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We investigate electronic correlation effects on edge states of quantum spin-Hall insulators within
the Kane-Mele-Hubbard model by means of quantum Monte Carlo simulations. Given the U(1) spin
symmetry and time-reversal invariance, the low-energy theory is the helical Tomanaga-Luttinger
model, with forward scattering only. This model correctly describes equal-time spin and charge
correlations, including their doping dependence. As apparent from the Drude weight, bulk states
become relevant in the presence of electron-electron interactions, rendering the forward-scattering
model incomplete. Strong correlations give rise to slowly decaying transverse spin fluctuations, and
inelastic spin-flip scattering strongly modifies the single-particle spectrum, leading to graphene-like
edge state signatures. The helical Tomanaga-Luttinger model is completely valid only asymptotically
in the weak-coupling limit.
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Introduction.—A unique feature of quantum spin Hall
insulators (QSHIs), or two-dimensional (2D) topolog-
ical insulators, are metallic edge states with remark-
able properties1. Contrary to chiral quantum Hall edge
states, QSHI edge states are helical, so that electrons
with opposite spin propagate in opposite directions.
Due to time-reversal invariance (TRI), the helical edge
states are protected against disorder and single-particle
backscattering1,2. They are also holographic in the sense
that they exist only as edges of 2D systems2, and can
therefore not be completely separated from the bulk. Fi-
nally, the number of pairs of edge states is directly related
to the second Chern number or Z2 invariant1.

Quantum fluctuations play a significant role for 2D
topological insulators. In particular, the 1D edges have
no well-defined quasiparticle excitations, and are usu-
ally described using the framework of bosonization or
Luttinger liquid (LL) theory, which becomes particularly
simple in the presence of TRI and U(1) spin symmetry.
In this case [referred to in the following as the helical
Tomanaga-Luttinger (HTL) model], only forward scat-
tering is possible3. A priori, such a theory is only valid
at low energies. Nevertheless, for metallic 1D systems,
LL theory provides a complete low-energy description
even for strong interactions. For helical edge states, the
presence of bulk states is intimately connected with the
topological character of the system. Strong interactions
on or beyond the size of the bulk band gap can give rise
to a substantial mixing of the different energy scales, and
may explain deviations of, e.g., the experimentally mea-
sured conductance4 from expectations based on a low-
energy description. Bulk effects fall outside the regime
of bosonization, and require a model which captures all
relevant energy scales.

The Kane-Mele (KM) model1 of noninteracting elec-
trons on the honeycomb lattice with spin-orbit (SO) cou-
pling λ is a theoretical framework to study Z2 QSHIs.
For small enough Rashba coupling, the ground state for
λ > 0 is a topological band insulator (TBI). The addition
of a Hubbard interaction term (KMH model) permits to

study a strongly correlated TBI5, although it completely
detaches the KM model from its original motivation by
graphene8. The electron-electron interaction leads to a
complex and rich many-body problem, which includes a
quantum spin liquid phase, and a magnetic transition at
large Hubbard U5–7,9–11.

In this Letter, using large-scale quantum Monte Carlo
(QMC) simulations of a previously introduced effective
model6, we provide a comprehensive assessment of the
validity of the HTL model. While confirming the in-
teraction and doping dependence predicted for a heli-
cal liquid in the weakly interacting limit, we find signif-
icant deviations with increasing correlations which are
beyond the usual low-energy description and remained
unnoticed in previous numerical work6,7,10. Novel fea-
tures in the single-particle spectrum are explained by in-
elastic spin-flip scattering arising from magnetic fluctua-
tions at the edge, driven by strong electronic correlations.
The interaction-driven mixing of multiple energy scales
is more subtle than the invalidation of the HTL model
due to the breaking of TRI, for example by means of
strong bulk interactions5–7 which destroy the topologi-
cal character, or by sufficient renormalization of the LL
parameter in the presence of Rashba coupling2.

