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Dynamical decoupling (DD) is an efficient tool for preserving quantum coherence in solid-state spin
systems. However, the imperfections of real pulses can ruin the performance of long DD sequences.
We investigate the accumulation and compensation of different pulse errors in DD using the electron
spins of phosphorus donors in silicon as a test system. We study periodic DD sequences (PDD) based
on spin rotations about two perpendicular axes, and their concatenated and symmetrized versions.
We show that pulse errors may quickly destroy some spin states, but maintain other states with high
fidelity over long times. Pulse sequences based on spin rotations about x and y axes outperform those
based on x and z axes due to the accumulation of pulse errors. Concatenation provides an efficient
way to suppress the impact of pulse errors, and can maintain high fidelity for all spin components:
pulse errors do not accumulate (to first order) as the concatenation level increases, despite the
exponential increase in the number of pulses. A symmetrized DD sequence cancels the first order
pulse errors. Our theoretical model gives a clear qualitative picture of the error accumulation, and
produces results in quantitative agreement with the experiments.

PACS numbers: 03.67.Pp, 03.65.Yz, 76.30.-v

I. INTRODUCTION

The state of a closed quantum system can be repre-
sented as a coherent superposition of the basis states,
where the phases and the amplitudes of the superposi-
tion coefficients specify the state. Coherent superposi-
tions of two-level quantum systems (qubits) can be clev-
erly employed for high resolution nuclear magnetic res-
onance (NMR) and electronic spin resonance (ESR),1,2

highly sensitive magnetometers,3–6 quantum information
processing and quantum computation.7,8 However, any
real quantum system interacts with its environment. The
interaction leads to the decay of the coherence between
the system’s basis states, and the decohered qubit loses
its useful properties. Different ways have been developed
to mitigate decoherence.9–12 Among others, the dynam-
ical decoupling (DD) approach looks extremely promis-
ing. DD is based on the ideas that underlie the spin echo
effect.13,14 A specially designed sequence of pulses is ap-
plied to the system, and modifies the system-environment
coupling in such a way that the impact of the environ-
ment is averaged out.15,16 A large number of efficient
DD sequences have been devised in the context of high-
resolution NMR.17 Experimental techniques for produc-
ing the pulses are well developed, especially in the ar-
eas of NMR and ESR. Furthermore, the threshold re-
quirements for application of DD are very modest. All
these advances make DD an appealing strategy in de-
coherence suppression, and DD is actively studied now,
both theoretically16,18–25 and experimentally.26–37

Among different DD schemes, in this paper we focus on
DD based on periodic structure, which has been broadly

studied and implemented. A basic DD scheme is the pe-
riodic dynamical decoupling (PDD), in which pulses are
repeatedly applied to the system with equal inter-pulse
delay.15,16 To suppress the effect of system-environment
interaction more efficiently, symmetrized versions of peri-
odic dynamical decoupling,17,38 and the concatenated dy-
namical decoupling (CDD) have been proposed.18,23,24,39

Performance of DD schemes can be different depending
on the noise spectrum of the bath, and has been exten-
sively studied for different qubit systems.20,30,31,34–36,40

Besides the bath dynamics, real qubits are subject also
to errors in the control pulses, which are often system-
atic, being caused by the instrumental imperfections.
Many research efforts have been devoted to achieving
single pulses with small errors, or alleviating the ef-
fect of finite pulse duration, including composite pulses,
soft pulses and Eulerian DD.38,41–45 Yet implementa-
tions of DD in QIP involve a large number of pulses
applied over long times, so that even small pulse imper-
fections could accumulate and seriously affect the decou-
pling fidelity. A comprehensive understanding of how
the systematic pulse errors accumulate in different DD
sequences is highly desirable. The effect of pulse er-
rors induced by the finite pulse duration has been stud-
ied in detail.30,39,46,47 The effect of systematic errors in
the rotation axis and angle on CDD has been studied
theoretically18 and experimentally,34,48 and has also been
discussed for dynamically corrected gates.46 Moreover,
for many traditional NMR/ESR experiments, the state
to preserve is known (e.g. prepared along a certain di-
rection) and the decoupling sequence can be chosen to
best maintain this state. The Carr-Purcell-Meiboom-
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Gill13pulse sequence, where π-pulses are applied to the
system along the x-axis, preserves the spin state along
the x-axis while the state along the y-axis is destroyed
by the accumulation of pulse errors. Quantum informa-
tion processing, however, requires any unknown state of
the qubit to be preserved, so DD must preserve all com-
ponents of the qubit state.

In this paper we analyze, both theoretically and ex-
perimentally, the performance of several DD protocols in
the presence of pulse imperfections, for different initial
states. As a testbed, we use a macroscopic ensemble of
electron spins of 31P donors in silicon, which constitute
a promising system for studying many fundamental as-
pects of QIP.49–51 Instead of errors in a single pulse, we
focus on the accumulation and compensation of system-
atic pulse errors on a scale of the whole DD sequence.
We study the performance of two-axis PDD, in which
the π-pulses are applied along two perpendicular axes al-
ternately, as well as its symmetrized and concatenated
versions. Decoupling fidelities for spin states along x, y
and z axes are examined.

We find that, in PDD, certain types of pulse errors
accumulated during the first half period of the sequence
are balanced out during the second half, hence have little
affect on the decoupling fidelity. Sequences with pulse
axes along x and y alternately (XY PDD) are mainly
affected by the in-plane component of the errors in pulse
axes, while sequences with pulses along x and z axes
(XZ PDD) are sensitive to multiple types of pulse error.
Such analysis could serve as a guide for choosing suitable
decoupling sequences according to specific experimental
situation.

We also find that some spin states are quickly de-
stroyed in the decoupling process, while other compo-
nents are maintained with high fidelities over long times.
Such a preservation of a particular spin component does
not imply good performance of the decoupling sequence,
but oppositely, results from the accumulation of the pulse
errors over long times.52 E.g., XY PDD preserves the spin
component along the z-axis, while XZ PDD preserves the
y component. XY-based DD sequences are found to out-
perform the XZ-based sequences. We analyze the depen-
dence of DD sequences on the accumulation of pulse er-
rors, and explain all these effects both qualitatively, with
a simplified analytical model and quantitatively, using
numerical simulations.

We also find that the concatenated DD protocols
(CDD) with two-axis control exhibit excellent immunity
to pulse errors, and preserve all spin components. The
robustness of CDD against systematic pulse errors has
been shown theoretically earlier.18 Our results provide
experimental confirmation of this feature of CDD: in the
evolution operator the pulse errors do not accumulate
to first order, in spite of the exponential growth of the
number of pulses.

The rest of the paper is organized as follows. In Sec. II,
we introduce the system and the DD sequences to be
studied. We present the theoretical model, and describe

the experiments. In Sec. III, we present the results of an-
alytical studies and numerical simulations, and compare
them with the experimental data. Conclusions are given
in Sec. IV.

