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We present a novel approach to evaluate quasiparticle energies within many-body perturbation
theory, that substantially improves both the computational efficiency and numerical accuracy of
existing techniques. We use the eigenvectors of the static dielectric matrix as a basis for the frequency
dependent density-density response function, and density functional perturbation theory to avoid
the explicit calculation of empty electronic states, and storage and inversion of large dielectric
matrices. The numerical accuracy of our approach is controlled by a single parameter that can be
systematically varied to test convergence of the computed quasiparticle energies. We discuss the
advantages of the technique by presenting the calculations of the vertical ionization potential and
electron affinity of several molecules and clusters, including benzene and diamondoids.
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The calculation of photoemission spectra from first
principles, and with controllable accuracy, has been a
challenging problem in condensed matter physics for sev-
eral decades. Many-body perturbation theory, and in
particular the GW approach,1–3 has been the framework
of choice in many investigations for the past 25 years.
However the GW technique is computationally inten-
sive, as in principle it involves summations over occu-
pied and empty electronic states, to evaluate both the
Green’s function (G) and the dielectric matrix (DM) en-
tering the expression of the screened Coulomb interaction
(W). Indeed, two decades passed after Hedin’s seminal
paper1 before GW calculations were performed for real-
istic systems,3 yielding results directly comparable with
experiment.
Convergence difficulties involved in the numerical im-

plementations of the GW method have greatly hampered
our ability to establish the limit of validity of many-body
perturbation theory in describing photoemission spectra.
For example, issues such as the influence of core state
polarizability in determining quasiparticle energies,4 the
effect of self-consistency,5 and the importance of vertex
corrections6 are still the subject of controversy. The de-
bate on these issues will lead to robust conclusions only
if the numerical accuracy of GW calculations can be
systematically controlled, and one can clearly discrimi-
nate between numerical errors and theoretical approxi-
mations.
Recently several methodological advances7–11 have

been proposed to improve the efficiency of GW calcula-
tions, in particular to overcome the limitation posed by
slowly converging sums over empty electronic states.12

However an approach that is at the same time efficient,
and thus applicable to systems with several hundred elec-
trons, and whose numerical accuracy may be systemati-
cally controlled, is not yet available.
In this work, we present a technique for the evalua-

tion of GW quasiparticle energies based on density func-
tional perturbation theory,13 (DFPT) which improves

both the computational efficiency and accuracy of ex-
isting methodologies. The unique characteristics of our
framework are: (i) the use of a single parameter that sys-
tematically controls the numerical accuracy of computed
quasiparticle energies; and (ii) the use of the eigenvectors
of the static dielectric matrix as a basis for the frequency
dependent density-density response function. We also
utilize a Lanczos-chain algorithm14 to efficiently evalu-
ate Green’s function and polarizability matrix elements
over a wide frequency range, similar to what was pro-
posed in Ref. 7. Our computational procedure does not
require the calculation of empty electronic states, nor the
inversion and storage of large dielectric matrices. It also
avoids the use of plasmon pole models.
Within the GW approximation,1 quasiparticle energies

(Eqpn ) are written as:

Eqpn = εn + 〈ψn|Σ̂GW (Eqpn )|ψn〉 − 〈ψn|V̂xc|ψn〉, (1)

where ǫn and ψn are eigenvalues and eigenvectors of
the Kohn-Sham (KS) Hamiltonian with the exchange-
correlation potential Vxc. The self-energy (Σ) at an imag-
inary frequency iω is expressed in terms of the interacting
Green’s function G and the screened Coulomb interaction
W :

ΣGW (r, r′; iω) =
1

2π

∫
dω′G(r, r′; i(ω−ω′))W(r, r′; iω′).

