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We study the T = 0 Kondo physics of a spin-1/2 impurity in a non-centrosymmetric metal with
spin-orbit interaction. Within a simple variational approach we compute ground state properties of
the system for an arbitrary form of spin-orbit coupling consistent with the crystal symmetry. This
coupling produces an unscreened impurity magnetic moment and can lead to a significant change
of the Kondo energy. We discuss implications of this finding both for dilute impurities and for
heavy-fermion materials without inversion symmetry.
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Introduction.– Kondo effect, i.e. screening of the
impurity magnetic moment by the Fermi sea of itin-
erant electrons, is one of the best-known examples
of correlations-driven phenomena in condensed matter
physics1. A system involving a periodic array of such im-
purities interacting with conduction electrons (so-called
Kondo lattice) is believed to provide a minimal model
for heavy-fermion compounds2. Historically the Kondo
screening was detected via resistivity measurements in
dilute magnetic alloys, but recent advances in scanning
tunneling spectroscopy allowed observation of this phe-
nomenon on the atomic scale3–5 and manipulation of in-
dividual Kondo resonances6.

Details of the band structure of the host metal usu-
ally do not qualitatively influence the Kondo ground
state, although they affect characteristic energy scales
of the problem such as the Kondo temperature, TK , be-
low which the impurity spin is screened. Similarly, in
the presence of spin-orbit scattering when spin is not a
good quantum number, classification of the states by par-
ity still allows mapping of the impurity problem onto a
Kondo model with essentially same parameters but with-
out the local SOI7, in agreement with experiment8,9.

In non-centrosymmetric materials a distinct non-local
(dependent on the gradients of the crystal potential)
spin-orbit interaction (SOI) appears. This interaction is
odd in electron momentum and couples it to the electron
spin10. The influence of this type of SOI on manifesta-
tions of the Kondo effect was discussed only recently11–14

in quasi two-dimensional (2D) systems for specific cases
of Rashba or Dresselhaus SOI, and in the context of topo-
logical insulators15,16.

In Ref. 11 it was concluded that, to lowest order, the
Rashba SOI only leads to a rescaling of the electron band-
width and leaves the Kondo temperature essentially un-
changed. A similar verdict was reached in Ref. 12 in
the framework of the Anderson model for a half-filled
f -band. However these results rely heavily on the spe-
cific form of the Rashba SOI term and 2D single-particle
density of states. This particular combination allows re-
duction of the Kondo Hamiltonian with SOI (equivalent
to a multichannel problem, see below) to a single-channel
model without spin-orbit coupling. What happens with

Kondo screening in more realistic and interesting cases,
e.g. three-dimensional materials without inversion sym-
metry or systems with a non-Rashba SOI that do not
allow the above simplification has not been explored.
In this Communication we consider a single spin-1/2

impurity interacting with a system of electrons in a non-
centrosymmetric metal at zero temperature. Due to the
explicit inversion symmetry breaking, the single-particle
Hamiltonian that describes the conduction band contains
an odd in momentum spin-orbit term compatible with
the crystal symmetry17. We determine the ground state
properties of the resulting Kondo Hamiltonian by gener-
alizing Yosida’s variational method18 to take into account
the spin-orbit splitting of the Fermi surface (FS), as well
as all values of the total spin of the electrons and the
impurity. In contrast with previous works11–14 our anal-
ysis is valid for any form of SOI and the electron band
structure, and incorporates the essentially multichannel
nature of the problem. We give general expressions for
the Kondo binding energy and show that the SOI may
lead to an enhancement of the Kondo effect compared
to that of a centrosymmetric material with the same pa-
rameters. Because the SOI breaks SU(2) symmetry, the
impurity spin no longer forms a singlet with the Fermi sea
and is only partially screened. This conclusion is qual-
itatively similar to the situation in 2D helical metals15.
Since our goal is to investigate only effects associated
with SOI we ignore possible spin anisotropy terms anal-
ogous to those appearing in the study of impurities near
sample surfaces19.
In the next section we setup the variational framework

used throughout the paper. Then we present results for
the Kondo binding energy, total spin of the ground state
and the impurity spin susceptibility. Our findings are put
in perspective in the concluding section.
Variational formalism.– The Kondo model describes

a localized magnetic impurity interacting with a single
band of conduction electrons

H =
∑

k

εαβ(k)c
†
kαckβ + JKSσαβc

†
i0α
ci0β.

