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We investigate the effects of nonmagnetic disorder on the Ruderman-Kittel-Kasuya-Yoshida
(RKKY) interaction in graphene by studying numerically the Anderson model with on-site and
hopping disorder on a honeycomb lattice at half filling. We evaluate the strength of the interac-
tion as a function of the distance R between two magnetic ions, as well as their lattice positions
and orientations. In the clean limit, we find that the strength of the interaction decays as 1/R3,
with its sign and oscillation amplitude showing strong anisotropy. With increasing on-site disorder,
the mean amplitude decreases exponentially at distances exceeding the elastic mean free path. At
smaller distances, however, the oscillation amplitude increases strongly and its sign changes on the
same sublattice for all directions but the armchair direction. For random hopping disorder, no sign
change is observed. No significant changes to the geometrical average values of the RKKY interac-
tion are found at small distances, while exponential suppression is observed at distances exceeding
the localization length.

I. INTRODUCTION

An unconventional behavior of the Ruderman-Kittel-
Kasuya-Yoshida (RKKY) interaction between magnetic
impurities in undoped graphene was recently reported.1–3

Rather than the conventional 1/R2 decay expected for
two-dimensional systems, where R is the distance be-
tween the two magnetic moments, the RKKY interac-
tion is found to fall off as 1/R3 at the Dirac (neutrality)
point. Furthermore, it was found that, due to particle-
hole symmetry, only ferromagnetic (antiferromagnetic)
interactions are allowed when two impurities are located
on the same (different) sublattice.1

In a recent experiment, the authors of Ref. 4 measured
the Kondo effect on graphene samples with a large num-
ber of vacancies, confirming that these defects induce lo-
cal magnetic moments.5,6 Thus, upon increasing the con-
trol over the location of such defects, one might be able
to also measure the RKKY interaction as a function of
distance and location of local moments. Indeed, a direct
detection of the RKKY interaction is feasible with the
recent development of a technique to measure the mag-
netization curves of individual atoms using spin-polarized
scanning tunneling spectroscopy.7,8 With this technique,
the orientation and distance dependence of the exchange
interactions can be observed precisely.

The influence of disorder on the RKKY interaction
in conventional metals has been thoroughly studied.9–11

These studies found that the main effect of weak disorder
is to randomize the electron phase, resulting in an ex-
ponential decrease of the ensemble-averaged interaction
amplitude with distance. However, the average does not
properly characterize the typical interaction strength, as
any particular disorder configuration has long-range cor-
relations. Indeed, the typical value, identified as the geo-

metrical average (Jgeo
RKKY ≡ e〈(1/2) ln[JRKKY]2〉avg) is found

to have the same power-law behavior with distance as the
amplitude of the interaction in the clean limit. Conse-
quently, at least for conventional metals, weak disorder is
not likely to cause any critical change in physical proper-
ties which derive from the RKKY interaction. It is only
when the system approaches the localized regime that
the geometrical average is exponentially suppressed.12

In light of these facts, our study focuses on two main
questions. The first is how a pair of magnetic impurities
in disordered graphene will interact in general. We con-
sider impurities located along any lattice orientation, and
not only along the zigzag and armchair lines. The second
is how this interaction changes with increasing disorder
strength.

II. KPM FORMULATION OF RKKY
INTERACTION

Let us begin by considering a general expression for
the RKKY exchange coupling constant in terms of the
unperturbed (disorder-free) electronic Green’s function
G(0)(ri, rj , ω),
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Here, J is the local coupling constant between the local-
ized magnetic impurities and the itinerant electrons, S
is the magnitude of the impurity spin, i (j) is the site
index of a magnetic impurity located at position ri (rj),

f(ω) = [e(ω−µ)/T + 1]−1 is the Fermi-Dirac distribution
function, and F ij

nm = ψ∗
n(ri)ψn(rj)ψ

∗
m(rj)ψm(ri), with

ψn(ri) denoting the eigenfunction corresponding to the
eigenenergy En of the unperturbed electronic Hamilto-
nian (i.e., in the absence of magnetic disorder). The lat-
tice constant a and ~ are set to unity in all calculations.
Using a zero-temperature approximation (T = 0) and

changing to an integral form, Eq. (2) can be recast as

JRKKY = −J2S(S + 1)

2S2

∫

E<0

dE

∫

E′>0

dE′ F (E,E
′)

E − E′
,

(3)
where F (E,E′) = Re[ρji(E)ρij(E

′)], µ is the Fermi en-
ergy, and ρij(E) = 〈i|δ(E −H)|j〉, which can be calcu-
lated numerically using the kernel polynomial method
(KPM).14 In the KPM, the matrix elements ρij(E) are
expressed as sums over order-M Chebyshev polynomials
on the energy E with coefficients obtained through an
efficient recursion relation involving matrix elements of
the system Hamiltonian.