(2)
We further approximate G by the unperturbed Green’s
function, G◦, and W by the screened Coulomb potential
within the Random Phase Approximation (RPA), W ◦.
We thus obtain Σ in the non self-consistent G◦W ◦ ap-
proximation, where W ◦ = ǫ−1

RPA · v = v+ v ·χ · v; ǫ−1
RPA is

the inverse dielectric matrix, v is the bare Coulomb po-
tential and χ is the interacting density-density response
function, related to the unperturbed one, χ◦, by a Dyson-
like equation: χ = (1 − χ◦ · v)−1 · χ◦. In the current
notation v · χ(r, r′; iω) =

∫
dr′′v(r, r′′)χ(r′′, r′; iω), and



2

similarly for all other quantities. In the following the
subscript RPA is omitted for simplicity.
In numerical implementations it is convenient to con-

sider the Hermitian dielectric matrix ǫ̃ = v−
1

2 · ǫ · v
1

2 =
1 − v

1

2 · χ◦ · v
1

2 ≡ 1 − χ◦; its inverse is given by
ǫ̃−1 = v

1

2 · ǫ−1 · v−
1

2 = 1 + v
1

2 · χ · v
1

2 ≡ 1 + χ where
χ and χ◦ are related by the equation:

χ = (1− χ◦)−1 · χ◦. (3)

Following Ref. 15, we use a spectral decomposition to
represent the inverse of the Hermitian dielectric matrix:

ǫ̃−1(r, r′)− 1 ≡ χ(r, r′) =

Neig∑

i

(λ−1
i − 1)Φ∗

i (r)Φi(r
′), (4)

where λi and Φi(r) denote eigenvalues and eigenvectors,
respectively.
It has been shown that dielectric eigenvalue spectra

of non metallic solids, nanostructures, and molecular

systems exhibit a rapid decay of eigenvalues towards
unity.15,16 Therefore one expects a relatively small num-
ber Neig be necessary to numerically converge the sum-
mation of Eq. (4).

We write the self-energy in Eq. (2) as the sum of
an exchange (Σx) and a correlation (Σc) term, where
Σx = G◦v and Σc = G◦(v · χ · v). The integral defining
Σx leads to the well-known expression of the Hartree-
Fock exchange energy and can be evaluated with the
techniques of Ref. 17. From the definition of χ one has:
Σc = G◦(v

1

2 · χ · v
1

2 ).

In principle, one could use a spectral decomposition
of χ at each imaginary frequency and obtain eigenvalues
and eigenvectors in the same way as those of ǫ̃ (Eq. (4)).
In practice it is computationally more convenient to
expand χ in terms of the eigenvectors of χ(iω = 0):

χ(r, r′; iω) =
∑Neig

i,j cij(iω)Φ
∗

i (r)Φj(r
′), where cij are ex-

pansion coefficients. By inserting this expression into
that of Σc one gets:

〈ψn|Σc(iω)|ψn〉 =
1

2π

Neig∑

i,j=1

∫
dω′ cij(iω

′)〈ψn(v
1

2Φi)|(Ĥ
◦ − i(ω − ω′))−1|ψn(v

1

2Φj)〉, (5)

where |ψn(v
1

2Φj)〉 is a vector whose coordinate repre-

sentation is 〈r|ψn(v
1

2Φj)〉 = ψn(r)
∫
dr′v

1

2 (r, r′)Φj(r
′),

and Ĥ◦ is the unperturbed KS Hamiltonian. The
computation of the matrix elements of the inverse,
shifted Hamiltonian entering Eq. (5) may be carried

out by solving a linear system with techniques based
on DFPT.13 However here we utilize a more efficient
approach based on the Lanczos chain algorithm pro-
posed in Ref. 14 to obtain simultaneously solutions over
a broad frequency range. The same technique is also em-
ployed to compute the expansion coefficients c◦ij(iω) =∫
Φ∗

i (r)χ
◦(r, r′; iω)Φj(r

′)drdr′:

c◦ij(iω) = 2
∑

vk

{
〈ψvk(v

1

2Φi)|P̂c(Ĥ
◦ − εvk + iω)−1P̂c|ψvk(v

1

2Φj)〉+ c.c.
}
, (6)

with P̂c being the projection operator on the unoccupied
electronic state manifold. Once c◦ij and thus the matrix
χ◦ are computed, the matrix χ is obtained from Eq. (3)
by simple inversion. We note that the dimension of χ and
χ◦ is Neig and thus it is much smaller than that of the
dielectric matrix expanded in plane waves (PW). After
obtaining the self-energy for imaginary frequencies, its
values at real frequencies are computed by the analytic
continuation technique proposed by Rojas et al.18

