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We compute the multifractal spectra associated to local density of states (LDOS) fluctuations
due to weak quenched disorder, for a single Dirac fermion in two spatial dimensions. Our results
are relevant to the surfaces of Z2 topological insulators such as Bi2Se3 and Bi2Te3, where LDOS
modulations can be directly probed via scanning tunneling microscopy. We find a qualitative differ-
ence in spectra obtained for magnetic versus non-magnetic disorder. Randomly polarized magnetic
impurities induce quadratic multifractality at first order in the impurity density; by contrast, no
operator exhibits multifractal scaling at this order for a non-magnetic impurity profile. For the
time-reversal invariant case, we compute the first non-trivial multifractal correction, which appears
at two loops (impurity density squared). We discuss spectral enhancement approaching the Dirac
point due to renormalization, and we survey known results for the opposite limit of strong disorder.

PACS numbers: 73.20.-r, 73.20.Jc, 64.60.al, 72.15.Rn

I. INTRODUCTION

The defining attribute of a 3D Z2 topological insulator
1

(TI) is the presence of an odd number of 2D massless
Dirac bands at the material surface.2,3 Unlike the Dirac
electrons that can appear in a purely 2D system (no-
tably in graphene), the surface states of a (strong) 3D TI
are robustly protected from the opening of gap, so long
as time-reversal symmetry is preserved. The protection
can be viewed as a consequence of the parity anomaly,3–6

which “holographically” links surface states separated by
a topologically non-trivial bulk, and gives rise to the sig-
nature properties of the Z2 TI state: the half-integer
quantum Hall effect, quantized magnetoelectric coupling,
“axion” electrodynamics, etc.2,3 As stressed by Schny-
der et al. in Ref. 7, the robust character of the surface
states in the presence of quenched disorder can also be
taken as a principal characteristic of a topological insu-
lator. In particular, these states are protected from An-
derson localization,8 even in the presence of a “strong”
impurity potential, so long as time-reversal invariance is
preserved.9,10

With its 2D Dirac band pinned to an exposed surface,
a 3D TI is ideally suited to local probes such as scanning
tunneling microscopy (STM). In spectroscopic mode, an
STM captures an areal map of the local density of states
(LDOS). There are several ways of analyzing such data.
One is to look for quasiparticle interference (QPI)11–15 in
the LDOS Fourier transform. This method is useful for
determining short-distance details, and contains similar
information as an analysis of LDOS Friedel oscillations
in the presence of a single impurity.16 It has been applied
in TIs to experimental data and analyzed theoretically in
Refs. 12,13 and 14,15, respectively. In QPI, the disorder
is employed primarily as a facilitator to gleam informa-
tion about the clean system.11

Multifractal analysis17–19 provides a complementary

method better suited to extracting large-distance,
disorder-dominated features in the same LDOS data
field. It is a standard tool for assaying quantum interfer-
ence phenomena, and is employed in the analysis of wave-
functions near a metal-insulator transition18–21 as well as
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FIG. 1: Sketch of disorder “flavors” on the surface of a Z2

topological insulator. In the time-reversal invariant case, the
impurities are neutral adatoms or charged dopant ions, de-
picted as spheres in (a). The effects of these on the surface
Dirac theory [Eq. (3.1)] are encoded in the scalar potential
V (r). In the case of magnetic disorder, the impurity spins
are indicated by the arrows in (b) and (c). In the limit that
the spins reside in the plane of the surface, (b), the disorder
appears as a vector potential A(r). The opposite case of out-
of-plane polarization, (c), gives the random mass M(r). The
case of generic time-reversal breaking disorder has all three
potentials present.
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mesoscopic fluctuations in diffusive metallic systems.22,23

In this paper, we derive new results for LDOS multifrac-
tal spectra associated to disordered topological insulator
surface states. In particular, we extend the pioneering re-
sults of Ref. 24 to the generic cases of time-reversal (T )
preserving and breaking impurities. Our calculations are
performed in the near-ballistic limit,25 wherein weak dis-
order enters as a perturbation to the clean Dirac band
structure. A key characteristic of 2D Dirac fermions is
that this weak disorder regime is continuously connected
to more conventional domains of multifractal analysis,
i.e. the diffusive (symplectic) metal20,23 and the inte-
ger quantum Hall plateau transition.18,26–28 These ap-
pear at strong coupling (many impurities) for dirty Dirac
fermions.9,10,24,29

We consider the case of a single flavor Dirac surface
band, relevant to (e.g.) the TIs Bi2Se3 and Bi2Te3
(Refs. 2,3,30). The different kinds of T -preserving and
T -breaking disorder are sketched in Fig. 1. We demon-
strate that the LDOS multifractal spectra observed in
the absence of time-reversal symmetry breaking (i.e., for
non-magnetic disorder) is qualitatively weaker than that
induced by magnetic impurities. In particular, the first
multifractal correction obtains at first order in the im-
purity density for the case of broken T , while the first
non-trivial amplitude appears at second order in the T -
invariant case. We compute the leading terms via one-
and two-loop calculations, respectively. We also compute
unnormalized spectra for the spin LDOS31 in the case of
magnetic impurities. We show that renormalization ef-
fects can enhance multifractality near the Dirac point.
Finally, we summarize prior results on various strong-
coupling regimes. Our goal is to sketch the full portrait
of quantum interference physics on the surface of a TI,
valid when interparticle interactions can be neglected.

Our results indicate that the long-distance, disorder-
dominated features captured by the multifractal analysis
behave in many cases opposite to the short-distance char-
acteristics that appear in quasiparticle interference.12–15

In Ref. 14, the authors observed that QPI is strongest
for the spin LDOS response to magnetic impurities, while
the unpolarized LDOS pattern vanishes for magnetic dis-
order (in the first Born approximation). The QPI re-
sponse of the LDOS to non-magnetic disorder is weak
but non-zero.14 By contrast, in this work we find that
the LDOS multifractality is strongest for magnetic im-
purities, while the spin LDOS spectrum comparatively
exhibits the same or weaker strength fluctuations, de-
pending upon the polarization direction.

The weak influence of non-magnetic disorder is tied to
the intrinsic spin-orbit coupling that defines the mass-
less Dirac kinetic term. Multifractality is suppressed at
one loop due to interference mediated by the Dirac pseu-
dospin, which is proportional to the physical spin on a
Z2 insulator surface. The spin is also responsible for the
suppression of backscattering from a single non-magnetic
impurity.32 On the TI surface, magnetic disorder Zeeman
couples directly to the Dirac spin, enabling backscatter-

ing in near-ballistic transport, and inducing multifractal
LDOS fluctuations at the lowest order in the impurity
density.

A notable problem in experiments probing topological
insulator surface states has been the unintentional dop-
ing of carriers into the bulk bands, which then dominate
transport measurements in large samples.33 Even if the
chemical potential is moved into the gap, it may reside
far from the Dirac point, making it difficult to observe
surface state carrier dynamics at low densities. In this
respect, STM offers several advantages over transport ex-
periments. First, the position of the chemical potential is
no barrier to probing states at the Dirac point, since the
latter can always be reached by tuning the bias voltage
(although the Dirac point is not guaranteed to reside in
the bulk gap).3,30 Assuming that the Dirac point or the
low density regime can be accessed by tuning the tunnel-
ing bias, the advent of a finite, even large doping of the
surface and/or bulk states may actually play a beneficial
role in facilitating the observation of disorder-induced
quantum interference effects. This is because a finite
carrier density screens the long-range Coulomb potential
introduced by charged defects. The potential landscape
formed by screened impurities is short-range correlated
on scales larger than the screening length. Good screen-
ing eliminates the problem of electron and hole puddle
formation,34,35 which has until recently36 occluded trans-
port and other properties of Dirac carriers in graphene
near the Dirac point. On the other hand, a low density of
poorly-screened bulk dopants induces a long-range corre-
lated potential and puddle formation, as in graphene.13

LDOS fluctuations in the puddle regime are an important
topic for future work.

Three-dimensional topological insulators provide us
with an interesting paradigm flip for quantum interfer-
ence phenomena. Isolating the surface state contribution
in transport measurements is problematic. By compari-
son, direct LDOS imaging is easier than in conventional
semiconductor systems, wherein the 2D electron gas is
typically buried in a layered material stack. Moreover,
the amount of surface disorder can to some extent be
controlled; for example, magnetic impurities can be de-
posited across the surface of an otherwise high-quality
bulk 3D sample. These can be charge-neutral adatoms
or charged dopants; an example of the former (latter) is
provided by iron (manganese)37 in Bi2Se3.