This Hamiltonian is defined on a lattice with N sites; S
is the impurity spin (S = 1/2) located at site i0, σαβ
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are Pauli matrices, c†iα creates a fermion at site i with

spin α = (↑, ↓) (c†kα =
√

1/N
∑

i e
−ikxic†iα is its momen-

tum space counterpart), and εαβ(k) is the single-electron
dispersion. We take JK > 0, assume summation over re-
peated indices, and set ~ ≡ 1.
For a single band with SOI the matrix εαβ(k) can be

written17 as:

εαβ(k) = ǫkδαβ + Γkσαβ .

The scalar ǫk is the dipersion without SOI. The latter en-
ters through the real pseudovector Γk = −Γ−k which is
determined by the point group symmetry of the crystal.
It is convenient to diagonalize εαβ explicitly by introduc-
ing the helicity basis ckα = (Uk)αλdkλ with λ = ±1 and

unitary matrix Uk such that ΓkU
†
kσUk = σz|Γk|. In

this representation the band energy is diagonal, εkλ =

(U †
k)λαεαβ(k)(Uk)βλ = ǫk + λ|Γk|. Note that Γk breaks

parity but preserves time-reversal, hence εkλ = ε−k,λ be-
cause of the Kramers theorem. Now we can rewrite the
Kondo Hamiltonian as:

H =
∑

k,λ

εkλd
†
kλdkλ+ (1)

+
JK
N

∑

k′,k

S
(

U †
k′σUk

)

λ′λ
d†k′λ′dkλ.

To understand the influence of SOI on the Kondo
screening, we use the Yosida-like18 trial wavefunction

|ψ〉 =
∑

k,M,λ

AkMλθ(εkλ − εF )|M〉d†kλ|FS〉, (2)

where AkMλ are variational amplitudes, M = (↑, ↓) la-
bels impurity states and |FS〉 is the filled Fermi sea

|FS〉 =
∏

εk+<εF

d†k+

∏

εk−<εF

d†k−|0〉.

The Heaviside function θ(εkλ − εF ) limits summation to
the energies above the Fermi level. The expectation value
of the Hamiltonian Eq. (1) in the state |ψ〉 of Eq. (2) is

〈ψ|H |ψ〉 =
∑

A∗
k′M ′λ′AkMλθ(εk′λ′ − εF )θ(εkλ − εF )×

×
[

εkλδλ′λδk′kδM ′M +
JK
N

SM ′M

(

U †
k′σUk

)

λ′λ

]

,

with the implicit summation over all indices in the r.h.s.
In this expression we omitted the A-independent ground
state energy of the Fermi sea, E0 = 〈FS|H |FS〉. Com-
puting the expectation value of the Kondo interaction
requires decoupling of the product

〈FS|dp′λ′d†k′αdkβd
†
pλ|FS〉 = θ(εp′λ′ − εF )×

×
[

δαβδkk′δpp′δλλ′θ(εF − εkα)+

+ δkpδk′p′δβλδαλ′θ(εpλ − εF )
]

.

In this equation the first term has the form
∑

k,α θ(εF − εkα)
(

U †
kσUk

)

αα
= 2〈FS|Se|FS〉, where

Se = (1/2)
∑

k σαβc
†
kαckβ is the total electron spin;

〈FS|Se|FS〉 = 0 due to the time-reversal symmetry.
Minimizing 〈ψ|H |ψ〉 w.r.t. AkMλ, one obtains an

eigenvalue equation:

(εkλ − E)AkMλθ(εkλ − εF ) = −JKSMM ′θ(εkλ − εF )×

× 1

N

∑

p,η

θ(εpη − εF )
(

U †
kσUp

)

λη
ApM ′η, (3)

where again the summation over doubly repeated indices
is assumed. To proceed further, we introduce

BkMλ =
∑

η

(

Uk

)

λη
θ(εkη − εF )AkMη ,

which allows us to rewrite Eq. (3) in the form

BkMα = −JKSMR× (4)

×
[

∑

λ

(

Uk

)

αλ

θ(εkλ − εF )

εkλ − E

(

U †
k

)

λβ

]

σβγ

(

1

N

∑

p

BpRγ

)

.

