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Calculations of the single particle density of states (SPDOS) of electron liquids have long predicted
that there exist two distinct charged excitations: the usual quasiparticle consisting of an electron
or hole, and a plasmaron consisting of a hole resonantly bound to real plasmons in the Fermi sea.
Using tunneling spectroscopy to measure the SPDOS of a 2D electronic system, we demonstrate the
first detection of a plasmaron in a 2D system in which electrons have mass. With the application
of a magnetic field we discover unpredicted magnetoplasmarons which resemble Landau levels with
a negative index.
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The “plasmaron” was originally proposed by Hedin and Lundquist1,2 to exist in three-dimensional (3D) metals.
However, aside from the unusual semi-metal Bismuth3, it has not been unambiguously observed in 3D, and some
theories suggest that the 3D plasmaron should not exist4. In contrast, more recent theories predict a robust plasmaron
in two-dimensional electronic systems (2DESs)5–9. Indeed, the plasmaron has recently been observed in graphene,
which contains a 2DES with massless electrons10. We observe several key differences between our observation of the
plasmaron in system with massive electrons and the experimental and theoretical results for graphene. Whereas in
graphene the plasmaron is predicted to exist both above and below the Fermi energy8 and exhibits a simple scaling
law with electron density, we find that in a system of massive electrons the plasmaron exhibits a strong asymmetry
about the Fermi energy and exhibits a non-linear and unpredicted dependence on electron density.

We perform our tunneling measurements using time domain capacitance spectroscopy (TDCS)11–13. This technique
allows the measurement of the SPDOS with precisely calibrated energy and density axes and minimal effects of heating.
In TDCS, the 2DES to be studied is grown epitaxially inside of a capacitor. One plate of the capacitor, the tunnel
electrode, is close enough to allow charge to tunnel to and from the 2D system. The other plate is distant enough
to be electrically isolated and is used to detect the tunnel current by means of its image charge. DC voltages can
be used to tune the density of the 2D system continuously, while tunnel voltages and currents can be induced by
applying voltage pulses across the capacitor. In the present measurements the 2DES is a 230Å GaAs quantum well.
The plates of the capacitor are 3D doped regions of GaAs with an electron density of 1 × 1018cm−3. The tunnel
electrode is separated from the 2DES by a 130Å tunnel barrier of x = .324 AlxGa1−xAs followed by 300Å of undoped
GaAs which acts as a spacer layer to reduce scattering14. This spacer is thin enough it is populated by electrons due
to the finite Thomas-Fermi screening length. The electrically isolated electrode is separated from the 2DES by 600Å
of x = .324 AlxGa1−xAs.

Figure 1a shows a typical TDCS spectrum acquired at 100 mK with zero magnetic field. The horizontal axis is
the density in the 2DES, which is controlled by the DC bias across the device. The vertical axis is energy, with E=0
corresponding to the Fermi energy. The band edge of the 2DES, corresponding to injecting a wavevector k = 0 hole,
is visible as a abrupt edge that begins near E = 0 at zero density and moves downward in energy as the 2D system
is populated (Solid arrows in figure 1b). Tunneling matrix element effects reduce the tunnel current at high energies
and densities, causing the 2D band to appear as a peak rather than a step12,14. Because of the additional energy to
create the plasmon, creating a plasmaron requires more energy than creating an ordinary hole. More energetic holes
occur at more negative energies in our spectra. Thus, the plasmaron appears as a second edge below the 2D band
edge in the spectrum (dashed arrows in 1b). Both edges can be emphasized by differentiating the data with respect to
tunnel voltage to provide d2I/dV 2 and smoothing it by convolving with a σ = 190µeV Gaussian to remove resulting
high frequency noise (figure 1d).

Inelastic tunneling could potentially result in a similar increase in tunneling current when a new tunneling process
becomes available at the energy required for creating a plasmon. However, such inelastic tunneling features are
typically symmetric about the Fermi energy as both electrons and holes can lose energy through emission of a
plasmon. The asymmetry of the observed feature rules out such an origin.

We identify the edges of the 2D and plasmaron band edges by the location of the peak in d2I/dV 2 (figure 1c). At
densities above 5× 1010, the 2D band edge lies at E2d = (−0.379± 0.003)meV ×N2d/(10

10cm−2)+ (0.19± 0.01)meV ,
where N2d is the electron density of the 2DES and the energy scale is calibrated using the cyclotron energy of the
empty well assuming m∗ = 0.06712. The offset is due to our choice of the peak in the derivative of the TDOS as our
band edge. For a non-interacting system, this bandwidth would be expected to be .362meV ×N2d/(10

10cm−2 Note
this bandwidth is the energy difference between suddenly creating a hole at the bottom of the band and suddenly
creating one at the Fermi energy, and it is not in general equal to the chemical potential. While the details giving rise
to this larger bandwidth are complex, we note that both band-nonparabolicity15 and interaction effects6 are expected
to increase this bandwidth slightly.