This paper is organized as follows. We begin in Sec. II
with a lightning review of multifractal composite and spin
LDOS measures. In Sec. III, we present new results for
multifractal LDOS fluctuations in TI surface states, in
the presence of weak disorder. We also show how renor-
malization can enhance multifractality close to the Dirac
point. Finally, in Sec. IV, we review previous results on
various strong disorder regimes relevant to the Z2 TI sur-
face states and LDOS statistics. In particular, we discuss
the symplectic metal, the integer quantum Hall plateau
transition, and the Anderson insulator. Various technical
details are relegated to appendices. In Appendix A, we
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review the symmetry classes of Anderson (de)localization
that appear in the disordered Dirac surface theory. In
Appendix B, we supply some details of our perturbative
calculations.

II. MULTIFRACTAL LDOS MEASURES

A. Definitions

We suppose that the tunneling local density of states
(LDOS) ν(ε, r) is imaged at a fixed energy ε over an L×L
field of view. The field is finely partitioned into a grid of
boxes. The box edge length a≪ L must be chosen larger
than any “microscopic” scale lm, such as the correlation
length of the random potential.18 One introduces the box
probability

µn(ε) ≡

∫

An

d2r ν(ε, r)

∑

l

[

∫

Al

d2r ν(ε, r)

] , (2.1)

where An denotes the nth box. LDOS multifractality
is defined through the inverse of the participation ratio
(IPR),18,20

Pq(ε) ≡
∑

n

µq
n(ε) ∼

( a

L

)τ(q,ε)

. (2.2)

The right-hand side (scaling limit) obtains when lm ≪
a ≪ L; corrections are down by higher powers of
a/L. The exponent τ(q, ε) is the multifractal moment
spectrum18,38 for LDOS fluctuations at energy ε.
The construction in Eqs. (2.1) and (2.2) is useful for

characterizing a system with extended states, or for an
Anderson localized system in which L ≪ ξloc(ε); ξloc de-
notes the localization length. In what follows, we as-
sume experiments are performed at sufficiently low tem-
peratures so that inelastic cutoffs to quantum interfer-
ence can be ignored.8,39 A clean system with plane wave
states at energy ε has τ(q, ε) = 2(q − 1). Multifractality

refers to the incorporation of corrections non-linear in q.
Physically, these arise due to quantum interference via
multiple scattering of electron waves in a dirty environ-
ment, processes that serve as the precursor to Anderson
localization.18,20,22

For weak disorder, the spectrum is typically dominated
by the quadratic correction18,20

τ(q, ε) = 2(q − 1)− θ(ε) q(q − 1), (2.3)

where θ ≥ 0 gives a measure of the disorder strength. As
an example, in a weakly disordered 2D metal (with L≪
ξloc for the orthogonal or unitary classes), one finds20,21,23

θ =
β−1

2π2N(ε)D
, (2.4)

where N(ε) denotes the average density of states, D is
the classical (Drude) diffusion constant, and β ∈ {1, 2, 4},
depending upon the presence or absence of time-reversal
symmetry and spin-orbit scattering.23,40 At stronger dis-
order, higher order corrections in θq must be retained; for
the diffusive metals, results are known to four loops.20

An alternative characterization of LDOS multifractal-
ity is provided by the singularity spectrum18,38 f(α):
Over a subset of the sample grid area that scales as
(L/a)f(α), the box probability µ ∼ (a/L)α. The sin-
gularity spectrum is the Legendre transform of τ(q),

f(α) = qα− τ(q),
dτ(q)

dq
= α.

For the quadratic spectrum in Eq. (2.3), one obtains

f(α) = 2− 1

4θ
(α− 2− θ)

2
. (2.5)

In this “parabolic approximation,” the strength of
the multifractality is encoded in the peak position α0

[f(α0) = 2], and the width αW of the spectrum such that
f(α0 ± αW/2) = 0,

α0 = 2 + θ, αW = 4
√
2θ. (2.6)

Part of the power of multifractal analysis for disordered
quantum systems derives from the fact that the spectra
[τ(q) or f(α)] typically depend only upon a few gross
measures of the impurity potential. In the case of dirty
metals, the entire spectrum can be computed as an ex-
pansion in one parameter, the inverse conductance (con-
sistent with scaling theory).8,20,22 At a non-interacting
Anderson localization transition, τ(q) and f(α) become
universal functions, so that the critical point is charac-
terized by an infinite set of critical exponents [e.g., the
expansion coefficients for τ(q)].
The spectra above have been defined for data collected

in a single fixed realization of the disorder. Strictly
speaking, Eq. (2.3) then applies only for |q| ≤ qc, where

qc =
√

2/θ. Outside of this range, the τ(q) associated
to a fixed disorder realization is linear, a phenomenon
known as spectral termination.41–43 [This assumes that
higher order corrections can be ignored for q ≥ qc. Re-
gardless, the τ(q) spectrum is always linear for suffi-
ciently large q]. Termination can be viewed as a con-
sequence of the restriction to positive sample measures
f(α) ≥ 0.19,38

In the localized regime, the states contributing to the
LDOS at a given position in the sample have a discrete
energy spectrum, quantized by the typical localization
volume ξ2loc. As a result, all non-unity LDOS moments
diverge in the absence of level smearing. In a tunneling
experiment, smearing can appear due to inelastic scatter-
ing (temperature), open sample boundary conditions, or
due to the finite energy resolution of the instrument. To
characterize an Anderson insulating state over an L× L
field of view with L ≫ ξloc, the full LDOS distribution
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should be examined;44,45 sensitive dependence of the dis-
tribution shape to smearing can serve as a telltale sign of
the localized regime. LDOS fluctuations in the Anderson
insulator are reviewed in more detail in Sec. IVB.

B. Spin LDOS spectra

By restricting the character of the tunneling species, it
may be possible to measure individual LDOS components
separately. For example, in the case of a spin-polarized
(ferromagnetic) STM tip,31 the spin-projected compo-
nents ν↑,↓ can be separately resolved. The use of an un-
polarized tip recovers the composite LDOS ν = ν↑ + ν↓.
We define the spin LDOS along the spin space direction
ι̂,

ν ι̂(ε, r) ≡ ν ι̂↑(ε, r)− ν ι̂↓(ε, r). (2.7)

For a time-reversal invariant system (with or without
spin-orbit scattering and/or disorder), one has ν ι̂(ε, r) =
0. In a system with broken time-reversal (e.g., magnetic
impurities), but zero average spin polarization, the in-
tegral of ν ι̂(ε, r) over a sufficiently large region becomes
arbitrarily small; we cannot use the normalized construc-
tion in Eqs. (2.1) and (2.2) to characterize spin LDOS
multifractals. Instead, we employ the un-normalized in-
verse spin participation ratio (ISPR)

P ι̂
q(ε) ≡

∑

n

(

µι̂
n

)q
, µι̂

n ≡
∫

An

d2r ν ι̂(ε, r). (2.8)

In the scaling limit,

P ι̂
q(ε) ∼ cq

( a

L

)xι̂
q−2

, (2.9)

where the exponent xι̂q is the scaling dimension for the
corresponding moment operator in the disorder-averaged
field theory description, and cq 6= 0 for even q.

III. WEAK DISORDER MULTIFRACTALITY

A. Model. Short- and long-range correlated
potential landscapes

The Dirac surface states of a Z2 topological insula-
tor (TI) are guaranteed to appear in an odd number of
flavors.2,3 In this paper, we consider the simplest case of
a single flavor, relevant to (e.g.) Bi2Se3 and Bi2Te3. The
Hamiltonian is (in units such that ~ = 1)

H =

∫

d2rψ†

{

vF σ̂µ [−i∂µ +Aµ(r)]

+M(r) σ̂3 + V (r)

}

ψ, (3.1)

where µ ∈ {1, 2}, and repeated indices are summed. The
coordinates r = {x, y} chart the TI surface, while the

topological bulk resides in the perpendicular z direction.
In Eq. (3.1), vF denotes the Fermi velocity, and the Dirac
pseudospin Pauli matrices σ̂ are related to the physical
spin 1/2 operators Ŝ via {σ̂µ, σ̂3} = 2{ǫµνSν , S3}. The
vector, scalar, and mass potentials {A, V,M} describe
the effects of external electromagnetic fields and/or sur-
face impurities. In the absence of time-reversal (T ) sym-
metry breaking, A = M = 0. (See Appendix A for an
enumeration of discrete symmetry operations.) Thus, a
mass gap is explicitly forbidden so long as T remains a
good symmetry, a consequence of the protection afforded
by the topologically nontrivial bulk. When T is broken
by an external magnetic field B, the vector and mass
potentials are

Aµ = −eA(orb)
µ − γ‖

2vF
ǫµνB‖,ν ,

M = −γ⊥
2
Bz, (3.2)

where γ‖ (γ⊥) denotes the Zeeman coupling to the in-
plane field B‖ (out-of-plane field Bz), and the orbital

effect is embedded in A
(orb)
α via ǫαβ∂αA

(orb)
β = Bz.