This object plays the role of the ground state wavefunc-
tion for the system. Due to the θ-function in the defini-
tion of BkMα all k-summations are over the entire Bril-
louin zone.
Results.– We shall now use Eqs. (2), (3), (4) to com-

pute the Kondo energy, total spin of the system and im-
purity magnetic susceptibility. We apply the general ex-
pressions to several instructive examples: (i) quasi-2D
systems with symmetry C4v (with Rashba or Dresselhaus
SOI), and (ii) cubic crystals with symmetry T or O.
Kondo energy.– The energy eigenvalue E in Eq. (3)

is obtained by summing Eq. (4) over k

XMα =

= −JK
N

SMR

∑

k,λ

[

(

Uk

)

αλ

θ(εkλ − εF )

εkλ − E

(

U †
k

)

λβ

]

σβγXRγ ,

with XMα = (1/N)
∑

kBkMα. The λ-dependent terms
between two U -matrices can be decomposed as

θ(εkλ − εF )δλ′λ/(εkλ − E) = δλ′λκ+ + σz
λ′λκ−,

where

κ±(k) =
1

2

(

θ(εk+ − εF )

εk+ − E
± θ(εk− − εF )

εk− − E

)

. (5)

Because Ukσ
zU †

k = Γkσ/|Γk| and Γk (εkλ(k)) is odd
(even) in k, the term containing σzκ− does not con-
tribute to the sum and we find

XMα = −JK
N

SMRσαβ

∑

k

κ+XRβ . (6)
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Clearly, the lowest-energy solution has the “singlet”
structure in the helicity space: XMα =

(

δM↑δα− −
δM↓δα+

)

/
√
2. Then the sum is computed as

1

N

∑

k

κ+ =
1

2

∑

λ

∫ εF+W

εF

dǫ gλ(ǫ)

ǫ − E
≈ g+F + g−F

2
ln
W

δE
,

whereW and εF ∼W are the half-bandwidth and Fermi
energy respectively, δE = εF − E ≪ W , and gλF is the
density of states (DOS) in the λ-branch at the Fermi
level. From this expression we finally obtain the energy
of the Kondo bound state

δE =W e−4/3JK(g+
F
+g−

F
). (7)

When the SOI is absent g+F = g−F = g
(0)
F and Eq. (7)

reduces to the well-known result for the usual Kondo
effect1: δE(0) = W exp[−2/3JKg

(0)
F ]. If the characteris-

tic SOI energy for electrons near the FS is ΛSO ≪ εF , we
expand the DOS at the Fermi level up to the second or-

der gλF ≃ g
(0)
F +ΛSO∂g

λ
F/∂ΛSO+Λ2

SO∂
2gλF /2∂Λ

2
SO, where

the derivatives are evaluated at ΛSO = 0. We estimate

in a metal ∂gλF/∂ΛSO ∼ −λg(0)F /εF , and ∂
2gλF /∂Λ

2
SO ∼

±g(0)F /ε2F with the sign depending on the curvature of the

DOS around the FS. Therefore (g+F + g−F )/2 ∼ g
(0)
F (1 ±

Λ2
SO/ε

2
F ). While in typical materials ΛSO/εF ∼ 0.1 and

the above correction is only ∼ 1%, the exponential form
of the Kondo energy, Eq. (7), makes the effect non-
negligible

δE/δE(0) = e±Λ2
SO

/ε2
F
JKg

(0)
F ≃ e±Λ2

SO
/εFJK . (8)

Assuming ΛSO ∼ JK this gives ∼ 10% change in the
Kondo energy relative to its value δE(0) without the SOI.
It is instructive to apply the general expressions (7)

and (8) to two examples with parabolic bands (with an ef-
fective massm) and a linear in k SOI: (i) quasi-2D tetrag-
onal systems characterized by Rashba (Dresselhaus) spin-
orbit coupling with Γk = ∆SO[k × ez ] (Γk = ∆SOk)
and tetragonal axis pointing in the z direction, and (ii)
non-centrosymmetric cubic crystals17 with Γk = ∆SOk.
The coupling constant ∆SO, which has units of veloc-
ity, introduces a natural energy scale ǫSO = m∆2

SO/2,
and is related to ΛSO via ∆SO ∼ ΛSO/kF where kF is
the helicity-averaged Fermi momentum. Consequently,
ǫSO ∼ Λ2

SO/εF .
In case (i) the DOS per helicity λ and for positive en-

ergies is given by gλ(ǫ > 0) = g
(0)
F [1− λ

√

ǫSO/(ǫSO + ǫ)]

with g
(0)
F = m/2π. Consequently g+F + g−F = 2g

(0)
F and

Eq. (7) yields no correction to the Kondo energy11,12:
δE = δE(0). This conclusion is specific solely to 2D sys-
tems with parabolic bands and linear SOI. Of course,
cubic in momentum SOI terms will introduce corrections
of the form (8). In contrast, for case (ii) we have

gλ(ǫ > 0) =
m2∆SO

π2

(

1 + ǫ/2ǫSO
√

1 + ǫ/ǫSO

− λ

)

.