II. THE SYSTEM AND THE DD PROTOCOLS

A. The phosphorus doped silicon system

Electron spins of P donors in silicon show long
relaxation times53,54 and coherence times,55 and
therefore constitute promising candidates for QIP
applications49,50,56,57 and for studying the basic prob-
lems of DD.26,50 Advanced ESR techniques can be used
to manipulate the spin states of the P donors.55,58 In
our experiments, isotopically purified bulk silicon sam-
ples were used,59 with 29Si concentration ∼ 800 ppm,
and the doping density of phosphorus ∼ 5 × 1014 cm−3.
Experiments were performed at a static (quantizing) field
of 3500 Gauss, and a temperature of 8 K. The longitu-
dinal relaxation time of the electron spin of P is T1 =
25 ms limited by the two-phonon Orbach process.55,60

The transverse relaxation time determined by spin echo
experiments is T2 = 4.6 ms, limited by instantaneous
diffusion.55,61,62 The “true” T2 of isolated donors extrap-
olates to about 60 ms, e.g. after suppressing the instan-
taneous diffusion.55

Dynamical decoupling works well when the inter-pulse
delay between the pulses is short compared to the typical
time scale of the noise of the bath. In our experiments,
the inter-pulse delay time is τ = 11 µs. We now examine
the time scales of possible interactions with the P electron
spins.
At donor density ∼ 5× 1014 cm−3, the typical mutual

flip-flop time of the P electron spins due to the dipolar
interaction is of the order of 100 ms, which is much longer
than the inter-pulse delay in the DD and the total dura-
tion of the experiment. We therefore can regard the P
electron spins as independent of each other.
The hyperfine coupling between the donor’s electron

spin and the donor’s 31P nuclear spin is rather large
(∼ 100 MHz),63 and only one hyperfine line is excited in
our experiments (i.e. we are working only within the sub-
space with a fixed z-projection of the 31P nuclear spin).
Thus, the presence of the 31P nuclear spin only slightly
renormalizes the resonance frequency of the donor’s elec-
tron spin, and can be neglected.
Spectral diffusion induced by the nuclear spins is a

major source of decoherence for Si:P system and other
dopants in semiconductors.64–67 In Si:P system, the P
donors are coupled to their surrounding 29Si nuclear spins
mainly via contact hyperfine interaction. The anisotropic
corrections caused by the admixture of the p-states and
the dipolar contribution to the hyperfine coupling, are
small.68 The dynamics of the 29Si nuclear spin bath, ei-
ther due to the flip-flops induced by the intra-bath dipo-
lar interaction or due to the electron-mediated virtual
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spin flips, could decohere the P spins.64–67,69 However,
in our experiment the concentration of 29Si is low (∼800
ppm) and the quantizing field B0 = 3500 Gauss, which
we take as directed along the z-axis, is huge compared to
the hyperfine coupling energy scale. Both types of flip-
flops of the nuclear spins are thus greatly suppressed on
the time scale of τ and on the timescale of the total ex-
periment. The characteristic spectral diffusion time has
been measured to be about 20 ms at 800 ppm of 29Si,70

which is larger than the inter-pulse delay by four orders
of magnitude. Therefore the 29Si nuclear spins can be
treated as static, contributing only an extra static field
acting upon the P spins along the z-axis. Moreover, since
the separation between the donor centers is very large,
the 29Si nuclei which are sufficiently strongly coupled to
one center interact very weakly with other donor centers
and each P electron spin can be considered as coupled to
its own nuclear spin bath.
The quantizing magnetic field of the magnet also fluc-

tuates. The fluctuations have a broad spectrum but the
noise power quickly decays as 1/f2 to become negligible
at frequencies higher than 1 kHz. The noise correlation
time is therefore much larger than τ and we can treat
the quantizing field as static but inhomogeneous over the
sample.
Therefore, the system under study is an ensemble of

independent electron spins. Each spin feels a different
static quantizing field, and an extra static field con-
tributed by the hyperfine interaction with the 29Si nu-
clear spins. The Hamiltonian describing a single phos-
phorus electron spin S is then

H = ωeS
z + γeBnS

z (1)

where ωe is the Zeeman frequency of the electron spin in
the static quantizing field, γe is the gyromagnetic ratio
for the P electron, and Bn is the overall effective field
acting on S due to interaction with the bath. Here and
below we adopt the system of units with ~ = 1. Tak-
ing into account the spatial inhomogeneity of the static
quantizing field, we represent ωe = ωe0 + δωe, where ωe0

is the average over the sample, i.e. the frequency corre-
sponding to the center of the ESR line. By performing
the standard rotating-frame transformation,13,73 ωe0 is
eliminated and the Hamiltonian (1) is transformed into

H = γeBS
z, (2)

where B = δωe/γe+Bn is the total field acting upon S in
the rotating frame. Accordingly, all analysis below is per-
formed in the rotating frame. The distribution function
of this field is determined in part by the initial density
matrix of the bath, and in part by the inhomogeneity of
ωe over the sample. The statistical properties of the field
B determine the ESR lineshape. Our measurements of
the free induction decay show that the ESR line has a
Gaussian shape, hence

P (B) =
1√
2πb2

exp [−B2/(2b2)] (3)

with variance b = 50 mG, which includes both the rms
coupling between the spins of the P donors and the bath,
and the inhomogeneity of the external quantizing field.
This experimental fact will be the starting point of the
further analysis.
To sum up, on the time scale of the inter-pulse delay

of DD (tens of microseconds), the electron spins effec-
tively live in a static inhomogeneous background mag-
netic field. The dephasing time T ∗

2 ∼ 1.6 µs of the P
spins due to such inhomogeneity is much smaller than
T2. Sequences of microwave-frequency pulses are applied
to decouple the P electron spins from the overall back-
ground magnetic field noise, and refocus the dephasing.
The electron spin state is expected to be preserved by
DD against the dephasing on a time scale of the order of
T2, where instantaneous diffusion becomes important.

B. Experimental setup

Our experiments were performed on a Bruker Elexsys
580 spectrometer with specially modified software to al-
low for generating large numbers (over 1000 in some ex-
periments) of microwave pulses, and a 20 watt contin-
uous wave solid state microwave power amplifier (Am-
plifier Research) which maintained microwave phase sta-
bility over the long pulse sequences. Experiments were
performed at an X-band microwave frequency of 9.8 GHz
and a static (quantizing) magnetic field of 3500 Gauss, at
temperature 8 K. The typical duration of a π-pulse was
0.18 µs. In most of the experiments the delay between
refocusing pulses was set to τ = 11 µs, short compared to
the characteristic times of all sources of noise known in
our system (see the detailed discussion in Section IIA).
For the donors in our Si sample the measured echo sig-

nal decays showed an excessive “phase noise” developing
at longer times (for example, at τ > 1 ms in a Hahn
echo experiment) arising from the fluctuating magnetic
field B0 of the magnet.50 The power spectrum of the field
noise (Gauss2 ·Hz−1) varies approximately as 1/f2 with
an amplitude ∼ 0.5 mG·Hz−1/2 at 10 Hz. In the experi-
ments we used a large Si sample, with enough donors to
enable the acquisition of an echo without signal averag-
ing. Thus the field noise could be eliminated with mag-
nitude detection, e.g. squaring and adding the in-phase
and quadrature components of the echo signal.50 This
magnitude detection approach was used for an accurate
extraction of the T2 relaxation times from the measured
decays.
The large Si sample also means that the mi-

crowave magnetic field (Bp) is not homogeneous over
its entire volume in the pulsed ESR resonator (a
Bruker dielectrically-loaded cylindrical cavity 4118X-
MD5), leading to a systematic rotation angle error. The
extent of Bp inhomogeneity and the resulting rotation er-
rors in our spectrometer setup have been characterized in
our previous publications.58,71 The Bp variation over the
sample volume can be as large as 10–20% depending on
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the sample dimensions. On the other hand, the rotation
axis errors (e.g. relative phase errors between πX and
πY pulses) can be reduced to a sub-degree level using a
calibration technique based on phase error amplification
(SPAM),71 in which the phase errors accumulate in a way
which is similar to how the flip angle errors accumulate in
the Carr-Purcell sequences, and hence the orthogonality
of the rotation axes in two pulse-forming channels can be
measured with high precision.