We have obtained a scheme to compute the self-energy
and quasiparticle energies that does not require the com-
putation of empty electronic states, nor the inversion and
storage of large DMs, and whose accuracy is controlled by
a single parameter: the number of eigenvalues and eigen-
vectors used in the spectral decomposition of the DM

(Eq. (4)). We have implemented this scheme for norm-
conserving pseudopotentials (PPs) as a post-processing
module in the QUANTUM ESPRESSO distribution of
electronic-structure codes.19

We now turn to present results for several molecules
and clusters. Our first example is the benzene molecule.
This system has been investigated using the GW approx-
imations by several authors7,10,20,21 and the calculation
of its ionization potential (IP) and electron affinity (EA)
are known to be very demanding from a computational
standpoint, as the convergence of DMs as a function of
empty electronic states is rather challenging, when us-
ing conventional techniques. We have employed the lo-
cal density approximation (LDA) in DFT calculations.22

Fig. 1 shows the convergence of the real and imaginary
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FIG. 1. Left panel: Imaginary (Im) and Real (Re) part of
the correlation self energy (Σc) of the benzene molecule as
a function of imaginary frequencies (iω) computed using an
increasing number of eigenpotentials (Neig) in the definition
of the dielectric matrix (see Eq. (4)). Right panel: the same
quantities computed using Neig = 300 for different unit cell
lengths (L).

part of Σc as a function of Neig included in the decompo-
sition of the DM. It is seen that both Re(Σc) and Im(Σc)
are well converged for Neig = 300. We note that the size
of the dielectric matrix would be at least three orders of
magnitude larger than Neig if it were represented using
a plane-wave basis set.

Fig. 2 shows the convergence of vertical ionization po-
tentials (VIPs) of C6H6 as a function of Neig; our com-
puted values are already well converged (within 0.05 eV)
for Neig = 300. The inset of Fig. 2 presents a comparison
between calculations with Neig = 500, using an energy
cutoff of 40 and 60 Ry, and it shows that a cutoff of 40
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FIG. 2. Differences between the calculated vertical ioniza-
tion potentials (VIPs) of benzene and experimental results
as functions of the number of eigenpotentials (Neig) included
in the definition of the dielectric matrix (see Eq. (4)): cir-
cle: Neig = 100; square: Neig = 200; diamond: Neig = 300;
triangle up: Neig = 400 and triangle left: Neig = 500. In-
set: differences between the calculated VIPs of benzene with
Neig = 500 and experimental results: triangle left and triangle
right show results obtained with 40 and 60 Ry, respectively.
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FIG. 3. Differences between calculated vetical ionization po-
tentials (VIPs) and experimental values for a series of small
molecules. The lines are a guide to the eye.

Ry yields computed VIPs values converged within 0.05
eV. The value of the first ionization potential, 9.23 eV,
is in excellent agreement with experiment23 (9.3 eV) and
results in the literature,7,20 but slightly higher than the
one recently reported in Ref. 10 (9.05 eV). The vertical
electron affinity (VEA) exhibits a convergence behavior
similar to the VIP and we obtain a value of −0.8 eV,
in fair agreement with experiment24 (−1.12 eV). A fast
convergence with respect to Neig is observed for all VIPs;
the largest error of the computed VIPs is less than 4%
compared to experiment.23 Our computed quasiparticle
gap (10.03 eV) is slightly smaller than those reported by
Tiago et al.20 (10.29 eV), Neaton et al.21 (10.51 eV), and
Samsonidze et al.10 (10.56 eV). We note that in Ref. 20
vertex corrections were included in the calculation, and
a plasmon pole model as well as a relatively small cutoff
for the dielectric matrix (6 Ry) were used in Refs. 10 and
21.