Model.— The phase diagram of the KMH model in
the λ–U plane is known from exact QMC simulations6,7;
many of its overall features are also captured by approx-
imate methods5,9–11. For U/t . 3 (t being the hopping
integral), the ground state is a TBI with helical edges for
any λ > 0. The TBI with repulsive U > 0 is adiabatically
connected to U = 06, suggesting that bulk interactions
are of minor importance in the TBI phase. Based on
this result and the fact that the edge states are exponen-
tially localized at the edge6, we have previously proposed
an effective model for the helical edge states (which ex-
ist throughout the TBI phase) with Hubbard interaction
only at one zig-zag edge of a semi-infinite honeycomb
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ribbon. It is defined by the action6

S =−
∑
σ,r,r′

∫∫ β

0

dτdτ ′c†rσ(τ)Gσ0
−1(r − r′, τ − τ ′)cr′σ(τ ′)

+ U
∑
r

∫ β

0

dτ
[
nr↑(τ)− 1

2

] [
nr↓(τ)− 1

2

]
, (1)

where r numbers sites on the zig-zag edge, and Gσ0 is
the Green function of the KM model through which the
noninteracting bulk is taken into account.

Method.—Equation (1) corresponds to a 1D prob-
lem with a bath that can be solved exactly using the
continuous-time QMC (CTQMC) method6,12 on large
systems at low temperatures. Two crucial methodolog-
ical developments compared to6 are the extension to a
projective zero-temperature scheme with projection pa-
rameter θ, and to grand-canonical simulations away from
half filling (n = 1). These advances allow for a quantita-
tive test of LL theory. We use the ribbon geometry of6,
with dimensions L × L′ (L′ = 64), and periodic (open)
boundaries in the x (y) direction. The hopping integral
and lattice constant are set to 1. The ratio U/λ of the
remaining two parameters controls the degree of correla-
tions. To study strong interactions inside the TBI phase
of the KMH model, we take U = 2 and vary λ6.

Results.—For a zig-zag ribbon, the spectral function
Aσ(k, ω) = −π−1ImGσ0 (k, ω) of the U = 0 KM model

features a bulk energy gap ∆SO ∼ 3
√

3λ at the Dirac
points, and a pair of helical edge states with Fermi veloc-
ity vF ∼ 2λ crossing at kF = π (for half filling)1 [see also
Fig. 3(a)]. The right (left) movers have spin up (down),
and TRI implies A↑(k, ω) = A↓(−k, ω). The degeneracy
at k = π is protected by Kramers’ theorem.

Correlation effects on energy scales much smaller than
the bulk gap can be studied using bosonization. In the
continuum limit, the fermion operator becomes Ψσ(r) =
eikFxRσ(x)δσ,↑ + e−ikFxLσ(r)δσ,↓. For a Hubbard in-
teraction, the bosonized Hamiltonian (the HTL model)
reads2,13,14

H =
v

8π

∫ L

0

dx

{
1

K
[∂xθ+(x)]2 +K[∂xθ−(x)]2

}
. (2)

Here −∂xθ±(x)/2π = ρR(x) ± ρL(x), with ρR/L(x) be-

ing the density of right/left movers, v =
√
v2

F − (U/2π)2

and K =
√

(vF − U/2π)/(vF + U/2π). Single-particle
spin-flip scattering between Kramers degenerate states
is blocked by TRI1,2,14. Umklapp processes such as
ei4kFxR†(x)R†(x+ a)L(x)L(x+ a) are generally allowed
at half filling since 4kF = 4π, but are forbidden here due
to spin-z conservation reflected in the U(1) spin symme-
try of the KMH model. Hence, only forward scattering
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FIG. 1: (Color online) Projective CTQMC results for the
effective model (1). (a) Real-space correlations Sxx(r = L/2)
as a function of system size L at different U/λ, normalized
to 1 at r = 1 for comparison. The log-log plot reveals a
power-law with interaction dependent exponent η = 2K. (b)
Sxx(q = 0)/L as a function of 1/L, demonstrating the absence
of long-range order. Lines are fits to the form Sxx(q = 0)/L =
b/L + c/Lη, with η taken from (a). Data in (a) and (b) are
extrapolated to θ = ∞. (c) Luttinger liquid parameters K
and v. K is extracted from fits to the form Sxx(r) = a/rη

shown as lines in (a). v is estimated from the density structure
factor N(q = 2π/L, τ) and finite-size extrapolation; vF = 2λ.