C. Dynamical decoupling protocols

In a spin echo experiment, the in-plane magnetiza-
tion of a spin ensemble decays due to the precession of
the spins under an inhomogeneous magnetic field, and
this dephasing can be refocused by applying a π-pulse
to all the spins midway during the evolution. Pulse se-
quences like Carr-Purcell-Meiboom-Gill (CPMG) refocus
the dephased ensemble magnetization by applying a train
of equally spaced pulses, each rotating the spin by π
around the x-axis of the rotating coordinate frame. Be-
low we denote such pulses as πX, and other pulses are
denoted similarly (e.g. a (π/2)Y-pulse is the pulse rotat-
ing the spins by π/2 around the y-axis). However, the
single-axis CPMG protocol has an important drawback.
When the electron spins are prepared along the y-axis
(by applying a preparatory (π/2)X pulse), the small er-
rors inevitably present in real DD pulses accumulate very
quickly in the course of the decoupling experiment, and
destroy the performance of the decoupling protocol, like
in the original Carr-Purcell pulse sequence. This prob-
lem is absent for CPMG in case of the initial states along
x-axis, but the goal of DD is to preserve all components
of the spin. Therefore, more general DD protocols must
be considered. A large number of decoupling sequences
have been developed, aiming at maintaining the state of
the central spin S. Design and analysis of DD schemes
are often based on the Magnus expansion (ME), which
is a cumulant expansion of the evolution operator of the
whole system (the qubit and the bath). DD intervenes
the evolution and eliminates the unwanted system-bath
couplings in expansion terms of the ME. Besides the DD
sequences based on a periodic pulse structure like PDD16

and its concatenated version CDD,18 aperiodic structure
like UDD,19 QDD,25 etc. were developed recently. In this
paper we focus on the decoupling sequences with periodic
structure.
One of the simplest protocols is the periodic dynamical

decoupling (PDD),16 where the central spin is subjected
to a train of equidistant π-pulses applied along different
axes. The unitary operators, which describe the con-
trol pulses acting on the central spin, are taken from a
group cyclically, starting from the identity element I. A
typical sequence based on the group G = {I, σx, σy, σz}
where σx, σy and σz are Pauli matrices has a period
(I-d-I)(πX-d-πX)(πZ-d-πZ)(πY-d-πY). Here d indi-
cates the delay between pulses with time duration τ . By

virtue of the operator algebra of the Pauli matrices, the
period can be reduced to

d− πX − d− πY − d− πX − d− πY , (4)

This two-axis (XY) based decoupling scheme is termed
XY PDD. When the inter-pulse delay time τ is short
compared to the inverse of the cutoff frequency, ωc, of the
spectral density function of the bath, the resulting evolu-
tion operator of the system is equivalent to the identity
up to the first order in ωcτ , i.e. has a form 1+O(ω2

c τ
2).

In this paper we also study an alternative two-axis de-
coupling sequence, XZ PDD. Its period

d− πX − d− πZ − d− πX − d− πZ . (5)

can also be drawn from the group G. For ideal pulses
(e.g., when the bath is completely static and pulse errors
are absent), XY- and XZ-based DD are equivalent to each
other.
SDD is a symmetrized version of PDD. The period of

SDD sequence is twice as long as that of PDD and is
symmetric with respect to the middle.16,17,38 The period
for a XY-based SDD is

d− πX − d− πY − d− πX − d− πY

−πY − d− πX − d− πY − d− πX − d . (6)

Such symmetrization eliminates all even terms in the ME
systematically, leaving the system-bath coupling in the
third and higher odd order terms.
A concatenated version of periodic decoupling, CDD,

was developed to decouple the system from the bath to
higher orders in ME.18 CDD at level one is just PDD,
and sequences for higher levels are built up by recursively
nesting the lower level sequence within itself. E.g., for the
XY-based sequence, the structure for n-th level CDD,
CDDn, is

CDDn−1−πX−CDDn−1−πY−CDDn−1−πX−CDDn−1−πY (7)

In ME, CDDn eliminates the interaction between the sys-
tem and the bath up to the n-th order. Note here the
number of pulses in CDD increases approximately as 4n.
As is customary in NMR/ESR experiments, the ini-

tial state of the electron spin is pseudo-pure.13,73 The
density matrix for the electron spin polarized along the z-
axis in the high-temperature approximation has the form
ρ0 = 1

2
1 + ζSz where ζ is small. Since the identity ma-

trix 1 is not affected by unitary evolution and gives no
contribution to the signal, we can regard the electron
spin as being in a pure state with Sz = 1/2 (pseudo-pure
state).13,73 The in-plane initial states of the electron spin
prepared by (π/2)-pulses at the beginning of the experi-
ment then can also be considered as pure.
For a single electron spin S, we characterize the per-

formance of a given DD protocol using the survival prob-
ability of the state (input-output fidelity), which in our
case can be written in the form Tr[ρ(0)ρ(t)], where ρ(0)
is the initial state of the electron spin and ρ(t) is the
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reduced density matrix of the electron spin at the end
of DD. By virtue of the relation ρ(t) = 1/2 + 〈Sx〉σx +
〈Sy〉σy + 〈Sz〉σz , the fidelity is equivalent to

FS
α (t) = 2Tr[Sα(t)Sα(0)] = 2Tr[ρα(t)S

α] , (8)

and is characterized by the average spin projections
2〈Sx〉, 2〈Sy〉, and 2〈Sz〉. Here α = x, y, z denotes the
three initial states of the electron spin oriented along the
axes x, y and z respectively, and ρα(t) is the correspond-
ing density matrix of the spin at time t. The fidelity char-
acterizes how well the initial state of the electron spin is
protected by the DD sequence. FS

α (t) is then averaged
over the ensemble as

Fα(t) = 〈FS
α (t)〉 , (9)

where 〈·〉 denotes the ensemble average. The quantity
Fα(t) is the measure of the performance of DD in our
study. Of course, this fidelity may, and in fact does,
strongly depend on the specific initial state.

D. Analysis and model of pulse errors

In ESR experiments pulse errors can be greatly re-
duced, e.g. by using composite pulses.41 Still, in many
experiments pulse errors remain an important (and some-
times a major) factor which limit the performance of the
decoupling sequence. We now undertake a detailed anal-
ysis of the possible pulse errors in our experiment, and
arrive at a model to account for the error effect.
Since the duration of a π-pulse, 0.18 µs, is small com-

pared to the inverse ESR linewidth (∼ T ∗
2 ), we treat the

pulses as instantaneous unitary rotations. The validity
of this approximation has been confirmed numerically, by
modeling the influence of the dephasing field B (Eq. (2))
during the pulses. Taking into account the errors in both
the rotation axis and the rotation angle, the operators
for the π-pulses have forms

UX = exp [−i(π + ǫx)(S · ~n)] (10)

UY = exp [−i(π + ǫy)(S · ~m)] ,

where ~n = (
√

1− n2
y − n2

z, ny, nz) is the actual ro-

tation axis for a nominal πX-pulse, and ~m =
(mx,

√

1−m2
x −m2

z,mz) is the actual rotation axis for
a nominal πY-pulse. Small parameters ny, nz , mx, mz

characterize the error in the rotation axes, and ǫx and ǫy
characterize the error in the rotation angles.