When ǫSO ≪ εF this DOS leads to an enhancement of

the Kondo energy δE/δE(0) = eǫSO/εFJKg
(0)
F , in agree-

ment with Eq. (8).
It is important to emphasize that Eqs. (7) and (8)

correspond to a generally infinite channel Kondo prob-
lem even in the parabolic band approximation. Indeed,
without SOI the Kondo Hamiltonian (1) can be reduced
to a one-dimensional form which simply reflects the fact
that only electrons with zero orbital angular momentum
couple to the impurity20. When the SOI is taken into
account, such reduction is not always possible because of
the Uk-matrices in Eq. (1) which entangle different or-
bital harmonics. While in systems with Rashba SOI one
can still decouple orbital channels by introducing suit-
able linear combinations of c-operators and show that
only one of them enters the Kondo term11, other forms
of SOI, e.g. case (ii) considered above, do not allow such
simplification. Thus the validity of Eq. (7) is only re-
stricted by the variational Ansatz (2).
Total spin in the ground state.– In the standard

Kondo problem1 at zero temperature the impurity is fully
screened by the Fermi sea and the net spin of the sys-
tem vanishes. This is not the case in the presence of a
SOI. Because of the latter, even without the impurity
the electron system has a non-zero spin, 〈FS|S2

e |FS〉 =

(1/4)
∑

|(U †
kσUk)µν |2θ(εF − εkµ)θ(εkν − εF ). This ex-

pression is finite due to the mismatch between Fermi sur-
faces for different helicities. Therefore, our goal in this
part is to compute the difference between net spins in the
Kondo and normal metal phases, 〈ψ|(S+Se)

2|ψ〉/〈ψ|ψ〉−
〈FS|S2

e |FS〉. Note that due to time-reversal symmetry of
the problem, the total spin polarization along any direc-
tion still vanishes.
Using Eq. (5) and the singlet structure of XMα [see

discussion after Eq. (6)], we can rewrite Eq. (4) as

BkMα =
3

2
JKκ+XMα − JKκ−SMR

[

Ukσ
zU †

kσ
]

αγ
XRγ ,

so that the norm of the state (2) becomes

〈ψ|ψ〉 =
∑

kMα

∣

∣AkMα

∣

∣

2
θ(εkλ − εF ) =

∑

kMα

∣

∣BkMα

∣

∣

2
=

=

(

3JK
2

)2
∑

k

(

κ2+ + κ2−
)

.

The cross-terms ∼ κ+κ− vanish due to the same argu-
ment as that used in deriving Eq. (6). Next, we consider
the expectation value of SSe

〈ψ|SSe|ψ〉 =
1

2

∑

k

B∗
kM ′α′SM ′Mσα′αBkMα ≡

≡ −3

4

(

3JK
2

)2
∑

k

κ2+ +
J2
K

2

∑

k

κ2−X
∗
R′γ′T

R′γ′

Rγ XRγ ,

where again there are no cross-terms and TR′γ′

Rγ =

(SiSlSj)R′R(σ
iUkσ

zU †
kσ

lUkσ
zU †

kσ
j)γ′γ . Since S is a
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spin-1/2 operator, we can evaluate T using the relations
X∗

R′γ′σa
R′Rσ

b
γ′γXRγ = −δab and σiσlσj = iεilj +(δilδsj +

δjlδis−δlsδij)σs where εilj is the fully antisymmetric ten-
sor:

TR′γ′

Rγ =
1

8

[

(2δR′Rδγ′γ − 3σR′Rσγ′γ)+ 2σa
R′R

Γa
kΓ

b
k

|Γk|2
σb
γ′γ

]

.