is left. The quadratic Hamiltonian (2) gives

Sxx(x) = 〈Sx(x)Sx(0)〉 ∼ 1

x2K
cos(2kFx) ,

Szz(x) = 〈Sz(x)Sz(0)〉 ∼ 1

x2
,

N(x) = 〈n(x)n(0)〉 ∼ 1

x2
. (3)

The transverse correlator Sxx(x) involves spin-flip
scattering and hence picks up 2kF oscillations in addition
to an interaction dependent power-law exponent. N(x)
and Szz(x) involve scattering processes only within the
left or right movers, and retain their Fermi liquid form.
For K < 1, transverse spin correlations dominate.

For U = 0 (K = 1), Eq. (3) can be verified by explic-
itly solving the effective model of Eq. (1). For U > 0,
we calculate the correlation functions (3) exactly using
QMC, and we show Sxx(r) at half filling in Fig. 1(a).
With increasing U/λ, we observe a progressively slower
decay, corresponding to a reduction of the exponent 2K,
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FIG. 2: (Color online) Doping dependence of spin and charge
structure factors for U/λ = 8 from grand-canonical CTQMC
simulations (L = 32, β = 60). The q = 0 points in (b) and
(c) are linear extrapolations.

see Eq. (3). Similar behavior was observed in numeri-
cal work6,7. The finite-size scaling of the structure factor
Sxx(q = 0) shown in Fig. 1(b) confirms the absence of
long-range, ferromagnetic order even for U/λ = 40. This
conclusion is based on simulations of very large systems
(up to 24 × 64), whereas smaller sizes would incorrectly
suggest long-range order7,15. True (Ising) long-range or-
der becomes possible (at T = 0) if the U(1) symmetry
of the KMH model is further reduced to Z2 by Rashba
coupling. On the mean-field level, symmetry breaking
occurs for any U > 0 due to a logarithmic instability.

Figure 1(c) shows the LL parameter K, as obtained
from η = 2K [Eq. (3)], and the renormalized velocity
v calculated from N(q, τ) (see below). v closely follows
the Fermi velocity vF, with a small offset independent
of λ. This result, consistent with v being inherited from
the bulk and slightly renormalized by U , conflicts with
Eq. (2). We find K < 1/2 for the values of U/λ con-
sidered, far from the noninteracting limit K = 1 and
in the regime where umklapp scattering is relevant2,7,15.
However, for translationally invariant systems, this term
is allowed only for the special case of exactly half filling
and in the presence of Rashba coupling.

The cos(2kFr) contribution to Sxx(r) becomes appar-
ent upon doping the system by varying the chemical po-
tential inside the bulk gap. As shown in Fig. 2(a) for
U/λ = 8, the peak in the structure factor Sxx(q) moves
from q = 0 to finite q with increasing doping, reflect-
ing the change of kF. In contrast, the spin-z and charge
structure factors retain their cusp structure in the long-
wavelength limit related to the 1/r2 decay in real space.

Figure 3 shows the spectral function A↑(k, ω). For
weak coupling [U/λ = 8, Fig. 3(a)], we see a domi-
nant linear mode crossing the Fermi level, and the spec-
trum closely resembles the case U = 01. With in-
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FIG. 3: (Color online) Single-particle spectral function
A↑(k, ω) from projector-CTQMC simulations for L = 24,
θ = 80 and (a) U/λ = 8, (b) U/λ = 40.

creasing correlations [U/λ = 40, Fig. 3(b)], spectral
weight is suppressed at low energies in favor of new
high-energy features. The spectral function in Fig. 3(b)
is fundamentally different from Fig. 3(a) and previous
results6, which are qualitatively fully captured by the
HTL model which gives a branch cut 〈R†(x, t)R(0, 0)〉 ∼
(x− vt)−

1
2 (K+1/K)

. The novel features arise only in the
limit of small spin-orbit coupling (large U/λ� 1).