Non-magnetic adatoms or charge traps are encoded in
the scalar potential V (r). In-plane (out-of-plane) polar-
ized magnetic impurities additionally induce point ex-
change coupling to the vector A(r) [mass M(r)] fields.16

The different types of disorder leading to V , A, and M
are sketched in Fig. 1. Assuming a random surface distri-
bution of impurities and spatial rotational invariance on
average, the disorder potentials can be taken as Gaussian
white noise distributed variables,

V (r)V (r′) = ∆V v
2
F δ(r− r′),

Aα(r)Aβ(r
′) = ∆A v

2
F δαβ δ(r− r′),

M(r)M(r′) = ∆M v2F δ(r− r′).

(3.3)

The dimensionless variances ∆V,A,M quantify the disor-
der strength. In the first Born approximation, these are
of the form

∆ v2F = nimp|ũ(0)|2, (3.4)

where nimp is the impurity density, and ũ(q) denotes the
Fourier transform of the single impurity potential. We
note that a net in-plane magnetization of the surface im-
purities Aµ 6= 0 can be removed by a gauge transforma-
tion, while the average scalar potential V is absorbed into
the chemical potential. We will assume that there is no
net magnetization perpendicular to the surface, M = 0,
or that we only probe LDOS fluctuations on energy scales
much larger than the induced gap 2vFM .
In 2D, the single impurity potential u(r) [Eq. (3.4)]

must decay faster than 1/r2 (or oscillate rapidly enough)
so that the limit ũ(q → 0) exists; otherwise, the white
noise assumption in Eq. (3.3) is invalidated by long range
impurity potential correlations.46 This causes a problem
for charged impurities, which can become poorly screened
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for a small surface doping relative to the Dirac point.
In graphene, the long-range correlated potential undu-
lations induced by poorly-screened substrate impurities
leads to a smearing of the Dirac point over an energy
scale kBTrms ∝ vF

√
nimp, and to the breakup of the sam-

ple into electron and hole puddles.34,35 The advent of
electron-hole puddles has until recently prevented the ob-
servation of various “intrinsic” phenomena associated to
the Dirac carriers in graphene experiments such as veloc-
ity renormalization36 and hydrodynamic transport near
the Dirac point. In this respect, a large surface or bulk
doping actually improves the situation for STM mea-
surement of disorder-induced quantum interference, since
these carriers screen the potential of surface charges. The
disorder potential can be considered short-range corre-
lated for scales larger than the screening length.
If we consider only surface doping, with an insulating

bulk, then the Thomas-Fermi wavelength due to a finite
surface carrier density n is given by

λTF =
1

α

√

π

n
, (3.5)

where α ≡ e2/ǫvF is the effective “fine structure con-
stant.” The permittivity ǫ = (1 + ǫTI)/2, the average
of the bulk TI below and vacuum above the surface. For
Bi2Se3 with a surface density of n = 7×1012 cm−2 (corre-
sponding to a doping level of 0.3 eV relative to the Dirac
point),30 vF = 5× 105 m/s (Ref. 30), and permittivity47

ǫTI = 113, one obtains λTF ∼ 90 nm. This is very large,
and indicates that the surface state carrier density is in-
adequate to screen charged impurities. A smaller screen-
ing length is possible for bulk doping,13 or by performing
experiments on thin film samples exfoliated over a metal-
lic gate. Alternatively, one can restrict the deposition of
surface impurities to non-doping adatoms, e.g. iron in
Bi2Se3.

37 The disorder variance associated to Thomas-
Fermi screened charged impurities is

∆V = π
nimp

n
. (3.6)

Finally, we note that the appearance in isolation
of any of the three disorder potentials in Eq. (3.1)
realizes three different symmetry classes of Anderson
(de)localization,7,48,49 see Appendix A for a review. The
T -invariant case with ∆A,M = 0 belongs to the spin-orbit
class AII, which is also the class of the Z2 topological
bulk [Fig. 1(a)]. In the case of broken T , ∆V,M = 0
realizes the random vector potential model in class AIII
[Fig. 1(b)], while ∆V,A = 0 gives the random mass model
in class D [Fig. 1(c)]. All three classes exhibit delocal-
ized states in 2D, although this occurs only at the Dirac
point for class AIII.24 In the T -invariant symplectic case,
the unpaired single Dirac flavor avoids the usual spin-
orbit metal-insulator transition,9 remaining delocalized
even for strong disorder due to a topological term.10 The
generic case of broken-T with all three disorder poten-
tials non-zero realizes the unitary class A, and is believed

to flow under renormalization to the plateau transition
in the integer quantum Hall effect.24,29 (See Sec. IVA2
for a review).
Because in-plane (out-of-plane) Zeeman coupling ap-

pears in the vector (mass) potential [Eq. (3.2)], one is
tempted to identify class AIII (class D) with the limit
of an otherwise clean surface, dusted with charge neutral
magnetic impurities randomly polarized in-plane (per-
pendicular to the TI surface). However, a magnetic
adatom is expected to also induce a local scalar potential
deformation V (r). For example, it can dope the surface
or bulk, as occurs for a manganese impurity in Bi2Se3
(Ref. 37)]. As discussed in Appendix A, the advent of
any two flavors of disorder destroys the additional dis-
crete symmetries enjoyed by the special class D and AIII
Hamiltonians. The asymptotic long-distance LDOS scal-
ing is then governed by the unitary class A, discussed
above. Nevertheless, depending upon the relative mi-
croscopic strength of the magnetic versus potential per-
turbations induced by polarized magnetic impurities, the
class AIII or D model may provide an adequate approxi-
mation for broken-T LDOS fluctuations on intermediate
scales.

B. Results

To compute the scaling of LDOS moments in a quan-
tum theory with quenched disorder, one employs a path
integral Z to express products of fermion Green’s func-
tions as functionals of the disorder configuration. Using
a trick (replicas,8,20,22 supersymmetry,50 or Keldysh51)
to normalize Z = 1, the Green’s functions are for-
mally averaged over disorder configurations (typically
with a Gaussian weight). The result is a translationally-
invariant, but “interacting” field theory, where the disor-
der strength ∆ appears as a coupling constant.8,50 Per-
turbative calculations are controlled via loop expansion
for small ∆.
To determine the scaling, one decomposes the qth

LDOS moment into projections upon the renormaliza-
tion group (RG) eigenoperators of the disorder-averaged
theory.20–22 The multifractal spectrum τ(q) is deter-
mined by the most relevant (negative)52 scaling dimen-
sion xq exhibited by an eigenoperator in this decomposi-
tion, and is given by19,43

τ(q) = 2(q − 1) + xq − qx1. (3.7)

1. Broken T : random vector potential disorder (Class AIII)

The properties of the model in Eq. (3.1) with short-
range correlated disorder [Eq. (3.3)] were originally stud-
ied in Ref. 24. In this work, the exact multifractal spec-
trum τ(q) was calculated for the broken-T , random vec-
tor potential (∼ in-plane polarized magnetic impurity)53

class AIII model, to all orders in ∆A. Technically, this
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result obtains because the disorder-averaged AIII model
is conformally invariant at the Dirac point, and the ex-
act LDOS moment spectra can be extracted using an
Abelian bosonization treatment. The exact spectrum24

is quadratic in q, and takes the form of Eq. (2.3), with

θA =
∆A

π
. (3.8)

Subsequent work41,42 on the random vector potential
model elucidated the mechanisms of termination and
freezing, transitions that occur in the spectral statis-
tics for large moments q > qc(∆A) or strong disorder
∆A ≥ 2π.
For this broken-T class, we can also examine the spin