1. Error sources

An ideal π-pulse generated by a pulse field in exact
resonance with the Larmor frequency of the central spin
realizes a rotation of the central spin by an angle π. In
the rotating frame, the pulse field Bp has a step-like form

in time, i.e., the value of the field is zero before and after
the pulse, and constant during the pulse. The duration tp
of the pulse is determined by tpγeBp = π. In this study,
we consider the following four sources of pulse error.
Due to the inhomogeneity in the static magnetic field

over the sample, the pulse field is not in exact resonance
for every electron spin. In the coordinate frame rotat-
ing at angular frequency ωe0, the detuning, B, manifests
itself as a non-zero magnetic field along the z-axis. As
a result, the rotation axis deviates from the intended x

or y directions, and the rotation angle tpγe
√

B2
p +B2 is

different from π.
In our experiment, the coherence signal was obtained

by a single-shot measurement from a macroscopically
large Si sample. The byproduct of a large sample is that
Bp is not homogeneous over the entire sample volume.
To model this effect in a simple but physically meaning-
ful way, we assume a one-dimensional model, where Bp

varies only along some axis l (e.g. along the resonator
axis), and the sample position is optimized near the maxi-
mum of the driving field, where Bp depends quadratically
on l:

Bp(l) = B̄p +∆Bp[1− 3l2/d2] , (11)

where B̄p is the average of Bp(l) over the sample, and
∆Bp quantifies the amplitude of the error. The origin
of the l-axis is at the center of the sample, and 2d is the
sample length along the l-axis. In the experiment, Bp can
be well tuned such that on average an exact π-pulse can
be expected, i.e. tpγeB̄p = π. The error in the rotation
angle π+ǫ(l) for the spin located at position l then arises
from the ∆Bp term

ǫ(l) = tpγe∆Bp(1− 3l2/d2) . (12)

The corresponding distribution function for the rotation
angle error is

P (ǫ) = (1/2ǫ0)[3(1− ǫ/ǫ0)]
−1/2 . (13)

and −2ǫ0 ≤ ǫ ≤ ǫ0. We further assume the angle errors
for πX- and πY- pulses to be the same ǫx = ǫy = ǫ.
The imperfectly rectangular shape of the actual pulses

also introduces pulse errors. These errors mainly come
from the leading and trailing edges of the pulse. In ESR
experiments, the edges may constitute about 10% of the
total pulse time, and could have a noticeable influence.
At the pulse edges, the amplitude and the phase of the
driving field are ill-defined, introducing errors to both the
rotation axis and the rotation angle. Furthermore, the
magnitude of these transient errors depends on the offset
frequency, B, of the spin and therefore the pulse errors
have a non-uniform distribution over the sample. To ac-
count for the effect of these complex errors, we introduce
the rotation axis errors ny,mx and nz,mz. Similar to the
arguments used in Eq. (13), the axis error, nz, is drawn
from the probability distributions

P (nz) = (1/2n0)[3(1 − nz/n0)]
−1/2 , (14)



6

where −2n0 ≤ nz ≤ n0, and constant n0 quantifies the
amplitude of the error. Similarly, we assume the axis er-
rors of πY-pulses have the same probability distribution
as Eq. (14), and assume mz = nz for all spins. The value
for the in-plane component of the rotation axis errors,
mx and ny, are extremely small in experiments as dis-
cussed in Section II B, so we take them to be zero in the
simulations, but keep the symbols for the analysis.
Another possible pulse error is the imperfection in the

relative phases of the πX and πY-pulses. In the presence
of such errors, if we assume that the axis for πX-pulse
is perfectly aligned along the x-axis, the actual rotation
axis of the πY-pulse may have a non-zero x-component.
However, by using standard phase calibration techniques,
this in-plane axis error can be reduced to a sub-degree
level and is negligible in our experiments.
Summarizing, we treat the pulses as instantaneous ro-

tations described by Eq. (10). The pulse errors ǫx = ǫy =
ǫ and nz = mz are drawn from distributions Eq. (13)
and Eq. (14), respectively. Note that in our model for
pulse errors, ǫ0 and n0 are the only adjustable param-
eters which are determined from experiments. With a
fixed set of values for ǫ0 and n0, good simulation results
are achieved in quantitative agreement with the experi-
ments for all seven different DD protocols (XY and XZ
PDD and CDD. Symmetrized DD sequences were not
performed experimentally).

2. Simulation details

Time evolution of the electron spin S is simulated for
initial states along axes x, y and z. We label these three
initial states respectively as |ψx〉, |ψy〉 and |ψz〉, and the
fidelities as Fx, Fy and Fz . Simulations are performed
in the rotating frame with the frequency at the center of
the ESR line, ωe0. For each single spin, the pulses are
implemented as described by Eq. (10), and the evolution
operator for the inter-pulse delay is U0 = exp [−iHt] with
the Hamiltonian H given by Eq. (2). The static field B
felt by spin S is drawn from the Gaussian distribution,
Eq. (3). After application of the decoupling sequence,
the input-output fidelities, FS

α (t), are calculated. The
fidelities are averaged over ∼ 104 realizations. The time
delay between pulses is constant τ = 11 µs for all DD
sequences as in the experiments. The values of the error
parameters in Eqs. (13), (14) are taken as ǫ0 = 0.3 (7.5◦)
and n0 = −0.12 (−3.5◦), which provides results that fit
well with the experiments.

III. RESULTS AND DISCUSSION

Experimental and numerical results for different DD
protocols are shown in Figure 1 through Figure 4. The
simulation results agree well with the experimental data,
indicating that the error model captures the essential fea-
tures of the system. We present the results for decoupling

sequences based on XY and XZ pulses for comparison.
In the experiment, a πZ pulse was implemented by a pair
of subsequent rotations about the x and y axes, πXπY.
This substitution was carried out in experiments for all
the XZ based sequences. Since the bath of the electron
spins is static in our study, for ideal pulses (without pulse
errors), XY- and XZ- based sequences are exactly equiv-
alent. However, as we show below, in the presence of
pulse errors they behave very differently in preserving
the quantum states of the electron spin .

A. PDD

1. XY-based sequence

Figure 1 (a) shows the fidelities of the electron spin
states as functions of the number of periods (cycles) for
XY PDD. Fidelities for different initial states exhibit
different decay behaviors. Fx and Fy exhibit apparent
decays. Fz , on the contrary, decays very little. Simi-
lar phenomenon in DD have been discussed in Ref. [23],
where one state of the system is less sensitive to the de-
coherence induced by the spin-bath interactions than the
other states. In our study, in the presence of pulse im-
perfections, particular initial states of the electron are
preserved, i.e., survive for a long time in the DD process,
while other states are quickly destroyed by the accumu-
lation of pulse errors.
The electron spins of P are independent of each other,

and are coupled only to external magnetic fields (static
field along the z-axis, and a time-varying pulse fields
along all three axes). In this case, the time evolution of
each spin is unitary, and can be described as a rotation:

U = exp [−iθ(S · ~a)] , (15)

where ~a is the effective rotation axis and θ is the rotation
angle. In the following we will examine such rotations,
viewed stroboscopically after each period of the DD se-
quence.
Consider a period of the XY PDD sequence Eq. (4),

substituting the expressions for pulse errors, Eq. (10),
into the evolution operator

U XYPDD = UYU0UXU0UYU0UXU0 , (16)

and keeping only the zeroth and first order terms in the
small parameters (ǫx, ǫy, mx, ny, mz, nz ), U XYPDD can
be expressed in form of Eq. (15) with

~a = (0, 0,−1)

θ = 2π + δθ (17)

where

δθ = 4(mx + ny) . (18)