Collecting the above expressions we have

〈ψ|SSe|ψ〉 =
−3/4

∑

k κ
2
+ + 1/4

∑

k κ
2
−

∑

k(κ
2
+ + κ2−)

,

and

〈ψ|(S + Se)
2|ψ〉 − 〈FS|S2

e |FS〉 =
2
∑

k κ
2
−

∑

k(κ
2
+ + κ2−)

−

−
∑

k,λ θ(εF − εkλ)(κ
2
+ + κ2− − 6λκ+κ−)

4
∑

k(κ
2
+ + κ2−)

,

with the second term in the r.h.s. coming from 〈ψ|S2
e |ψ〉.

In the absence of spin-orbit band splitting κ− ≡ 0
and the above expression implies complete screening.
In the presence of SOI the change in the total spin is
also finite and for cases (i) and (ii) considered above
〈ψ|(S + Se)

2|ψ〉 − 〈FS|S2
e |FS〉 ∼ ∆2

SO. In principle this
change can be determined from local magnetic measure-
ments, but more precise methods than the one used here
may be needed to determine spatial dependence of the
spin-spin correlations.

Impurity spin susceptibility.– Finally, we consider the
linear susceptibility of the system. Since our focus is on
the effect of SOI, we shall make a simplifying assump-
tion that the system is either cubic or tetragonal with
magnetic field pointing along the c-axis, and that the
dominant effect of the field is on the impurity spin. In
both cases the Hamiltonian, Eq. (1), acquires a pertur-
bation δH = −µBSz, where µ = gµB, µB is the Bohr
magneton and g is the appropriate Lande factor.

In order to account for δH we need to change E →
E+hM in Eqs. (4) and (6) with h ≡ µB/2 andM = ±1.
A solution is sought in the form: XMα = xsY

s
Mα+xtY

t
Mα

with Y s (Y t) the normalized singlet (triplet with zero
total spin z-projection) basis states.

(

1− 3P Q
−3Q 1 + P

)(

xs
xt

)

= 0,

where P = (JK/4N)
∑

k,M κ+(E + hM) and Q =

(JK/4N)
∑

k,M Mκ+(E + hM). To lowest order in

µB/δE, the ground state energy becomes E = εF −δE−
µ2B2/8δE. Therefore changes in the Kondo energy (7)
are straightforwardly reflected in the spin susceptibility

χ = −∂2E/2∂B2 = µ2/8δE.

Discussion.– Stimulated by the interest in non-
centrosymmetric f -electron materials2,21, we investi-
gated the influence of the lack of inversion symmetry
on interaction between conduction and localized elec-
trons by studying a single impurity Kondo model with a
SOI in the conduction band. Using a simple variational
framework1,18 we presented results for the ground-state
properties of the system, valid for any form of SOI and
band structure of the host metal, even in cases when
one cannot reduce the problem to a single-channel Kondo
Hamiltonian. It is the variational nature of our approach,
what allows us to deal with a multichannel model. In par-
ticular, we demonstrated that: (1) the SOI can lead to
an exponential change of the Kondo temperature; (2) as
the SOI explicitly breaks SU(2) symmetry the Fermi sea
does not completely screen the impurity spin, allowing an
extra magnetic degree of freedom in the Kondo phase.
Although a similar exponential enhancement of the

Kondo temperature was found in Ref. 12, we note that
their result is physically different from ours. The reason
for this distinction is the fact that in Ref. 12 the authors
started from an Anderson model and used a Schrieffer-
Wolff transformation22. Although this is the usual way
to “freeze” charge fluctuations at the impurity, in the
presence of SOI it can lead to unexpected results, such
as the Dzyaloshinky-Moriya coupling between impurity
and conduction electrons spins, which appears because
of virtual transitions of localized electrons into the con-
duction band where they accumulate a phase due to SOI.
On the contrary we started with a Kondo model that in-
cludes only spin fluctuations. Thus modifications to the
Kondo energy, Eq. (7), compared to its value in a cen-
trosymmetric material originates purely from SOI.
Our findings lead to an intriguing question regarding

the influence of SOI on the physics of the spin-1/2 Kondo
lattice model. It is known2,23 that the heavy-fermion
(Kondo screened) state competes with magnetic phases.
In the presence of a SOI impurity spins are not com-
pletely screened24 and may order, thus leading to a co-
existence of the heavy fermion state and magnetism. We
leave investigation of this problem for a future work.
We acknowledge support by DOE via Grant DE-FG02-

08ER46492 (L. I. and I. V.), by the NSF via Grants
DMR-1105339 (I. V.) and DMR-0906655 (D. F. A.). This
work started during the ICAM Cargese School funded in
part by I2CAM via NSF Grant DMR-0844115.
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