LDOS fluctuations, utilizing the same nonperturbative
bosonization treatment employed in Ref. 24. The spin
LDOS ν ι̂(ε, r) taken along an axis ι̂ in spin space was
defined by Eq. (2.7). Moment fluctuations are charac-
terized by the inverse spin participation ratio (ISPR) in
Eq. (2.8), the scaling limit of which is controlled by the
dimension xι̂q that appears in Eq. (2.9). The out-of-plane

ISPR P 3̂
q (ε) is associated to the “mass” fermion bilinear

ν 3̂ = ψ†σ̂3ψ. For the random vector potential model,

the most relevant contribution to P 3̂
q (ε) carries the same

scaling dimension that gives the composite LDOS scaling
in Eqs. (2.3) and (3.8),

x3̂q = q − ∆A

π
q2. (3.9)

The chiral components of the in-plane spin LDOS are the
energy-resolved U(1) Dirac current operators

ν± ≡ ν 1̂ ± iν 2̂ = ψ†σ̂±ψ. (3.10)

Moments of these are RG eigenoperators that receive no
corrections. The scaling of the associated ISPR is gov-
erned by the disorder-independent (tree level) exponent

x±q = q. (3.11)

Eqs. (3.8), (3.9), and (3.11) are exact results that hold
to all orders in ∆A.

2. Broken T : random mass disorder (Class D)

In the rest of this section, we provide new results
for the broken-T , random mass (∼ out-of-plane polar-
ized magnetic impurity)53 class D model, the T -invariant
class AII model, and the generic broken-T unitary class
A model. For weak disorder, none of these are confor-
mally invariant, and we resort to perturbation theory. In
this section we summarize results; some technical aspects
are sketched in Appendix B. The results obtained below
hold only for small ∆V,M ≪ 1, wherein the disorder ap-
pears as a weak marginal perturbation (at tree level) to
the clean Dirac surface band structure.

For the broken-T case of random mass disorder (with
∆V = ∆A = 0), one obtains quadratic multifractality at
one loop, again governed by Eq. (2.3), with

θM =
∆M

2π
+O

(

∆2
M

)

. (3.12)

Moments of the out-of-plane spin LDOS operator ν 3̂ =
ψ†σ̂3ψ, as well as of the chiral in-plane [U(1) current]
operators ν± = ψ†σ̂±ψ constitute RG eigenoperators at
one loop, with scaling dimensions

x3̂q =q +
∆M

2π
q +O

(

∆2
M

)

, (3.13)

x±q =q +O
(

∆2
M

)

. (3.14)

Note that the first correction in Eq. (3.13) is positive (and
linear in q); this should be contrasted with the AIII case,
Eq. (3.9) above. On general grounds, the anomalous scal-
ing dimension associated to the qth ≥ 1 moment of the
composite LDOS, or any projected component thereof,
must appear with a negative sign. The reason is that
this quantity is associated to a moment of a normalized
probability distribution18,52 through Eqs. (2.1) and (2.2).
For a quadratic τ(q) spectrum, this leads in particular to
θ ≥ 0 in Eq. (2.3) [consistent with a positive, real dis-
order variance—c.f. Eqs. (3.8), (3.12), and (3.15)]. By
contrast, the spin LDOS is defined as the difference be-
tween two orthogonal projections [Eq. (2.7)]; for this rea-
son, the first disorder correction to the scaling dimension
in Eq. (3.13) is not required to appear with a particular
sign.

3. Non-magnetic disorder (Class AII)

In the T -invariant case of scalar potential disorder, it
turns out that no local operator (without derivatives) ex-
hibits multifractal scaling to first order in ∆V . For Dirac
fermions, this applies to both LDOS and energy-resolved
current moments. Physically, the weak influence of non-
magnetic disorder is due to interference mediated by the
Dirac pseudospin (equivalent to physical spin 1/2 on the
TI surface). The Dirac pseudospin is also responsible
for the suppression of backscattering from a single non-
magnetic impurity.32 Technically, this result is derived
by mapping the one-loop renormalization process of local
operators to the action of a certain spin-1/2 Hamiltonian

H
(eff)
V , and identifying renormalization group eigenopera-

tors with states that diagonalizeH
(eff)
V (see Appendix B).

As a result, to lowest order one observes plane wave scal-
ing in the LDOS IPR [Eq. (2.2)]. The spin LDOS van-
ishes exactly, due to T .
The first non-trivial correction to the LDOS τ(q) ap-

pears at two loops. To this order, the spectrum is again
quadratic as in Eq. (2.3). A straight-forward but labori-
ous calculation gives the coefficient in this equation,

θV =
3∆2

V

8π2
+O

(

∆3
V

)

. (3.15)
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FIG. 2: Quadratic multifractality for isolated disorder flavors.
The Renyi dimension dq = 2 − θ q [Eqs. (2.3) and (3.16)] is
plotted for the exact vector potential (AIII), one-loop mass
(D), and two-loop scalar potential (symplectic AII) results
[Eqs. (3.8), (3.12), and (3.15)]. The disorder strength is ∆ =
0.05 for each case. The broken time-reversal class D and AIII
corrections appear at order ∆M,A, while the (much weaker)
time-reversal invariant class AII correction begins at order
∆2

V .

Since ∆V ∝ nimp [Eqs. (3.4) or (3.6)], we find that the
non-trivial multifractal scaling begins at second order
in the impurity density. This is qualitatively weaker
than any of the broken-T regimes, where the quadratic
multifractality appears already at first order, Eqs. (3.8)
and (3.12). This distinction between T -invariant and
T -broken surfaces is our primary result, and can be
tested directly in STM experiments by varying the con-
centration of deposited surface disorder. Although the
T -invariant case is not conformally invariant (for a dis-
cussion of renormalization effects, see Sec. III C, below),
the multifractal τ(q) and f(α) spectra depend only upon
a single parameter, the variance ∆V . Eq. (3.15) can
be extended to higher loops, allowing ever more pre-
cise tests against numerics or experimental data within
the perturbatively accessible regime. The multifractal
spectrum therefore provides a unique fingerprint for the
time-reversal invariant Dirac surface state of the Z2 topo-
logical insulator, in the presence of weak but otherwise
generic non-magnetic disorder. The opposite limit of
strong disorder for the T -invariant case is discussed be-
low in Sec. IVA1.

4. Broken T : generic disorder (Class A)

When T is broken and any two disorder flavors appear,
the system resides in the unitary class A. The third disor-
der flavor is always generated under renormalization—see
Sec. III C, below. The results of Eqs. (3.8) and (3.12) for
the LDOS τ(q) spectrum in the random vector and mass
potential models suggest that the unitary case also ex-
hibits multifractality to first order in the impurity density
nimp, since ∆A,M,V ∝ nimp.
With multiple flavors of the disorder, solving the op-

erator mixing problem for the qth LDOS moment re-

quires the diagonalization of an effective spin Hamilto-
nian H(eff), transcribed in Eq. (B10) of Appendix B. In
Figs. 3 and 4, we present the results obtained by numer-
ically diagonalizing this matrix for various combinations
of {∆V ,∆M ,∆A}. In these figures we plot the Renyi

dimension17 dq, defined for q 6= 1 via

dq ≡ τ(q)

q − 1
. (3.16)

Figs. 3 and 4 show that the generic broken-T case is
multifractal at one loop, and easily distinguished from
the two-loop T -invariant result, in the limit of weak dis-
order. [Note that Fig. 4 indicates that the τ(q) spectrum
is not purely quadratic in this general case.] It should
therefore be possible to precisely distinguish the broken-
T and T -invariant spectra experimentally, by observing
the dependence of the deviation 2 − dq on nimp. The
single-disorder flavor results for comparable strengths are
plotted in Fig. 2 for reference.