We find a good empirical fit for the location of the plasmaron edge to be Epl = E2d − (1.44 ± 0.02meV) ×
√

N2d/(1010cm−2) − 0.19 ± 0.01meV. While this density dependence has not been predicted in the literature, we

note the overall
√
N2d is suggestive of the density dependence of the plasmon component of the plasmaron, with

h̄ωp(k) =
√

nek/(2mǫ).

While detailed calculations of the plasmaron energy and lifetime exist elsewhere1,2,4–7,16, a simple “cartoon” model
aids in developing intuition and in understanding how the heterostructure can modify the plasmaron structure. The
plasmaron exists because, for a small range of energies and wavevectors, it is possible to create a composite excitation
with wavevector k consisting of resonantly bound holes of wavevector k − q and plasmons of wavevector q. To create
a plasmaron with energy Epl(k), this resonance condition is given by

Epl(k) =
h̄2

[

k2f − (k − q)2
]

2m∗
+ h̄ωp(q) + Ec(q, k)
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Here h̄ωp(q) is the energy to create a plasmon of wavevector q (proportional to
√
N2dq at small q17) and Ec is a

coupling energy. If we momentarily neglect the coupling energy we can graphically solve for resonance by rearranging

this as Epl(k)− h̄ωp(q) =
h̄2[k2

f−(k−q)2]
2m∗

(Figure 2A; note the energy axis is inverted to match the sign convention in our
experimental data). On doing so, it becomes clear that for some values of Epl(k), a resonance occurs not for a single
value of q but instead across a range of q vectors where the hole (blue) and plasmon (green) dispersion become tangent
(red circles); the hole-plasmon coupling is strongest when the hole and plasmon group velocities match. This results
in a strong resonance that allows the coherent screening of the injected quasiparticle by a cloud of real plasmons,
creating a long-lived excitation at Epl. As the momentum of the plasmaron k is increased (black line), Epl must
increase to keep the plasmon and hole dispersion curves tangent (dotted green line). At the same time, the relevant
plasmon q vector increases. Because the coupling of the hole to the plasmon is through the Coulomb interaction, it
dies away as 1/q. This weakening of the hole-plasmon coupling together with a decrease in the resonant phase space
destroys the plasmaron at large k. For typical densities in our device, this is predicted to occur at k ∼ 0.15kf

6. The
plasmaron dispersion curve and its range are pictured in black as the small upside-down u near the bottom of Figure
2a.
Because the plasmon dispersion curve becomes steeper as

√
N2d, the plasmaron becomes more widely seperated

from the 2D band as the density is increased. At the same time, the relevant q-vector increases, weakening and
ultimately destroying the plasmaron as the 2DES density is increased.
The plasmaron, then, is a long lived excitation that only exists at small wave-vectors and small electron densities.

It is made up of resonantly coupled holes and plasmons of equal but opposite wavevectors centered about the k
vector of the plasmaron. The wavevector of the plasmon and hole involved is large: ∼ 0.66 kf for a GaAs 2DES at
N2d = 1 × 1011. A comparison of the general form of the plasmaron dispersion from this argument to the Random
Phase Approximation (RPA) spectral function A(k, ω) (essentially the momentum resolved SPDOS) calculated as per
[6] is included in Figure 2b.
In the case of injecting electrons into the quantum well, larger momenta k− q gives higher energy excitations rather

than lower. When repeating the above discussion the parabolic electron dispersion is flipped with respect to the
plasmon dispersion. The plasmon and electron curve then cross at a sharp angle rather than touching tangentially
(Figure 2C). Accordingly, there is no broad region of resonance, and no long lived plasmaron above the Fermi energy.
This is in marked contrast to the case in graphene, where no electron-hole asymmetry exists8,9.
At any given wave-vector the plasmaron is sharply peaked at a particular energy; however, when this spectrum is

averaged across all wave-vectors, the added structure due to the plasmaron is expected to appear as a step, possibly
with a peak at the low energy edge depending on the lifetime of the plasmaron. For an isolated quantum well of
infinitesimal thickness, this edge is predicted to lie from two to six times the 2D Fermi energy below the 2D band edge
at a density of 1× 1011cm−2, depending on what approximation scheme is used in calculating the spectral function.
The plasmaron step appears much closer to the Fermi energy in our data, separated from the band edge by only roughly
1.3 × EF at 1 × 1011cm−2. The SPDOS calculated using RPA (as in Ref [6]) for an isolated infinitely thin well is
superimposed on measured spectra in figure 3 at a variety of densities, showing this discrepancy. However, because the
energy of the plasmaron is extremely sensitive to both the plasmon dispersion and the Coulomb interaction, a number
of features in our structure not present in the simplest calculations tend to considerably reduce the distance between
the 2D band edge and the plasmaron. The 230Å wide square quantum well reduces the effective electron-electron
interaction at short distances, and can be accounted for by the addition of a “form factor” to the Coulomb potential.
Doing so moves the plasmaron edge somewhat closer to the band edge (figure 3). In addition, the nearby metallic
tunnel electrode screens the Coulomb interaction at large distances and also tends to reduce the plasmon energy at
large wavevector18,19; this can also be incorporated into the form factor. This further reduces the discrepancy as well
as smoothing the plasmaron peak into more of a step. Finally, coupling to optical phonons modifies the dielectric
function somewhat at energies and wavevectors relevant to the plasmaron, further reducing the plasmaron energy and
completing the transformation of the plasmaron contribution to the SPDOS to a step rather than peak.
The calculated energy spectrum is still substantially different from the measured spectrum. RPA underestimates the