That is, after one period, the spin is rotated about an
axis close to −z by an angle 2π + δθ. For ideal pulses,
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U XYPDD = −1, the rotation angle is θ = 2π and the spin
returns exactly to its initial state. The error in the rota-
tion angle, δθ, can be viewed as a dephasing error in the
plane perpendicular to ~a. After N periods, to first order
in the pulse errors, the spin rotates about the axis ~a by an
angle Nδθ. Since ~a is (approximately) along the z-axis,
the spin operator Sz (approximately) commutes with the
evolution operator, Eq. (15). Therefore the initial state
|ψz〉 is an (approximate) eigenstate of the evolution op-
erator, and thus does not evolve with the DD sequence,
and is of course insensitive to pulse errors (pulse errors in
high order could contribute though). On the other hand,
the other two states |ψx〉 and |ψy〉 are not the eigenstates
and for these states the error in the rotation angle δθ will
accumulate during the pulse sequence.
Now we consider the electron spin ensemble. For

each spin the time evolution is governed by a rotation,
Eq. (15), with rotation axis and angle given by Eq. (17).
Each spin sees different pulse errors, and the resultant
effective rotation axis, ~a, and dephasing errors, δθ, are
slightly different from each other (for first or higher or-
der pulse errors). As shown in Eq. (17), the rotation
axes for all spins are along z up to first order in the pulse
errors. The initial state |ψz〉 is then preserved for all
spins in the ensemble, despite their different pulse errors.
The ensemble-averaged fidelity, Fz, hence remains high
until spoiled by the accumulation of higher order errors.
On the other hand, for states |ψx〉 and |ψy〉, the spins
are initially in the plane perpendicular to the ~a (z)-axis.
Different spins acquire different phase errors during the
evolution in one period of DD. As a number of periods N
increases, this error accumulates. After certain number
of periods, the spin components spread out evenly in the
x-y plane, and the ensemble-averaged fidelity decays to
almost zero.
Note here if we analyze the rotation operator after half

a period d− πX − d− πY, (which is the repeating unit
of the pulse sequence), and express the corresponding
evolution operator U XYPDD

half
up to first order in the pulse

errors, the rotation angle is θ′ = π+2(mx + ny) and the
axis of the rotation, ~a′, is

a′x = − ǫy
2

+ nz cosφd − ǫx
2
sinφd

a′y = mz −
ǫx
2
cosφd − nz sinφd

a′z = −1 (19)

where φd = γeBτ is the phase accumulated during the
inter-pulse delay. It is noteworthy that unlike the rota-
tion axis for a full period in Eq. (17), the rotation axis ~a′

involves pulse errors to first order. That is, some pulse
errors accumulated during the first half period are bal-
anced out during the second half. Since a full period is a
repetition of two half periods, we certainly have

U XYPDD = U XYPDD

half
U XYPDD

half
= exp [−i2θ′(S · ~a′)] , (20)

and the rotation axis is still the same and the rota-
tion angle is twice larger. Although the expressions

for ~a and ~a′ are different, there is no discrepancy here.
Since exp [−i2θ′(S · ~a′)] = cos θ′ − i/2 sin θ′(S · ~a′) and
sin θ′ = −2(mx + ny), first order pulse errors in ~a′ be-
come higher order in U XYPDD. Therefore, up to fist order,
U XYPDD can also be expressed as Eq. (17) with the effective
axis, ~a, free of first order pulse errors.

We next undertake a more quantitative examination of
how the decays and the preservation happen to different
spin components. For a single spin, S, the fidelity for an
initial state, |ψα〉 (α = x, y, z), after N periods is

FS
α (N) = 2Tr

[

U XYPDDρS(0)(U
XYPDD)†Sα

]

= a2α + (1− a2α) cos (Nδθ) . (21)

That is, the fidelity, if viewed stroboscopically (at the end
of each DD period), exhibits oscillations at a frequency
determined by the phase error, δθ. For spin ensemble,
after averaging overB and over the pulse errors (although
the magnetic field B does not show up in Eq. (18), it
contributes in higher order), the cosine factor contributes
to the decay, and the fidelity at long times saturates at
a value independent of time (N)

Fα(N) → 〈a2α〉 , (22)

where 〈·〉 denotes the ensemble average. For |ψx〉 and
|ψy〉, 〈a2α〉 is small, hence the fidelities decay almost to
zero. For |ψz〉, since az is almost one, the fidelity is
preserved with its value close to 1.

Such preservation of a particular spin state demon-
strates a remarkable feature of the error accumulation in
DD: a large fidelity for certain initial states does not guar-
antee good performance of DD for other initial states,
hence does not necessarily suggest a good DD protocol.
This is similar to the error accumulation effect in the
single-axis DD sequences. While |ψx〉 is well preserved
by the πX-pulse sequence (CPMG), |ψy〉 is quickly de-
stroyed by the same sequence due to the accumulation of
errors in the rotation angle (CP). Sensitivity of Uhrig
DD19 and CPMG to initial input state in the presence of
pulse errors also has recently been studied experimentally
in Ref. [48]. Therefore, in experiments implementing
DD, the preservation of all three components Fx, Fy and
Fz should be checked, or full tomography should be per-
formed.

2. XZ-based sequence

The pulse sequence of XZ PDD preserves the spin com-
ponent |ψy〉, see Figure 1 (b). Compared to the decaying
fidelities (Fx and Fy) in XY PDD, the fidelities Fx and
Fz in XZ PDD decay much faster, with values below 0.2
after barely 3 cycles (12 pulses).

An analysis similar to that in III A 1 shows that the
evolution operator for one period of XZ PDD U XZPDD =
exp [−i(2π + δθ)(S · ~a)], up to first order in the pulse er-
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FIG. 1: (color online). Fidelity as a function of the number of
cycles, N , of PDD. (a) XY PDD, (b) XZ PDD for initial states
|ψx〉, |ψy〉, and |ψz〉, respectively. Points are experimental
results and lines are simulation results.

rors, corresponds to

~a = (0,−1, 0)

δθ = 2[−ǫy + ǫx sinφd + 2nz(1 − cosφd)] . (23)

The effective rotation axis ~a is close to −y, hence the
state |ψy〉 is preserved.
Comparing Eq. (23) to Eq. (17), one can see that XZ

PDD involves rotation angle errors ǫx, ǫy and axis error
nz to first order, while the XY-based sequence involves
only mx and ny. Since in experiments, as we mentioned
in Section II D, the in-plane rotation components, mx

and ny, are extremely small and can be neglected, the de-
viation of the evolution operator of a period of XY PDD
from identity is actually second order in the pulse errors
while that of XZ PDD is first order. Furthermore, note
that Eq. (23) for XZ PDD is dependent on the magnetic
field (in φd) while Eq. (17) for XY PDD is not. When
performing the ensemble average in Eq. (21), which holds
also for XZ PDD and in general for any periodic decou-
pling sequence, the first order pulse error in δθ and the
B-dependence leads to a much faster decay of the cosine
term than the second order pulse error does for XY PDD.
This explains why XY PDD outperforms XZ PDD.
Note that such inferior performance of XZ PDD com-

pared to XY PDD does not arise from the replacement of

πZ by πXπY in our experiment. The XZ-based sequence
still performs worse even if πZ-pulses are applied directly.
Taking the form of the evolution operator for πZ to be
similar to Eq. (10), with rotation axis ~p and rotation
angle π + ǫz, Eq. (23) becomes

~a = (0,−1, 0)

δθ = 2[−2px + ǫx sinφd − 2nz cosφd] , (24)

where px is the x-component of the rotation axis for
the πZ-pulse. (Note, in the limit φd → 0, we have
δθ = −4(px+nz), which is exactly the symmetric form of
their counterpart for the XY-based sequence Eq. (17), as
expected from the rotational symmetry of the system.)
The evolution operator for XZ PDD hence contains mul-
tiple first order pulse errors, similar to the case where πZ
is replaced by πXπY. Therefore, given the experimental
facts that the in-plane component of the pulse axis error,
mx and ny, can be made extremely small while the other
errors cannot be neglected, we can expect XZ PDD to
perform worse than XY PDD.

In summary, pulse errors play an important role in
periodic DD. Each PDD sequence has an effective axis
in the presence of pulse errors. During the decou-
pling, viewed stroboscopically, the spins perform rota-
tions about this axis. Error accumulation could destroy
the initial state components perpendicular to the effec-
tive rotation axis, while the component parallel to the
axis is preserved. For negligible pulse axis errors, mx

and ny, XY based decoupling sequence shows a better
resistance to the pulse imperfections than the XZ-based
sequence.