For the multidisorder unitary model, the same RG
eigenoperators dominate the scaling of composite ν and

out-of-plane spin ν 3̂ LDOS moments. The dimension x3̂q
that determines the spin LDOS scaling via Eq. (2.9) also
enters into the LDOS spectrum in Eq. (3.7), leading to
Figs. 3 and 4. By contrast, moments of the chiral spin
LDOS components ν± [Eq. (3.10)] remain eigenoperators
that acquire no corrections at one loop,

x±q = q +O (∆α∆β) , (3.17)

α, β ∈ {A,M, V }.
As reviewed in the subsequent Sec. IVA2, for M =

0, the generic broken-T model is believed to flow to
the critical state at the integer quantum Hall plateau
transition.24,29 This state exhibits strong multifractality
that has been extensively studied in numerics.18,19,26–28

FIG. 3: One-loop Renyi dimensions [Eq. (3.16)] in the broken
T , multidisorder unitary class A case, for various disorder
strength combinations. These results were obtained by nu-
merically extracting the largest positive eigenvalue from the
effective spin Hamiltonian Heff in Eq. (B10) (restricting the
search to operators invariant under spatial rotations and re-
flections); see Appendix B for details. The two-loop result for
the T -invariant case is shown for reference.
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FIG. 4: The same as Fig. 3, but for different unitary class
disorder strength combinations. In the data presented here,
∆V > ∆M,A. Regardless, the one-loop spectrum obtained for
either ∆M,A > 0 is stronger than the two loop T -invariant
case with ∆M = ∆A = 0. The latter is also shown for refer-
ence.

C. Renormalization effects

As discussed at the beginning of the previous section,
the disorder-averaged Dirac surface state theory used to
compute LDOS multifractal spectra is an “interacting”
field theory, wherein the disorder strengths ∆V,A,M ap-
pear as coupling constants (c.f. Appendix B). Because
these parameters are dimensionless, at weak coupling the
disorder constitutes a marginal perturbation of the clean
Dirac band structure. The one-loop RG equations for
these parameters are given by24,54

d∆A

dl
=

1

π
∆M∆V , (3.18a)

d∆M

dl
=

1

π
(2∆A −∆M ) (∆M +∆V ) , (3.18b)

d∆V

dl
=

1

π
(2∆A +∆V ) (∆M +∆V ) , (3.18c)

where l = logL denotes the log of the RG length scale
(e.g., the system size). Energy ε scales as

d ln ε

dl
= z(l), (3.19)

where the (scale-dependent) dynamic critical exponent is

z = 1 +
1

2π
(2∆A +∆M +∆V ) +O (∆α∆β) , (3.20)

α, β ∈ {A,M, V }.
In this section, we use Eqs. (3.18)–(3.20) to derive the

dynamical scaling of the disorder parameters ∆V,A,M (ε);
here energy ε is measured relative to the Dirac point, not
the Fermi energy. (From the point-of-view of the disor-
dered Dirac theory, a finite energy above the Dirac point
constitutes a relevant perturbation.24) Using the results
obtained in the previous section, we thereby determine
the enhancement or suppression of LDOS multifractality
approaching the Dirac point, due to renormalization.

1. Broken T : random vector potential disorder (Class AIII)

For the random vector potential model with ∆V =
∆M = 0, Eq. (3.18) implies

d∆A

dl
= 0,

so that ∆A = ∆(◦)

A (constant), where ∆(◦)

A is the “mi-
croscopic” value derived from the randomly polarized
in-plane magnetic impurity distribution.53 This result in
fact holds to all orders in ∆A;

24 in this case, the theory
describing LDOS fluctuations at the Dirac point is con-
formally invariant. Multifractality is neither enhanced
nor suppressed as one moves away from the Dirac point,
defined as ε = 0. However, for non-zero energies ε 6= 0,
in an infinite size sample all states are in fact localized.24

The localization length diverges upon approaching the
band center as ξloc(ε) ∼ ε−1/z, with z = 1 + ∆A/π
[Eq. (3.20)]. Eqs. (2.3) and (3.8) for τ(q) hold on scales
smaller than ξloc(ε).

2. Broken T : random mass disorder (Class D)

For the random mass model with ∆V = ∆A = 0,

d∆M

dl
= −∆2

M

π
+O

(

∆3
M

)

,

so that the disorder is marginally irrelevant at
weak coupling.24 Integrating this equation and using
Eqs. (3.19) and (3.20), we can compute the scaling of ∆M

with energy. At energy scale Υ, we define ∆(◦)

M ≡ ∆M (Υ);
then for the smaller energy scale ε (relative to the Dirac
point), we obtain the logarithmic suppression

∆M (ε . Υ) ∼∆(◦)

M −
(

∆(◦)

M

)2

π
log

(

Υ

ε

)

+O

{

[

∆(◦)

M

(

1− ε

Υ

)]2

,
(

∆(◦)

M

)3
}

.

(3.21)

This equation holds for |1 − ε/Υ| ≪ 1. In the limit as
ε→ 0, the disorder strength vanishes as

∆M (ε→ 0) ∼π
[

ln

(

√

π

∆(◦)

M

Υ

ε

)]−1

+O

[

1

∆(◦)

M

ln−2

(

√

π

∆(◦)

M

Υ

ε

)]

. (3.22)

For small ∆(◦)

M , Eq. (3.22) applies only at very small en-
ergies ε . Υexp(−1/∆(◦)

M ).
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3. Non-magnetic disorder (Class AII)

Now we consider the T -invariant model. The flow
equation for ∆V is

d∆V

dl
=

∆2
V

π
+O

(

∆3
V

)

. (3.23)

In contrast to the random mass, the random scalar po-
tential is a marginally relevant perturbation to the clean
band structure.24 Examining lower and lower energy
scales approaching the Dirac point, one observes stronger
effects of the disorder. In the asymptotic scaling limit
wherein the impurity potential strength becomes “large”
(∆V & 1), numerical9 results and analytical10 arguments
imply that the disordered T -invariant Dirac theory renor-
malizes into the “conventional” symplectic metal. The
metal is distinguished from the Dirac theory by its non-
zero (and non-critical) density of states at zero energy,8

and by its τ(q) spectrum.20,23 We discuss the strong cou-
pling LDOS multifractality below in Sec. IVA 1. If at
energy Υ, ∆V (Υ) ≡ ∆(◦)

V ≪ 1, then for a somewhat
smaller energy ε we obtain the logarithmic enhancement

∆V (ε . Υ) ∼∆(◦)

V +

(

∆(◦)

V

)2

π
log

(

Υ

ε

)

+O

{

[

∆(◦)

V

(

1− ε

Υ

)]2

,
(

∆(◦)

V

)3
}

. (3.24)

Eq. (3.24) implies that renormalization strengthens
multifractality approaching the Dirac point ε = 0, for
the T -invariant case. We emphasize that this has nothing
to do with weak (anti-)localization. The latter occurs in
the diffusive metallic regime with kF lmfp ≫ 1, where lmfp

denotes the elastic mean free path. The diffusive regime
obtains at strong coupling9 near the Dirac point kF → 0
[Sec. IVA1, below]. The impurity strength renormaliza-
tion in Eq. (3.24) is a quantum effect deriving from the
clean band structure, in the “near-ballistic” regime.25

4. Broken T : generic disorder (Class A)

In the generic case of broken T , with multiple disor-
der coupling strengths non-zero, the system flows toward
strong coupling ∆V,M,A → ∞. As a result, multifractal-
ity is enhanced approaching the Dirac point. The RG
flow ultimately terminates at a strong coupling critical
point, or in the Anderson insulator, discussed in the next
section.

IV. STRONG COUPLING REGIMES

In this section, we review prior results on strong cou-
pling regimes relevant to the disordered Dirac Z2 topo-
logical insulator surface states, LDOS fluctuations and
associated multifractal spectra. These are not new, but

provide complimentary information to the new results
derived in the previous section.
In both generic cases of T -invariant, and T -breaking

impurities, the disordered Dirac description used in
Sec. III fails on the largest length and lowest energy
scales (approaching charge neutrality). For a sufficiently
dilute concentration impurities, the results obtained in
the previous section characterize the start of the scaling
regime, over energy and length scales such that the dis-
order strengths remain weak ∆V,A,M (L, ε) ≪ 1. When
these parameters become order one (due to renormal-
ization down to lower energies and longer lengths), the
system crosses over to one of the strong coupling regimes
discussed below.