We also checked the robustness of our implementation
by computing the first ionization potentials for a number
of small molecules chosen within a set recently investi-
gated with all electron (AE) calculations and localized
basis sets.25 The computed VIPs, shown in Fig. 3, are in
good agreement with experiment (within 5 %, except for
NaCl). A detailed discussion of the differences between
PP and AE results will be given elsewhere.26

We now turn to discussing the electronic properties of
diamondoids for which both experimental27 and Quan-
tumMonte Carlo (QMC)28 results are available. We have
studied diamondoids constructed from adamantane cages
C4n+6H4n+12 (n = 1, 4) and two H-terminated, spheri-
cal diamond clusters, C29H36 and C66H64, that has 328
valence electrons. The parameters used in these calcu-
lations were the same as those of the benzene molecule
except that a larger cell of 40 a.u. length was used.29

In Fig. 4 our calculated VIPs of diamondoids and dia-
mond clusters are compared to the experimental adia-
batic IPs27 and vertical IP,30 and to the previous QMC
results.28 The calculated VIPs at the G◦W ◦ level are
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FIG. 4. Computed and measured (Expt.) ionization poten-
tials of diamondoids and diamond clusters as a function of the
number of constituent carbon atoms. All computed values re-
fer to vertical ionization potentials (VIP), and were obtained
using quantum monte carlo (QMC), density functional the-
ory (DFT) within the local density approximation (LDA),
and many-body perturbation theory with the G◦W ◦ approx-
imation. Measured adiabatic ionization potentials (AIP) are
also shown.

consistent with experiments, being systematically larger
than the measured adiabatic IPs (0.34 − 0.66 eV), and
decreasing as a function of the cluster size. For the small-
est diamondoid, i.e., C10H16, our G◦W ◦ result is in a
very good agreement with the experimental VIP. We also
find fair agreement with QMC calculations for C10H16

and C29H36, with differences of 0.3 and 0.7 eV, respec-
tively. For a specific case, i.e., C29H36, we tested the
dependence of our results on the choice of the ground
state wavefunctions and eigenvalues and on the geome-
tries optimized with different functionals. When using
geometries obtained at the PBE level of theory and PBE
wavefunctions and eigenvalues, we obtain a VIP which is
smaller by 0.2 eV than that obtained at the LDA level.
Irrespective of the functional used for ground state cal-
culations, we find that the electron affinity (≃ −0.55 eV)
is almost constant as a function of the cluster size, in
agreement with X-ray-absorption experiment.31 In addi-
tion, our computed values of the EA are negative, consis-
tent with QMC results.28 In the absence of quasiparticle
corrections to LDA eigenvalues, the EA is very weakly
dependent on cluster size but it is positive (≃ 0.86 eV).

In summary, we have presented a novel approach to
perform GW quasiparticle energy calculations using a
spectral decomposition of dielectric matrices. The evalu-
ation of unoccupied one-particle states, and storage and
inversion of large dielectric matrices are avoided, as well
as the use of plasmon pole models; numerical approxima-
tions are controlled by a single parameter. This distinc-
tive feature allows one to converge GW calculations in
a systematic way. The workload of the calculations pre-
sented here scales asNeig×Npwψ×N

2
v , whereNpwψ is the

size of the basis set used to represent the wave functions
and Nv is the number of occupied states. This scaling
represents a substantial improvement over the scaling of
conventional approaches, N2

pwǫ ×Nv ×Nc, as in general
Neig ≪ Npwǫ, Nv ≪ Nc; Nc is the number of empty
states required to converge summations to compute the
dielectric matrix and the Green’s function, and Npwψ is
typically much smaller than the basis set necessary to
represent the dielectric matrix, Npwǫ. In addition the
technique presented here is amenable to various levels of
straightforward parallelization, e.g. over eigenpotentials,
frequencies, and electronic states. The favorable scaling
and the much reduced memory requirements of our ap-
proach allowed us to carry out calculations with more
than 300 electrons, using large basis sets, e.g., 270, 000
plane waves to represent electronic wave functions in
the case of diamondoids. Computed VIPs and VEAs
of representative systems show a good agreement with
experiment and results reported in the literature, when
available. Although all systems studied in this work are
molecules and clusters, the extension of our approach to
periodic systems is straightforward and underway. Work
is also in progress to generalize our approach to self con-
sistent calculations and to use quasiparticle energies in
the solution of the Bethe-Salpeter equation based on den-
sity matrix perturbation theory.32
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