B. CDD

Next we examine concatenated sequences based on
PDD. We measured the fidelity for a single cycle of XY
and XZ based CDD, with concatenation levels 1 to 4.
Correspondingly, the numbers of pulses are 4, 20, 84 and
340, and the number of delays (all delays have the same
duration τ) are 4, 16, 64, and 256, respectively. Fidelities
are evaluated after the application of the whole sequence.

In XY CDD, as shown in Figure 2 (a), all three ini-
tial states are preserved with excellent fidelities (> 99%).
Numerical simulations based on our error model are in
agreement with the experimental results. Note here, at
level 4, the electron spin has been subjected to 340 pulses,
and its quantum state is perfectly preserved with fidelity
close to unity for 2.8 ms, which is of the order of T2. For
many pulses and over a long time, no visible sign of the
error accumulation appears.

To better understand the excellent performance of XY
CDD, we analyze error accumulation in the concatena-
tion. The evolution operator for a period of the level-2
CDD U XYCDD2, up to first order in the pulse errors, corre-
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FIG. 2: (color online). Concatenated DD. Fidelity as a func-
tion of the concatenation level is shown for initial states |ψx〉,
|ψy〉 and |ψz〉. Points are experimental results and lines are
simulation results. (a) XY CDD. All three lines for states
|ψx〉, |ψy〉, and |ψz〉 overlap. (b) XZ CDD.

sponds to a rotation with rotation axis and angle

~a = (0, 0,−1)

δθ = 4(mx + ny) . (25)

This exactly repeats the rotation corresponding to XY
PDD, Eq. (17). Further examining higher concatenation
levels, we arrive at the following relations

U XYPDD = U XYCDD2 = · · · = U XYCDDn , (26)

where U XYCDDn denotes the evolution operator for level-n
concatenation. Up to first order in the pulse errors, the
evolution operators are exactly the same for all concate-
nation levels. Although the number of pulses increases
exponentially with the concatenation level, the first or-
der errors do not accumulate. Concatenation endows DD
with the capability of self-correcting the pulse errors.
XZ-based concatenated DD also outperforms its PDD

counterpart, see Figure 2 (b). However, compared to XY
CDD, the performance is worse. While |ψy〉 is the satu-
rating component, the fidelities for the other two states
are lower. Notably, at the first concatenation level the
fidelity is smaller than at the other levels. Relations sim-
ilar to Eq. (26) hold for XZ CDD as

U XZPDD|Bτ=0 = U XZCDD2 = U XZCDD3 = · · · = U XZCDDn . (27)

For the first level concatenation (PDD) the evolution op-
erator depends on the phase during the inter-pulse delay,
φd, i.e. depends on the factor γeBτ , but the higher lev-
els are independent. This explains the dips at level-1
concatenation for Fx and Fz in Figure 2 (b). Therefore,
the concatenation eliminates the dependence of the error
accumulation on the inter-pulse delay.
The simulation results for XZ CDD are qualitatively

in agreement with the experimental data, e.g. state |ψy〉
is better preserved than the other two states, and there
is a dip in the first-order concatenation for |ψx〉. The
quantitative difference may be due to other experimental
details that we did not take into consideration in our
error model.

C. Symmetrized DD

We also examined the symmetrized XY-based decou-
pling sequence via numerical simulations and theoretical
analysis. The symmetrized pulse sequence unit Eq. (6)
is repeated periodically (XY-SDD). Figure 3 shows the
simulation results. The fidelities of the spin states exhibit
much slower overall decay compared to XY PDD. Indeed,
thanks to the symmetrization, the first order pulse errors
balance out in the evolution operator for a single period
of SDD. Up to second order, the evolution operator reads

U XY-SDD = 1+ 2iǫy(mx + ny)σx

+2i(mx + ny) (ǫx cosφd + 2nz sinφd)σy .

(28)

Furthermore, since in our case the in-plane axis errors,
mx and ny, are negligible, pulse errors actually contribute
only in the 3rd and higher orders. The good performance
of SDD in Figure 3 compared to XY PDD is hence ex-
pected. The SDD sequence we study here has a similar-
ity in spirit with the Eulerian decoupling (EDD)38. By
making the structure of the decoupling sequence more
symmetric, both SDD and EDD cancel the pulse errors
to first order.
Recall that in XY PDD, spin component |ψz〉 is pre-

served against pulse errors for a much longer time than
the other two components. For SDD, such asymmetric
behavior is less obvious. This is because to 3rd order,
U XY-SDD is a rotation operator with the rotation axis in the
x-y plane (the expression is cumbersome and not shown
here). Symmetrized DD treats the three spin components
on a more equal footing.
In the symmetrized sequence, Eq. (6), two πY-pulses

are adjacent to each other in the middle of a period. Since
σyσy = 1, one would expect that removing these two im-
perfect pulses from the sequence will yield better fidelity.
However, the concatenated decoupling sequence based on
such a reduced version of the SDD behaves much worse
than the full sequence, as seen in Figure 4. This can also
be understood from the error dependence of the evolu-
tion operator. While U XY-SDD is identity up to first order
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FIG. 3: (color online). Simulation results for XY-based SDD.
Fidelity as a function of the number of cycles is shown for
different initial states. Fidelities in XY PDD are plotted as
broken lines for comparison. Note that the number of pulses
in one cycle of SDD is twice as large as that in PDD.

in the pulse errors, with the two πY-pulses removed, the
evolution operator involves ǫy to first order

U XY-SDD
reduced

= −1− iǫyσ
y . (29)

where the subscript “reduced” denotes that all adjacent
πY-pulses are removed from the sequence. Therefore,
these two πY-pulses help keep a balanced structure for
the symmetrized XY sequence to suppress error accumu-
lation.

IV. CONCLUSIONS

We have studied the effects of pulse imperfections on
dynamical decoupling. Using the electron spins of phos-
phorus donors in silicon as a testbed, we investigated the
performance of different DD protocols. Experimental re-
sults are qualitatively explained by theoretical analysis
and quantitatively reproduced by numerical simulations.
Dynamical decoupling sequences are susceptible to

pulse imperfections. The accumulation of small pulse er-
rors can have appreciable influence on the performance of
DD. In two-axis based PDD, the spin component along
a certain direction is preserved with high fidelity for a
long time while the components in the perpendicular di-
rections decay rapidly. DD sequences are analyzed in
terms of spin rotation, and each DD sequence has an ef-
fective axis in the presence of pulse errors. During the
decoupling, viewed stroboscopically, the spins perform
rotations about this axis. The better preservation of a
particular spin component is attributed to the fact that
this component is parallel to the effective axis of the DD
sequence and hence is a quasi integral of motion, in spite
of pulse errors.
The XY-based decoupling protocols prominently out-

perform their XZ-based counterparts. The different per-
formance is explained analytically in terms of pulse er-
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FIG. 4: (color online). Simulation results for concatenated
XY-based SDD. Fidelity as a function of the concatenation
level is shown for different spin states. (a) Results for the
full sequence. (b) Results for the reduced sequence (with all
adjacent πY-pulses removed).