A. Delocalized states at strong disorder

1. T -invariant case: diffusive metal via strong disorder

In a random scalar potential field, the Dirac point vac-
illates in energy with spatial location; as a result, the den-
sity of states near charge neutrality is enhanced by the
disorder. Due to the suppression of pure backscattering
for Dirac fermions,32 the state density enhancement more
than compensates for the increased scattering introduced
by the additional impurities. As a result, scalar potential
disorder actually increases the (zero temperature, Lan-
dauer) conductance at charge neutrality beyond the clean
ballistic result, e2/πh (Refs. 9,25). As in Sec. III, here
we assume short-range correlated disorder, due either to
charge neutral impurities or efficient screening by bulk
and/or surface carriers. We do not discuss the puddle
regime34,35 in the present paper.
The effective disorder strength ∆V is enhanced by

renormalization, as indicated by the runaway flow im-
plied by Eq. (3.23). The concomitant density of states
and conductance growth suggests that the disordered
Dirac theory ultimately crosses over to the ordinary dif-
fusive symplectic metal, a result born out by numerics.9

In the absence of time-reversal symmetry breaking, An-
derson localization is prohibited on the surface of a topo-
logical insulator.7,10

The symplectic metal possesses a finite (non-critical)
average density of states at charge neutrality, and a dis-
tinct τ(q) spectrum. For a large effective diffusion con-
stant D (induced for a Dirac fermion subject to suffi-
ciently strong disorder,9 or for a weakly disordered sys-
tem examined on large length scales), the lowest order
result for the multifractal spectrum appears in Eqs. (2.3)
and Eq. (2.4), above. In the latter equation, β = 4 for
the symplectic class.23,40

For the T -invariant case, the strongest multifractal-
ity is expected at intermediate coupling. Weak disorder
∆V ≪ 1 induces weak multifractality in the Dirac lan-
guage [τ(q) in Eqs. (2.3) and (3.15)], while strong dis-
order ultimately pushes the system into the symplectic
metal, where a large diffusion constant D suppresses the
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first correction in Eq. (2.4).

2. Broken T : IQHP transition

For generic T -breaking disorder, i.e. all three ∆V,M,A

non-zero, the disordered Dirac theory is also unsta-
ble under renormalization. When the average mass is
zero M = 0 (see below), the flow in Eq. (3.18) is be-
lieved to terminate at the critical point of the integer
quantum Hall plateau transition.24,29 This is the delo-
calized state separating adjacent Hall plateaux; it ex-
hibits strong multifractality that has been extensively
studied in numerics.18,26–28 The spectrum is believed to
be universal,18 and is approximately28 parabolic as in
Eqs. (2.3) and (2.5), with θ ∼ 0.26 (Refs. 27,28).

B. Anderson insulator

At zero chemical potential relative to the Dirac point,
an average out-of-plane spin magnetization at the sur-
face of a Z2 TI corresponds to the presence of a non-
zero Dirac mass M for the surface carriers. This in-
sulating state resides in a quantum Hall plateau [with
σxy = sgn(M) e2/2h].2,3,6,24 In the presence of surface
disorder, the plateau state will assume the character of
a localized Anderson insulator. In this section we review
LDOS fluctuations in the Anderson insulator. The dis-
cussion is relevant not only to the magnetized surface of
a 3D TI, but also to localized states populating the bulk
gap of a disordered TI. Proposals exploiting localization
to realize so-called “topological Anderson insulators” by
adding impurities to clean hosts include those in Ref. 55.

To understand local density of states fluctuations in an
Anderson insulator, it is useful to first study a toy prob-
lem. Consider a tight-binding model on a d−dimensional
lattice, subject to nearest-neighbor hopping t, and a ran-
dom on-site potential Vi, distributed uniformly over the
region −W/2 ≤ Vi ≤ W/2. We assume the absence of
spatial correlations in the disorder potential. The inverse
relative strength of the disorder is measured by the ratio
t/W . We consider first the extreme limit of zero hopping,
t/W → 0. In that case, the LDOS is the on-site operator

νi(ε, Vi) =
η/π

(ε− Vi)
2
+ η2

,

where η denotes an energy-smearing parameter. Physi-
cally, smearing is determined by inelastic scattering, open
sample boundary conditions, or due to the finite energy
resolution of the probing instrument.

At the “band center” ε = 0, the distribution function

for disorder-averaged LDOS moments evaluates to

p(ν) ≡
∫ W/2

−W/2

dV

W
δ [ν − ν (ε, V )]

=
1

πν2W

√

ν

νmax − ν
. (4.1)

In this equation, the LDOS is constrained to the interval
νmin ≤ ν ≤ νmax, where

νmin =
4η

π (W 2 + 4η2)
, νmax =

1

πη
. (4.2)

Using Eq. (4.1), one can compute the disorder-averaged
moments of the LDOS,

νq =
Γ
(

q − 1
2

)

Wπq−1/2Γ(q)
η1−q. (4.3)

The average LDOS is ν = 1/W ; all higher moments are
proportional to η1−q, and thus diverge in the limit of zero
energy smearing η → 0. This not surprising, because the
energy spectrum in our trivial toy model is discrete, so
that the LDOS operator becomes a delta function with
ill-defined moments as η → 0. The moments are domi-
nated by the power-law (Pareto) tail of the distribution,
accumulating at the upper limit ν = νmax. By contrast,
the typical LDOS, defined as νtyp = exp(log ν) is domi-
nated by the infrared

νtyp =
4ηe2

πW 2
.

This vanishes in the limit η → 0.
We see that observables exhibit broad statistics in the

single site model, governed by the p(ν) ∼ ν−3/2 power-
law distribution in Eq. (4.1). The moments are rendered
finite only by the non-zero energy smearing parameter
η. This should be compared to the LDOS statistics in
a system with extended states and weak multifractality,
e.g. that characterized by the quadratic τ(q) spectrum
in Eq. (2.3), with 0 < θ ≪ 1. It is known22 that the
corresponding LDOS distribution has a Gaussian bulk,
with a small amplitude log-normal tail responsible for
the weak multifractality. For the metallic system, the
result is independent of energy smearing, provided that
the thermodynamic limit is taken before the smearing is
set to zero. Returning to the toy insulator model, we
observe that the global density νG of states (GDOS) is
self-averaging in the same limit. The GDOS is defined
via

νG ≡ 1

N

N
∑

i=1

νi(Vi),

where N denotes the number of sites. In the large N -
limit, the cumulant expansion can be evaluated via the
saddle-point. The cumulants of the GDOS then take the
form

[νG]
q
c = N1−q (νq + . . .) ,
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where [· · · ]qc denotes the qth cumulant, and the omitted
terms are smaller by positive powers of η. Taking the
infinite system size limit N → ∞ before sending the en-
ergy smearing to zero η → 0 leads to the vanishing of all
q > 1 GDOS cumulants.

The calculations above can be extended to non-zero
hopping via a locator expansion in small t/W , as per-
formed by Anderson in his original 1958 paper.56 This
expansion can be formally summed to all orders in 1D
and on the Bethe lattice,57 but an explicit solution for
the LDOS statistics is difficult to obtain this way; see
Ref. 50 for an alternative approach.

Altshuler and Prigodin44 succeeded in deriving the dis-
tribution generating disorder-averaged LDOS moments
in a 1D system, which is exponentially localized for ar-
bitrarily weak disorder.8 In the thermodynamic limit for
a closed sample, they obtain the “inverse Gaussian” dis-
tribution

p(ν̃) =

√

4η

πǫ

1

ν̃3/2
exp

[

−4η

ǫ

(ν̃ − 1)2

ν̃

]

, (4.4)

where ν̃ ≡ ν/ν, and ǫ is the typical energy level spacing
in a localization volume; ǫ−1 is also the elastic scattering
lifetime.44 In the limit of small smearing η ≪ ǫ, this
distribution has moments

ν̃q =
41−qΓ

(

q − 1
2

)

√
π

(η

ǫ

)1−q

. (4.5)

The exact result in Eq. (4.5) for the 1D Anderson in-
sulator exhibits the same singular dependence on the
energy smearing η as the single site model moment in
Eq. (4.3). In fact, the distributions in Eqs. (4.1) and
(4.4) are very similar: both feature a ν−3/2 power law at
intermediate ν, while the exponential factor in Eq. (4.4)
plays the role of the hard cutoffs νmin,max in Eqs. (4.1)
and (4.2). The close resemblance of the exact 1D and
single site model results can be attributed to the discrete
spectrum of energy levels contributing to the LDOS in
an Anderson insulator, with an energy level spacing de-
termined by the localization volume ξdloc in d spatial di-
mensions.

The take away is that the LDOS distribution in an
Anderson insulator becomes very broad, with a power-
law tail yielding divergent moments, in the limit of van-
ishingly small energy smearing. In an STM experiment
performed at ultra-low temperature, on a large, isolated
Anderson localized surface, the collected LDOS statistics
should be very sensitive to the smearing induced by the
energy resolution of the measurement itself.