screening of the Coulomb interaction by the correlation hole around injected quasiparticles; more accurate calculations
would be expected to further reduce the energy of the plasmaron. The exquisite sensitivity of the plasmaron feature
to the electron-electron interactions make it an excellent benchmark for testing approximate methods in many-body
theories.
On applying a quantizing magnetic field, we find the plasmaron step breaks up into a series of faint “ghost”

Landau levels below the 2D band edge (Figure 4A). We note that the 2D density is measured independently using
magnetocapacitance in this measurement, confirming that there is no offset on the density axis of this spectrum and
thus confirming our identification of the N=0 Landau level. On applying a quantizing magnetic field, the energy of
creating a hole becomes non-dispersive, discretized by Landau quantization into flat bands separated by h̄ωc . At the
same time, the dispersion curve of magnetoplasmons is gapped by the cyclotron energy, is rather flat, and has one
or more magneto-roton extrema at long wavelengths20,21. Thus, repeating the “cartoon” arguments applied to the
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zero-field plasmon, it seems reasonable for the band of plasmarons responsible for the plateau in our data to sharpen
into one or more “ghost” Landau levels lying below N = 0, which we label “magnetoplasmarons” by analogy to
magnetoplasmons. This is indeed observed (figure 4B); on varying the magnetic field while holding the bias voltage
fixed (roughly fixing the density), a number of “ghost” Landau levels can be observed, with separations that scale
with the cyclotron energy. In particular, at ν = 4 at 1 Tesla, two “magnetoplasmaron” peaks are visible below the
N = 0 Landau level with an inter-peak splitting of 1.8± 0.1 meV, similar to the cyclotron energy h̄ωc of 1.6 meV at
this field. The splitting between the N=0 Landau level and the first plasmaron peak is complicated by the exchange
splitting of the bottom Landau level; however, taking the energy of the N = 0 level to be the mean energy of the spin
up and spin down peaks, the measured splitting is 2.3± 0.1 meV, significantly larger than the cyclotron energy.
Once the magnetic field is applied, we chiefly observe magnetoplasmaron features within the band of energies

occupied by the plasmaron plateau at zero field. The magnetoplasmaron peaks sharpen and move away from the
N = 0 Landau level as the cyclotron energy grows, but they largely vanish as they fall below the energy of the
plasmaron edge at zero magnetic field. The exact mechanism of this cutoff at high magnetic fields is currently
unknown. However, the polarizability of the 2DES at high magnetic field has a similar overall envelope to that at
zero magnetic field22; this may be responsible for the similar cutoff energies and densities. These sharp features,
corresponding to long-lived quasiparticles, appear at high energies where lifetimes are usually short due to electron-
electron interactions.
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FIG. 1. TDCS spectra acquired at zero magnetic field (a) shows the 2D band edge as a sharp peak due to tunneling matrix
element effects. The plasmaron is visible as a faint second step at more negative energies. A small cartoon shows the measured
energy of the plasmaron is negative, and roughly equal to the sum of the energy of the required hole, the required plasmon, and
a coupling energy. The two edges are indicated in the linecuts in b (offset vertically for clarity), with the band edge indicated
with a solid arrow, and the plasmaron edge indicated with a dotted arrow. In D, the band edges can be emphasized by taking
an extra derivative of the data along the energy axis (d2I/dV 2). This allows the energies of the 2D band edge (dashed, red
online) and plasmaron band edge (solid, blue online) to be extracted, as shown in c. Note the extreme asymmetry of the
plasmaron band about the Fermi energy, ruling out inelastic scattering as a possible origin.
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TDCS spectra can be quantitatively compared to RPA calculations. Here, comparisons are made to a calculation with the bare
Coloumb potential (Bare), a calculation in a 230Å square quantum well (Wide Well), a calculation in a 230Å well including
screening from a nearby metallic electrode (Wide Well + Screening), and a calculation that also includes phonon coupling
(Wide Well + Screening + Phonon). All of these overestimate the coupling energy of the plasmaron and the size of the peak
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