rors. A symmetrized DD sequence suppresses the accu-
mulation of first order pulse errors systematically and
thus performs better than regular PDD. Interestingly,
the accumulation of pulse errors is better suppressed by
keeping the seemingly trivial adjacent identical pulses,
πYπY, in SDD. The symmetrized sequence itself has an
error-balance structure in which these two pulses are in-
dispensable.
The concatenated dynamical decoupling sequences are

found to be error-resistant. Although the number of
pulses increases exponentially with the concatenation
level, CDD have exactly the same error effects up to
first order in the pulse errors. Concatenation can also
alleviate the dependence of the error accumulation on
the inter-pulse delay as well as the inhomogeneity in the
static magnetic field. XY CDD, with the advantage of
both the slow accumulation of pulse errors compared to
XZ-based sequences and the superior error-resistance of
the concatenation structure, demonstrates the ability to
store all three spin components for a long time.
In a general situation, when the internal bath dynam-

ics is important, the joint action of the fluctuating bath
and the imperfect pulses leads to a very complex qubit
dynamics. However, in the case where the two effects
are small, we can, at least on a qualitative level, consider
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their contributions separately42. As such, our work, fo-
cused on the role of the pulse error accumulation, is com-
plementary to the studies of the bath dynamics and the
resulting homogeneous dephasing. By treating the bath
field as static, we can single out the effect of the pulse
error accumulation, and clarify its important role in the
dynamical decoupling experiments. Moreover, the inho-
mogeneous static broadening is often important by it-
self. For instance, in the experiments using single qubits
with the projective readout (such as most experiments
on quantum dots, the nitrogen-vacancy centers in dia-
mond, superconducting qubits, etc.), where many exper-
imental runs are needed in order to build statistics, the
quasistatic shot-to-shot variations lead to inhomogeneous
dephasing, and have to be refocused.
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Appendix A: Radiation Damping

In NMR and ESR experiments, when the in-plane mag-
netization signal is strong, its precession about the static
field induces a noticeable time-dependent current in the
resonator. This current generates an ac magnetic field,
which exerts a torque on the spins, and causes them to
relax back to their equilibrium states. This phenomenon
is called radiation damping (RD).72,73 We now consider
the effect of RD on dynamical decoupling in our ESR
experiments.
The magnetic field generated by RD (the RD field),

Br, is in the x-y plane, with its magnitude proportional
to the in-plane magnetization, M, and its direction per-
pendicular to M,73

γeBr =
1

τr
(−Myx̂+Mxŷ) , (A1)

where ~M is the overall magnetization normalized by the
equilibrium magnetization, M0

~M = M/M0 ,

and the damping time constant

τr =
1

2πγeM0Qη
(A2)

is determined by the quality factor, Q, the filling factor,
η, of the microwave-frequency resonator, and the equi-
librium magnetization, M0, which is determined by the
temperature, T , and the doping density of 31P.
In our experiment the static field is B0 = 3500 Gauss,

temperature T = 8 K, the filling factor and the quality
factor of the resonator are η = 0.5, Q = 500, respectively.
The doping density of 31P is very low, 5 × 1014 cm−3,
corresponding to a damping time constant τr ∼ 500 µs,
which is much longer than T ∗

2 and hence the radiation
damping effect is negligible in our DD experiments.
However, for a higher doping density, of the order of

1015-17 (cm)−3, RD could be noticeable. We calculated
the influence of RD on the performance of the DD se-
quence with τr = 2 µs (corresponding to a doping den-
sity ∼ 1.5 × 1017 cm−3 and other parameters the same
as in the experiments). We find that in the dynamical
decoupling process with imperfect pulses, RD could in-
duce an asymmetry to the evolution of the initial states
corresponding to the electron spin along the +z and −z
directions.
In Sec. III, when we studied the effect of pulse errors

on the DD performance, we neglected the finite pulse du-
ration and treated the pulses as instantaneous rotations.
RD, however, has its largest impact on spins during the
pulses. If the pulses are ideal, the RD effects that take
place during the delays before and after each pulse can-
cel each other.73 Moreover, here we focus on the initial
states parallel or anti-parallel to z-axis. For a single elec-
tron spin during the inter-pulse delays, the in-plane com-
ponent of the spin magnetic moment is nonzero due to
pulse errors (but is small). For a large number of elec-
tron spins, these nonzero components are expected to be
evenly distributed in the x-y plane, giving almost zero
net in-plane magnetization. The magnitude of the RD
field, Br, is proportional to the in-plane magnetization,
hence little RD can be induced. During the pulse, on
the other hand, the in-plane magnetization has nonzero
value, and RD has finite contributions.
We therefore take into consideration the finite duration

of the magnetic field pulse. The pulse is implemented by
applying a driving field to the electron spin for a finite
duration, tp. For the spin state along the +z or −z direc-
tions, at the edges of a pulse the in-plane magnetization
is still small, and the resulting RD is negligible. This is in
contrast with the pulse errors analyzed in Sec. III, where
contributions from the pulse edges were important. So
here we can assume that the driving field for the pulse
is turned on and off abruptly, and during the pulse the
magnitude of the alternating field is constant for each
spin. That is, in the rotating frame the driving field as
a function of time is a square wave. In simulations in
the rotating frame the driving field of the pulse πX(πY)
is taken to be along the axis ~n( ~m). The amplitude of the
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driving field is taken as

Bp = B̄p + δBp (A3)

where the average B̄p = π/(γetp) and the deviation

δBp = ǫ/(γetp) (A4)

with ǫ drawn from distribution Eq. (13). The parame-
ters for pulse errors (angle errors ǫx, ǫy and the rotation
axis errors nz, mz) have the same magnitudes and dis-
tributions as specified in Section IID. During the pulse,
both the static field and the driving field are present. So
in the rotating frame the Hamiltonian, Eq. (2), also par-
ticipates in driving the evolution during the pulse. We
took the magnitude of the driving field Bp = 1 Gauss
as in experiment and correspondingly the duration of a
π-pulse is tp = 0.18 µs.
We simulated XY CDD with concatenation levels up

to 4, for the electron spin initial states along the +z and
−z directions. The fidelities are denoted as F+z and F−z

respectively. Here −z refers to the equilibrium state of
the spin in the static field, and the +z state is prepared
by applying a preparatory πX-pulse to the spin in the −z
state. Due to the imperfection in the preparatory pulse,
the fidelity for +z state becomes slightly different from
the fidelity of the −z state. See Table I (A).
The difference between states +z and −z produced

by the preparatory pulse is further amplified by the RD
in the concatenated DD sequence. Figure 5 shows the
simulation results for XY CDD. The decoupling protocol
preserves the state −z with higher fidelity than +z. The
difference is more prominent for concatenation level 4.
This is because RD only takes effect during the mag-

netic field pulses when the in-plane magnetization is
nonzero. The RD time constant, τr, is larger than the
pulse duration by two orders of magnitude. The effect of
RD is therefore very small for the first three concatena-
tion levels, and after the accumulation during hundreds
of pulses, RD shows up prominently at level 4, (Figure 5).
To better understand the different roles of the prepara-

tory pulse, the effect of RD during the pulses and dur-
ing the inter-pulse delays, simulations are performed for
three cases: (A) without RD, i.e. τr = ∞; (B) RD is
only included during inter-pulse delays; (C) RD is in-
cluded throughout the whole evolution (i.e., both during
and between the pulses). Table I shows the data for XY
CDD in the three cases. Compared to the results with-
out RD, the difference between F+z and F−z for levels

1-3 is mainly due to the preparatory pulse, and is little
affected by RD. For level-4, RD contributes appreciably.
The different fidelities for level-4 in cases (B) and (C)
confirms that RD contributes mostly during the pulses.

Conventionally, starting from the linear Bloch equa-
tions, the states +z and −z would have exactly the
same dynamical behavior. Radiation damping breaks
this symmetry. The RD field, Br (Eq. (A1)), is a macro-
scopic field and is dependent on the overall magnetization
of the electron spin ensemble. The Bloch equation is then
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FIG. 5: (color online). Simulation results for fidelities F+z

and F
−z for XY CDD sequence with radiation damping con-

sidered. Bp = 1 Gauss and τr = 2 µs.

TABLE I: XY CDD pulse sequence. Dependence of the fideli-
ties on the concatenation level for electron spin initial states
along the +z and −z directions. Pulse field Bp = 1 Gauss.
Results for three cases are shown: (A) τr = ∞; (B) τr = 2 µs,
RD takes effect only during inter-pulse delays. (C) τr = 2 µs,
RD takes effect all the time.

level (A) F+z F
−z (B) F+z F

−z (C) F+z F
−z

1 0.929 0.999 0.930 0.999 0.929 0.999

2 0.923 0.994 0.923 0.995 0.924 0.993

3 0.928 0.998 0.926 0.998 0.920 0.994

4 0.924 0.994 0.877 0.933 0.668 0.832

no longer linear in the magnetization, M, resulting in the
different dynamics of the quantum states along the +z
and −z directions.