The HTL model (2) does not account for the single-
particle spectrum in Fig. 3(b). Except for the bulk gap
at the Dirac points, the locus of spectral weight at high
energies near kF bears remarkable resemblance to the zig-
zag edge states of graphene ribbons with U > 016. The
physics of the latter is dominated by quasi-long-range
transverse spin fluctuations at the edge. Similarly, a very
slow decay of transverse spin fluctuations at large U/λ
[Fig. 1(a)] is a generic signature of the strong-coupling
regime of the KMH model, see also Refs.6,7.

To identify spin-flip scattering as the physical ori-
gin of the high-energy features of Fig. 3(b), we com-
plement our numerical results by a simple yet suffi-
cient analytical approximation. Rewriting the Hub-
bard term as HU = − 1

2U
∑
q

(
S+
q S
−
q + S−q S

+
q

)
with

S+
q = L−1/2

∑
k c
†
k↑ck+q↓, perturbation theory to order

U2 gives the self-energy

Σ↑(k, iωm) =
U2

βL

∑
q,iΩm

χ±0 (q, iΩm)G↓0(k− q, iωm− iΩm) ,

with inelastic spin-flip scattering off q = 2kF trans-
verse spin fluctuations described by the susceptibil-

ity χ±0 (q, iΩm) = −(βL)−1
∑
k,iωm

G↑0(k + q, iωm +

iΩm)G↓0(k, iωm). The results for A↑(k, ω) shown in Fig. 4
qualitatively reproduce the numerical data in Fig. 3. For
U/λ = 40, the linear low-energy mode is better visi-
ble than in the numerical spectrum whose calculation
involves analytical continuation. The emergence of high-
energy features predominantly above the bulk gap with
increasing U/λ causes, via the sum rule

∫
dωAσ(k, ω) =

1, a depletion of spectral weight at low energies. Spin-flip
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FIG. 4: (Color online) Single-particle spectral function
A↑(k, ω) from second-order perturbation theory. U/t = 2.
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FIG. 5: (Color online) Luttinger parameter K (from Fig. 1)
and spectral weight Z from fits to the density structure factor
N(q, τ) at θ = 80 and finite-size scaling. The Luttinger liquid
result K = Z is violated for a wide range of parameters.

scattering is present for any U > 0, but its effects become
apparent in A↑(k, ω) when U/λ� 1.

The deviations from the HTL model and their effect on
edge transport may be quantified by measuring the spec-
tral weight Z of low-energy particle-hole excitations using
the dynamic charge structure factor N(q, ω). Fitting the
linear mode to the form N(q, ω) = 1

2Zqδ(ω − vq), with
weight Z and velocity v estimated from N(q = 2π/L, τ),

we can use the continuity equation to obtain the Drude
weight D = Zv. This result can be compared to the rela-
tion D = Kv following from Eq. (2), implying Z = K in
accordance with results at U = 0 (not shown). However,
as apparent from the QMC results in Fig. 5, Z 6= K over a
wide range of λ/U , and Z = K holds only asymptotically
in the weak-coupling limit. Hence, irrespective of the in-
teraction strength, inelastic spin-flip scattering mediated
by bulk states leads to deviations from the predictions of
the HTL model (2). This effect gains in magnitude with
increasing magnetic correlations (increasing U/λ). The
suppression of Z with increasing U/λ (see also6) can be
understood in the framework of LL theory. Interaction
effects beyond the model (2) are reflected in the quanti-
tative difference between Z and K.

Conclusions.—Using quantum Monte Carlo simula-
tions, we have investigated the validity of the low-energy
Tomanaga-Luttinger model for edge states of a Z2 topo-
logical insulator. We found the expected interaction and
doping dependence of spin and charge correlations, with
dominant transverse spin fluctuations but no long-range
order. However, the fact that helical edge modes can-
not strictly be energetically separated from the insulating
bulk has important consequences. The bulk states pro-
vide phase space for inelastic spin-flip scattering. In the
weak-coupling limit, this leads to minor but quantifiable
violations from bosonization predictions. For strong cou-
pling, these scattering processes transfer spectral weight
from low to high energies in the single-particle spectral
function, and thereby give rise to features reminiscent of
graphene zig-zag ribbons.
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