The locally discrete energy spectrum of the LDOS in
the Anderson insulator invalidates the use of Eq. (2.2)
as a tool to compute the multifractal τ(q) spectrum. As
advocated above, the shape of the LDOS distribution
function and its sensitivity to smearing can best reveal
the insulating phase. If one insists upon computing mo-

ments, one must employ20

τ (loc)(q) ≡ − d

d lnL
ln

[

1

ν

∫

Ld

ddr
∑

i

|ψi(r)|2qδ (ε− εi)

]

.

(4.6)

Since the levels are discrete,

lim
η→0

(πη)q−1νq(ε, r) =
∑

i

|ψi(r)|2qδ (ε− εi) . (4.7)

Thus,

τ (loc)(q) =− d

d lnL
ln

{
∫

Ld

ddr

[

lim
η→0

(πη)q−1νq(ε, r)

]}

+
d

d lnL
ln

{
∫

Ld

ddr ν(ε, r)

}

. (4.8)

In this equation, we replace averages-of-the-logs with
logs-of-the-average, a procedure that is legitimate here
because spatial and disorder-averaging are expected to
yield the same results on the insulating side. Noting that
the LDOS moments are L-independent in the insulator
for L≫ ξloc, we obtain the expected result18 for localized
states

τ (loc)(q) = 0, (4.9)

computed in a well-defined η → 0 limit.
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Appendix A: Discrete symmetries, random matrix
classification, and disorder

The 10 symmetry classes of disordered Hamiltoni-
ans (Hermitian random matrices) can be efficiently dis-
tinguished by the presence or absence of time-reversal
T , particle-hole P , and chiral/“sublattice” symmetry
C.7,48,49 For the two-component Dirac Hamiltonian in
Eq. (3.1), the definitions of these symmetries are es-
sentially unique. In terms of the two-component Dirac
spinor ψ, these appear as

T : ψ → −iσ̂2ψ, i→ −i (A1a)

P : ψ → σ̂1
[

ψ†
]T
, (A1b)

C : ψ → σ̂3
[

ψ†
]T
, i→ −i. (A1c)



12

In the second quantized language, T and C are antiuni-
tary transformations; the unitary P can be taken as the
product of these.

The imposition of any one of the discrete symmetries
upon the Hamiltonian in Eq. (3.1) in every disorder real-
ization restricts its form, and selects a particular ran-
dom matrix symmetry class.7,24,48,49 (1) T -invariance:
A = M = 0, only potential disorder ∆V ≥ 0 is al-
lowed. Since T 2 = −1, this is the symplectic (spin-
orbit) class AII, which is also the symmetry class of
the (presumed T -invariant) topological Z2 bulk. (2) P-
invariance: V = A = 0, only random mass disorder
∆M ≥ 0 is allowed. Because P2 = +1, this is the bro-
ken time-reversal class D. (3) C-invariance: V = M = 0,
only random vector potential disorder ∆A ≥ 0 is allowed.
This is the broken time-reversal class AIII. (Technically,
it is the “topological”/WZW class AIII1 in the language
of Refs. 7,49.)

Class AII is generically realized whenever time-reversal
is unbroken. Magnetic impurities randomly polarized
parallel (perpendicular) to the TI surface manifest as
point exchange sources in the vector (mass) potentials
of Eq. (3.1); we are thus tempted to identify symme-
try classes D and AIII with these two limits. How-
ever, a magnetic impurity will typically induce a local
potential fluctuation V (r) as well. As a consequence,
the generic case of broken-time reversal symmetry corre-
sponds to the absence of T ,P , and C, which gives the uni-
tary class A.7,48,49 In fact, for a vanishing average mass
M = 0, the surface of a topological insulator with generic
time-reversal breaking disorder is expected to flow under
renormalization to the critical point of the integer quan-
tum Hall plateau transition.24,29 On a different note, the
class AIII1 and class D versions of H in Eq. (3.1) can be
realized on the surface of a bulk T -invariant 3D topolog-
ical superconductor, where time-reversal is respectively
preserved or broken at the surface.7

Appendix B: Perturbation theory

1. Chiral Decomposition and one-loop
renormalization

We write a 2+0-D fermion path integral to represent
correlation functions in the disordered Dirac Hamilto-
nian transcribed in Eq. (3.1). The fermion operators are
replaced with the Grassmann fields {ψ, ψ†} → {ψi, ψ̄i};
here i ∈ {1, . . . , n} denotes a replica index, and we are to
send n→ 0 at the end of the calculation.8,20 We employ
a “chiral decomposition” of the two-component spinors,

ψi =

[

Li

Ri

]

, ψ̄i =
[

R̄i L̄i

]

(B1)

Then the action of the replicated theory is

S =

∫

d2r

[

ε
(

R̄iLi + L̄iRi

)

+ R̄iLiφ+ L̄iRiφ̄

+ R̄i (−i∂ +A)Ri + L̄i

(

−i∂̄ + Ā
)

Li

]

,

(B2)

where we have introduced complex coordinates {z, z̄} =
x ± iy, {∂, ∂̄} = (∂x ∓ i∂y), and disorder potentials
{A, Ā} = Ax ∓ iAy, {φ, φ̄} = V ±M . The energy ε is a
fixed parameter. In Eq. (B2), repeated replica indices are
summed. Assuming the Gaussian white-noise variances
for the disorder potentials enumerated in Eq. (3.3), the
replicated theory can be averaged over disorder configu-
rations. The post-ensemble averaged action is

S = S0 + SA + S1 + S2, (B3)

where S0 is the clean Dirac action, and

SA =− 2∆A

∫

d2r R̄iRiL̄jLj, (B4a)

S1 =− ∆V +∆M

2

∫

d2r
(

R̄iLiR̄jLj + L̄iRiL̄jRj

)

,

(B4b)

S2 =− (∆V −∆M )

∫

d2r R̄iLiL̄jRj . (B4c)

Different replicas become coupled through the
disorder.8,20

The disorder-averaged composite LDOS ν(ε, r) corre-
sponds to the fermion bilinear expectation

ν = 〈ψ̄ψ〉 = 〈R̄L+ L̄R〉. (B5)

The spin LDOS ν ι̂(ε, r) was defined by Eq. (2.7). For the
out-of-plane and in-plane (chiral) components, one has

ν 3̂ =〈ψ̄σ̂3ψ〉 = 〈R̄L− L̄R〉, (B6a)

ν± ≡〈ψ̄σ̂±ψ〉 = 2{〈R̄R〉, 〈L̄L〉}, (B6b)

The overlines appearing in the left-hand sides of
Eqs. (B5) and (B6) denote disorder-averaging, whereas
the angle brackets on the right-hand sides represent in-
tegration in the fermion path integral, using the action
S̄ in Eq. (B3).
A generic local operator corresponding to the qth mo-

ment of some fermion bilinear can be viewed as sum of
“strings,” where each string consists of 2q total right (R)
and left (L) mover labels, arranged in some order. For
example, the disorder-averaged qth moment of the LDOS
is represented by the the composite operator expectation
value

νq(r) =

〈

q
∏

i=1

[

R̄iLi(r) + L̄iRi(r)
]

〉

. (B7)

In this equation, a product is taken over operators carry-
ing indices in the first q ≤ n replicas. The qth LDOS mo-
ment is computed by placing one copy of the LDOS op-
erator into each of q different replicas; before averaging,
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this gives νq in a fixed realization of the disorder. (Plac-
ing instead the q copies into the same replica would give
the disorder-averaged first moment of a 2q-point Green’s
function.) The operator in Eq. (B7) is an even weight
sum of 2q “strings”, all of length 2q. I.e.,

νq(r) ={R̄L; R̄L; . . . ; R̄L}
+ {L̄R; R̄L; R̄L; . . . ; R̄L}
+ {R̄L; L̄R; R̄L; . . . ; R̄L}
+ . . .