1 J. A. Jones et al., Science 324, 1166 (2009).
2 P. Cappellaro et al., Phys. Rev. Lett. 94, 020502 (2005).
3 B. M. Chernobrod and G. P. Berman, J. Appl. Phys. 97
014903 (2005).

4 J. M. Taylor et al., Nat. Phys. 4, 810 (2008).
5 C. Degen, Appl. Phys. Lett. 92, 243111 (2008).

6 G. Balasubramanian et al., Nature 455, 648 (2008).
7 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120
(1998).

8 L. Childress, J. M. Taylor, A. S. Sorensen, and M. D.
Lukin, Phys. Rev. Lett. 96, 070504 (2006).

9 P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306



13

(1997).
10 D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev.

Lett. 81, 2594 (1998).
11 P.W. Shor, Phys. Rev. A 52, R2493 (1995).
12 E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84,

2525 (2000).
13 C. P. Slichter, Principles of Magnetic Resonance (Springer,

Berlin, New York, 1990).
14 E. Hahn, Phys. Rev. 80, 580 (1950).
15 L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
16 L. Viola, S. Lloyd, and E. Knill, Phys. Rev. Lett. 83, 4888

(1999).
17 U. Haeberlen, High Resolution NMR in solids: Selective

Averaging (Academic, New York, 1976).
18 K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95,

180501 (2005).
19 G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).
20 L. Cywinski, R. M. Lutchyn, C.P. Nave, S. Das Sarma,

Phys. Rev. B 77, 174509 (2008).
21 G. S. Uhrig, New J. Phys. 10, 083024 (2008).
22 Ren-Bao Liu, Wang Yao, L. J. Sham, New Journ. Phys 9,

226 (2007).
23 W. X. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola,

and B. N. Harmon, Phys. Rev. B 75, 201302(R) (2007).
24 W. Zhang, N. P. Konstantinidis, V. V. Dobrovitski, B. N.

Harmon, L. F. Santos, and L. Viola, Phys. Rev. B 77,
125336 (2008).

25 J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett
104, 130501 (2010).

26 J. J. L. Morton et al., Nature (London) 455, 1085 (2008).
27 D. Press, T. D. Ladd, B. Zhang, Y. Yamamoto, Nature

456, 218 (2008).
28 E. Fraval, M. J. Sellars, and J. J. Longdell, Phys. Rev.

Lett. 95, 030506 (2005).
29 H. Uys, M. J. Biercuk, and J. J. Bollinger, Phys. Rev. Lett.

103, 040501 (2009).
30 M. J. Biercuk, H. Uys, A. P. Vandevender, N. Shiga,W.

M. Itano, and J. J. Bollinger, Nature (London) 458, 996
(2009).

31 J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang and R. B. Liu,
Nature 461, 1265 (2009).

32 V. V. Dobrovitski, G. de Lange, D. Riste, R. Hanson, Phys.
Rev. Lett. 105, 077601 (2010) .

33 B. Naydenov et al., Phys. Rev. B 83, 081201(R) (2011).
34 G. A. Alvarez, A. Ajoy, X. Peng, and D. Suter, Phys. Rev.

A 82, 042306 (2010).
35 G. de Lange, Z. H. Wang, D. Rist, V. V. Dobrovitski, R.

Hanson, Science 330, 60 (2010).
36 C. A. Ryan, J. S. Hodges and D.G. Cory, Phys. Rev. Lett.

105, 200402 (2010).
37 H. Bluhm et al., ArXiv:1005.2995v1 (2010).
38 L. Viola, E. Knill, Phys. Rev. Lett. 90, 037901 (2003).
39 K. Khodjasteh and D. A. Lidar, Phys. Rev. A 75, 062310

(2007).
40 S. Pasini and G. S. Uhrig, Phys. Rev. A 81, 012309 (2010).
41 M. H. Levitt, J. Magn. Reson, 48, 234 (1982); Prog. NMR

Spectroscopy 18, 61 (1986).

42 B. C. Gerstein and C. R. Dybowski, Transient Techniques
in NMR of Solids (Academic Press, Orlando, 1985).

43 R. W. Vaughan, D. D. Elleman, L. M. Stacey, W.-K. Rhim,
J. W. Lee, Rev. Sci. Instr. 43, 1356 (1972).

44 P. Sengupta and L. P. Pryadko, Phys. Rev. Lett. 95,
037202 (2005)

45 S. Pasini, T. Fischer, P. Karbach, and G. S. Uhrig, Phys.
Rev. A 77, 032315 (2008).

46 K. Khodjasteh, L. Viola, Phys. Rev. A 80, 032314 (2009).
47 G. S. Uhrig, S. Pasini, New J. Phys. 12, 045001 (2010).
48 M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W.

M. Itano, and J. J. Bollinger, Phys. Rev. A 79, 062324
(2009).

49 B. E. Kane, Nature 393, 133 (1998).
50 A. M. Tyryshkin et al., J. Phys.: Condens. Matter 18, 783

(2006).
51 A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt,

T. D. Ladd, K. M. Itoh, H. Riemann, N. V. Abrosimov,
P. Becker, and H.-J. Pohl, Phys. Rev. Lett. 102, 257401
(2009).

52 K. Khodjasteh, V. V. Dobrovitski, and L. Viola, Phys.
Rev. A 84 022336 (2011).

53 A. Honig and J. Combrisson, Phys. Rev. 102, 917 (1956).
54 G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959).
55 A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin and A. M.

Raitsimring, Phys. Rev. B 68, 193207 (2003).
56 A. R. Stegner et al., Nature Phys. 2, 835 (2006).
57 A. Morello et al., Nature 467, 687 (2010).
58 J. J. L. Morton et al., Phys. Rev. Lett. 95, 200501 (2005).
59 J. W. Ager III, J. W. Beeman, W. L. Hansen, E. E. Haller,

I. D. Sharp, C. Liao, A. Yang, M. L. W. Thewalt, and H.
Riemann, J. Electrochem. Soc. 152, G448-G451 (2005).

60 R. Orbach, Proc. Phys. Soc. Lond. 77, 821 (1961).
61 J. R. Klauder and P. W. Anderson, Phys. Rev 125, 912

(1962).
62 W. B. Mims, Phys. Rev. 168, 370 (1968).
63 Fletcher et al., Phys. Rev. 94, 1392 (1954); Fletcher et al,

ibid. 95, 844 (1954).
64 R. de Sousa and S. Das Sarma, Phys. Rev. B 68, 115322

(2003).
65 W. M. Witzel, R. de Sousa, and S. Das Sarma, Phys. Rev.

B 72, 161306(R) (2005).
66 L. Cywinski, W. M. Witzel, and S. Das Sarma, Phys. Rev.

B 79, 245314 (2009).
67 W. M. Witzel and S. Das Sarma, Phys. Rev. B 74, 035322

(2006).
68 W. M. Witzel, X. Hu, and S. Das Sarma, Phys. Rev. B 76,

035212 (2007).
69 S. K. Saikin, Wang Yao, and L. J. Sham, Phys. Rev. B 75,

125314 (2007).
70 E. Abe et al., Phys. Rev. B 82, 121201 (2010).
71 J. J. L. Morton et al., Phys. Rev. A 71, 012332 (2005).
72 N. Bloembergen and R.V. Pound, Phys. Rev. 95, 8 (1954).
73 A. Abragam, Principles Of Nuclear Magnetism Clarendon,

Oxford, England, 1961.


