′〉0

× 0 〈m, px, τ ′| yσz |n, px, τ〉0
E0
n,px − E0

m,px

(A16)

The state vector we are looking for – |n, px, τ〉 = U−1 |n, px, τ〉U – has an additional term of the second order equal
to the operator F 2/2 acting on the zeroth order state. Since F 2 is proportional to unit operator, it does not contribute
to the matrix element in Eq. (A10). With Eq.(A5, A10, A11, A16), we obtain the matrix element to the third order
in α and β:

〈n, px,−| υy |n, px,+〉 = −
∑
m6=n

i

~
8m∗p2

x

~
γ(β2 − α2)

×
|0 〈m, px| y |n, px〉0|

2

E0
n,px − E0

m,px

(A17)

where we use matrix elements for spin operator σz between the eigenstates of the operator τz 〈±|σz |±〉 = 0 and
〈∓|σz |±〉 = 1. The zero order off-diagonal matrix element reads

0 〈m, px| y |n, px〉0 = −
8nmW sin(m+n

2 π)

π2(m2 − n2)2
(A18)

and

E0
n,px − E

0
m,px =

~2π2(n2 −m2)

2m∗W 2
. (A19)

Thus, the matrix element of the velocity υy from Eq. (A10) can be expressed in terms of an infinite series:

〈n, px,−| υy |n, px,+〉 = i(β2 − α2)γ
1024m∗2W 4p2

xn
2

~4π6

×
∑

m=n+odd

m2

(m2 − n2)5
(A20)
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For n = 1 the sum is
∞∑
k=1

4k2

(4k2−1)5 = π2(15−π2)
3072 ≈ 0.01648. We can now obtain the coefficient at e/cAyυy for the spin-flip

amplitude induced by the transverse electric field and it is given by

iγ
m∗2W 4p2

x(β2 − α2)

~4
× 0.0176 (A21)

If we let W = 10nm, pF = 1.65 × 10−21g·cm/s, α = 1.08 × 106cm/s and vF = 0.38 × 108cm/s, then we find that
the upper bound for the coefficient of γ, given by Eq.(A21), is ∼ 10−5. It is by 5 decimal orders less than the similar
coefficient of (e/c)Axτz. However, the latter does not produce a spin-flip transition. The transverse magnetic field

makes spin-flips possible but decreases the coefficient by a factor ( b⊥
γpF

)2 ≈ 0.01. Nevertheless the anisotropy ratio of

the amplitudes is about 0.001. The anisotropy of the spin-flip probability is about 10−6. Thus, resonant excitation by
an ac electric field polarized along the y−axis is very ineffective and practically unobservable. However, the amplitude
(A21) depends very strongly on W . Therefore, the width can not be increased significantly (by no more than a factor
of 3). On the other hand, a significant change of W would violate the condition of one channel.

Appendix B

In this appendix we derive the electron-phonon relaxation time τep. As noted in Section V, the standard Hamiltonian
for the electron-phonon interaction is

Hep = U

∫
∇u(r)ψ†(r)ψ(r)d3r (B1)

where u(r) (the displacement vector) and ψ(r) (the electron field operator) are given by the formulas

u(r) =
∑
q

√
~

2NMωq
(bqe

iq·r + b†qe
−iq·r)eq (B2)

ψ(r) =
2√

LxLyLz

∑
k

ake
ikx sin

πy

Ly
sin

πz

Lz
(B3)

Here N is the number of elementary cells in the crystal supporting the phonons (in 1d-case it coincides with the wire);
M is the mass of elementary cell; Lx, Ly and Lz are the linear sizes of the quantum wire in x, y and z directions.
ak is the annihilation operator for an electron with wave vector k; bq (b†q) is the annihilation (creation) operator for
a phonon with wave vector q. ωq = uq is the phonon frequency; u is the sound velocity; eq is the unit polarization
vector of the sound vibration.

We consider in some detail the case of 3D phonons and denote the components of q as qx, qy and qz. Putting u(r)
and ψ(r) defined by Eq. (B2,B3) into Hep and integrating over the coordinates within the wire, one arrives at the
following electron-phonon Hamiltonian in momentum space

Hep =
∑
k,q

√
~U2

2NMωq
f(qyLy)f(qzLz)(eq · q)(bq + b†−q)a†k+qx

ak (B4)

where f(x) = 2 sin(x/2)
x(x2/4π2−1) . At very low temperature the number of thermal excitations is small and can be neglected,

and dominantly the phonon emission due to Cherenkov effect leads to energy relaxation. In this process an electron
with momentum p above the Fermi momentum pF++ emits a phonon with momentum q and turns into an electron
with momentum p− ~qx. The probability of this process per unit time in first order perturbation theory is:

wep(p,q) =
πU2q

NMu
f2(qyLy)f2(qzLz)δ(Ep−~qx + ~ωq − Ep) (B5)

The additional assumption that qyLy � 1, qzLz � 1 simplifies the functions f(qyLy) and f(qzLz) to 1. Let the
electron in the initial state be a right mover with spin up (left movers can be considered similarly). In the phonon

emission process the spin projection is conserved except for terms of order ( b⊥
γpF

)2. In the final state the electron can

either remain a right mover or become a left mover. The corresponding probabilities per unit time are denoted by
ΓRR and ΓRL. In first order perturbation theory both can be expressed formally by the same integral

ΓRR,RL =
U2a3

8π2Mu

∫
qδ(Ep−~qx + ~ωq − Ep) (B6)
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where we have used the relation N = Vs/a
3 with Vs being the volume of the substrate and a its lattice constant. The

difference between ΓRR and ΓRL is due to different integration regions, determined by the energy and momentum
conservation laws. For the RR process with the initial electron momentum p++ + ξ the integration over qx proceeds
in the interval 0 ≤ ~qx ≤ ξ. In the RL process the value ~qx is close to 2pF . Considering first the RR process, we
find from energy conservation that q obeys the relationship q ≈ (vF /u)qx. With this relation the integration becomes
straightforward, resulting in

ΓRR =
U2

12~πMuvF

(
vF ξa

~u

)3

(B7)

For the RL process, conservation of energy can be satisfied only for ξ ≥ 2m∗u. For lower energies this process
does not contribute to the relaxation rate. The interval of intergration over qx well above the threshold is 2pF+
ξ < ~qx < 2pF + 2ξ. It is convenient to introduce a new variable κ = 2pF + 2ξ − ~qx varying in the interval (0, ξ).
In the same approximation conservation of energy implies ~q ≈ (vF /u)κ. After these simplifications the calculation
of ΓRL becomes elementary, resulting in ΓRL = ΓRR. Thus in total the relaxation probability for electrons due to the
electron-phonon interaction is given by Eq. (16).

For 2D phonons, similar calculations give the following result for ξ � 2m∗u:

1

τep
|2D =

U2a3vF ξ
2

2~3u3πdM
(B8)

where d is the thickness of the film.
For the velocity vF much larger than the sound velocity u, from the energy and momentum conservation laws we

know that forward scattering is impossible so only back scattering with ~q ≈ 2pF can occur. Following the same
derivation as above, we obtain the relaxation probability for 1D phonons as:

1

τep
|1D ≈

U2m∗a3

~2AMu
(B9)

where A is the area of the y − z surface of the substrate. The relaxation time for 2D phonons at d ≈ 10 nm has the
same order of magnitude as for 3D phonons. For 1D phonons, if A = 100nm2 then τep is about 300 times longer.
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