+ {L̄R; L̄R; . . . ; L̄R}. (B8)

The semicolons separate fermion bilinears in different
replicas. Each bilinear has two entries, corresponding to
the chiral identity of the barred and unbarred operators.
The set of all length 2q strings forms a complete ba-

sis for qth moment local operators (without derivatives).
These basis strings mix under renormalization due to
the disorder.58 In general, the composite operator (≡
weighted string sum) corresponding to the qth moment
of a bilinear as in Eq. (B7) does not constitute an eigen-
operator of the renormalization group. The main task is
to (1) identify RG eigenoperators for each disorder type
and compute the spectrum of scaling dimensions, and (2)
compute the projection of the LDOS and (for broken T )
spin LDOS moment operators onto this eigenbasis, and
determine the most relevant contributions.

a. Effective Hamiltonian for 1-loop renormalization

It is useful to view each string as a configuration of
2q spin 1/2 moments. We associate {R̄, R} → 1/2 (spin
up) and {L̄, L} → −1/2 (spin down). Operators invari-
ant under spatial rotations have equal numbers of up and
down spins, and therefore reside in the zero total magne-
tization sector with Jz = 0. We picture each string as a
basis state for a length q chain, with two spins per site.
Sites are labeled by the replica index i ∈ {1, . . . , q}. The
two spins at each site are distinguished by labels “A”
and “B,” corresponding to barred and unbarred opera-
tors, respectively.
Renormalization occurs via the action of the disorder

vertices appearing in Eq. (B4), employing the clean Dirac
propagator in a standard loop expansion. Operator mix-
ing at one-loop is encoded in the effective “Hamiltonian”

H(eff) =
lnΛ

2π





























2∆A

q
∑

i,j=1

(Sz
Ai − Sz

Bi)
(

Sz
Aj − Sz

Bj

)

+ (∆M +∆V )

q
∑

i,j=1

(

S+
AiS

−
Bj + S+

BiS
−
Aj

)

+ (∆M −∆V )

q
∑

i,j=1
i6=j

(

S+
AiS

−
Aj + S+

BiS
−
Bj

)





























.

(B9)

In this equation, Sa
A/Bi denotes a spin-1/2 operator act-

ing on the barred (A) or unbarred (B) spin in replica i.
The prefactor obtains from evaluating the loop integrals
using a hard momentum cutoff Λ. The first, second, and
third lines in the heavy brackets arise through the action
of the disorder vertices in SA, S1, and S2, respectively.
The ∆A renormalization is diagonal in the ↑/↓ (R/L) ba-
sis. By contrast, S1, and S2 perform single exchanges of
right and left labels. S1 (S2) mediates interflavor A↔ B
(intraflavor A ↔ A, B ↔ B) exchanges. Summing the
angular momenta,

H(eff) =
lnΛ

2π































2∆A (Jz
A − Jz

B)
2

+ 2 (∆M +∆V ) (J
x
AJ

x
B + Jy

AJ
y
B)

+ (∆M −∆V )

×
[

J2
A − (Jz

A)
2
+ J2

B − (Jz
B)

2

− q

]































,

(B10)

where JA,B ≡
∑

i SA,Bi.
In the general case of broken T discussed in Sec. III B 4,

all three disorder parameters are present. The most rele-
vant eigenvalue of Eq. (B10) determines the scaling of the
qth LDOS moment.59 The first few multifractal moments
for various disorder configurations were obtained through
numerical diagonalization; results appear in Figs. 3 and
4.
Even moments of the out-of-plane spin LDOS ν 3̂

[Eq. (B6a)] are invariant under spatial rotations and
parity.59 In the multidisorder unitary case, even mo-

ments of the composite ν and out-of-plane spin ν 3̂ LDOS
are dominated by the same RG eigenoperator. The di-

mension x3̂q that determines the spin LDOS scaling via
Eq. (2.9) is the same that enters into the LDOS spec-
trum in Eq. (3.7), Figs. 3 and 4. Moments of the chiral
spin LDOS components in Eq. (B6b) correspond to the
highest weight states |j = q;m = ±q〉; here, j(j + 1) de-
notes the eigenvalue of (JA + JB)

2, with 0 ≤ j ≤ q and
−j ≤ m ≤ j. These highest weight states are annihilated
by H(eff) in Eq. (B10), leading to Eq. (3.17).
Below we discuss the special cases of isolated disorder

flavors.

b. Broken T : random vector potential disorder (Class AIII)

For ∆M = ∆V = 0, Eq. (B10) reduces to

H
(eff)
A =

lnΛ

π
∆A (Jz

A − Jz
B)

2

=
lnΛ

π
∆A (mA −mB)

2 . (B11)

On the second line, we have evaluated H
(eff)
A for the

product state |jA, jB ;mA,mB〉. Since max(jA,B) = q/2
and |mA/B| ≤ jA/B , the maximum eigenvalue attains

for the states |q/2, q/2; q/2,−q/2〉 → {R̄L; R̄L; . . . ; R̄L}
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and |q/2, q/2;−q/2, q/2〉 → {L̄R; L̄R; . . . ; L̄R}. These
have Jz = 0, and thus correspond to operators invari-
ant under spatial rotations; the symmetric combination
is also parity-invariant.59 Via standard renormalization
group machinery,60,61 one obtains the most relevant scal-
ing dimension for a q−fold product operator,

x(A)
q =q − q2

∆A

π
. (B12)

Using Eq. (B12) in Eq. (3.7) gives the result for the
quadratic τ(q) spectrum in Eqs. (2.3) and (3.8).

c. Broken T : random mass disorder (Class D)

For the random mass case, Eq. (B10) becomes

H
(eff)
M =

∆M ln Λ

2π

[

J2 − (Jz)2 − q
]

=
∆M ln Λ

2π

[

j(j + 1)−m2 − q
]

, (B13)

where J ≡ JA + JB. On the second line, we have eval-
uated the “Hamiltonian” on a total angular momentum
eigenstate |jm〉. For 2q spins, we have max(j) = q. The
maximum eigenvalue is associated to the non-degenerate
j = q, m = 0 state, which is invariant under spatial
rotations. The scaling dimension is

x(M)
q =q − q2

∆M

2π
. (B14)

The corresponding eigenoperator |j = q,m = 0〉 is an
equal weight symmetric sum of all permutations of q
“R” and q “L” labels, and has non-zero overlap with
the naive LDOS moment (a q-fold triplet product) in
Eq. (B7). Using Eq. (B14) in Eq. (3.7), one obtains the
result for the quadratic τ(q) LDOS spectrum in Eqs. (2.3)
and (3.12). By contrast, the out-of-plane spin LDOS
(mass operator) in Eq. (B6a) is a singlet; the disorder-
averaged qth moment thus corresponds to the eigenoper-
ator |j = 0,m = 0〉 [leading to Eq. (3.13)].

d. Non-magnetic disorder (Class AII)

We rotate the “B” composite spin by π around the
ẑ-axis,

Jx
B → J̃x

B ≡ −Jx
B, Jy

B → J̃y
B ≡ −Jy

B, Jz
B → J̃z

B ≡ Jz
B.

The Hamiltonian in Eq. (B10) with ∆M = ∆A = 0 be-
comes

H
(eff)
V =− ∆V ln Λ

2π

[

J̃
2 − (J̃z)2 − q

]

, (B15)

where J̃ ≡ JA + J̃B. Eq. (B15) has the same form as
Eq. (B13), with ∆V → −∆M . This is consistent with a
mapping between the random mass and vector potential

models identified in Ref. 24. In the case of the scalar
potential, the maximum eigenvalue is associated to the
highly degenerate singlet sector

∣

∣j̃ = 0, m̃ = 0
〉

, leading
to the scaling dimension

x(V )
q =q − q

∆V

2π
. (B16)

Using this result in Eq. (3.7) gives τ(q) = 2(q − 1).
We conclude that no moment operator (without deriva-
tives) acquires multifractal scaling at one loop for the
T -invariant model.

2. Two loop renormalization, T -invariant class AII

In the T -invariant class AII model, the first correc-
tion to the LDOS τ(q) spectrum appears at second order
in ∆V . We have carried out a two-loop calculation and
found that the naive LDOS moment in Eq. (B7) remains
an eigenoperator. To this order, we find the scaling di-
mension

x(V )
q =q − q

∆V

2π
− ∆2

V

8π2
[3q(q − 1) + q] +O

(

∆3
V

)

.

(B17)

Combining Eqs. (3.7) and (B17), we recover the
quadratic multifractality for τ(q) quoted in the text,
Eqs. (2.3) and (3.15). We have used dimensional regular-
ization to obtain the result in Eq. (B17). Although the
Clifford algebra becomes formally infinite62 upon dimen-
sional continuation to d = 2− ǫ, this causes no problems
for the renormalization of the qth LDOS moment because
the latter is already an eigenoperator. We omit details
of the (lengthy) two-loop calculation in this paper.
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