ρij =
1

π
√
1− E2

[

g0 µ
ij
0 + 2

M
∑

l=1

gl µ
ij
l Tl(E)

]

, (4)

where Tl(E) is the lth Chebyshev polynomial, µij
l =

〈i|Tl(H)|j〉, and gl are the Jackson kernels coefficients.
The sum is taken up to a cutoff number M . One can
obtain the expansion coefficients µij

l using the recur-
rence relation of Chebyshev polynomials, namely, Tl+1 =
2HTl(H) − Tl−1(H) with T0(H) = 1 and T1(H) = H .
Implicit in Eq. (4) is the normalization of the energy
spectrum to a band of unity width. As our unperturbed
electronic Hamiltonian with on-site disorder, we employ
the single-band Anderson tight-binding model on a hon-
eycomb lattice,

H = −t
∑

〈i,j〉

c+i cj +
∑

i

wi c
+
i ci, (5)

where t (≈ 2.67 eV for graphene) is the hopping energy,
ci (c+i ) annihilates (creates) an electron at site i, wi is
the on-site random disorder energy distributed uniformly
between [−W/2,W/2], and 〈i, j〉 denote nearest-neighbor
sites. Periodic boundary conditions are used for all cal-
culations. For clean systems (W = 0), the Chebyshev
polynomials are calculated up to M = 3 × 103 on a lat-
tice with 5× 105 sites.

III. RKKY INTERACTIONS IN CLEAN
SYSTEM

The RKKY interaction coupling constant between two
magnetic impurities is calculated using Eq. (3), of which

(a) R2 JRKKY

(b) R2 JRKKY

FIG. 1. (Color online) Plots of the RKKY interaction
strengths between a magnetic impurity at the origin and an-
other at: (a) a site from the same sublattice (AA) and (b)
a site from a different sublattice (AB). In the contour plots,
the amplitudes are multiplied by the square of the distance
to facilitate visualization. The lattice constant is set to unity.
The numerical data is for clean graphene (W = 0). Calcula-
tions using the kernel polynomial method and lattice Green’s
function method are represented as solid blue and dashed red
lines, respectively.

the results for the clean limit are shown in Fig. 1. In
order to better visualize the behavior of the amplitude
in the contour plots, we have multiplied JRKKY by R2,
resulting in a smoother (1/R) decay. The interactions
along the zigzag and armchair directions are shown sep-
arately by line plots in Fig. 1. These results are in excel-
lent agreement with previous studies.1–3 The authors of
Ref. 3 used a lattice Green’s function method to obtain
an RKKY interaction of the form

J0
AA = −J2 1 + cos[(K+ −K

−) ·R]

R3
, (6)

J0
AB = J2 3 + 3 cos[(K+ −K

−) ·R+ π − 2θR]

R3
, (7)

where all the coefficients are set to unity, K
± =

(±2π/3
√
3, 2π/3) are the Dirac points in the Bloch mo-

mentum space, R = ri−rj, and θR is defined in the inset
of Fig. 1a. For a direct comparison, plots of Eqs. (6) and
(7) are shown in Fig. 1 along with the results calcu-
lated from Eq. (3). As expected from the particle-hole
symmetry of the spectrum, the magnetic impurity on the
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FIG. 2. (Color online) Plots of the RKKY interaction
strength along the (a) zigzag and (b) armchair directions in
the diffusive regime, as averaged over 1.6× 103 different dis-
order configurations. A lattice with 1.8 × 105 sites and a
polynomial degree cutoff of M = 5 × 103 are used in these
numerical calculations.

origin has ferromagnetic correlations with the impurities
on the same sublattice (Fig. 1a), while antiferromagnetic
correlations develop for impurities on different sublattices
(Fig. 1b).

IV. RKKY INTERACTIONS IN DISORDERED
SYSTEM

A. Diagonal defects

In order to investigate the effect of on-site nonmag-
netic disorder in graphene, we consider 1.6 × 103 differ-
ent disorder configurations for each value of W and then
evaluate the matrix elements ρij through the KPM with
M = 5× 103 on a lattice with 1.8× 105 sites.
For weak (strong) disorder strength, the system is in

the diffusive (localized) regime, where the actual value of
W for which this crossover occurs depends on the lattice
size and has been determined by evaluating the local-
ization length (see Fig. 4). The average amplitude of
the RKKY interaction in the diffusive regime is shown
in Fig. 2. Similar to conventional metals, the interaction
decays exponentially with increasing disorder strength as

Javg
RKKY ∼ Jclean

RKKY e−R/le , (8)

where le is the mean free path and Jclean
RKKY is the inter-

action amplitude in the clean limit. It is worth noticing
that the sign of the interaction oscillates when the impu-
rities are located along the zigzag-AA direction.
To better characterize the amplitude of the interac-

tion, we have also calculated the geometrical average
(Jgeo

RKKY) for both diffusive and localized regimes (Fig. 3).
In Fig. 3a, one can see that the geometrical average for
a weakly disordered system remains long ranged and
has a decaying behavior similar to the clean system.

(a)

(b)

FIG. 3. (Color online) Plots of the geometrical average over
1.6×103 different disorder configurations of the RKKY inter-
actions for (a) weak and (b) strong disorder. The same lattice
size and polynomial cutoff of Fig. 2 are used.

As mentioned earlier, studies of conventional metals9–11

have shown that the geometrical average (i.e., the typical
value) of the RKKY interaction in weakly disordered sys-
tems has a power law dependence with the same exponent
of the clean limit, namely, Jgeo

RKKY ∼ 1/Rα (e.g., α = 2
in a two-dimensional electron gas). Due to the uncon-
ventional distance dependence (Eqs. (6) and (7)) caused
by the pseudogap at the Dirac point of clean graphene,
one may expect two possibilities. If the pseudogap is not
filled by disorder, the geometrical average value of the
amplitude is expected to have the same exponent of the
clean system, namely, α = 3. However, if it is filled, then
the geometrical average value should approach the con-
ventional power law of a two-dimensional electron gas,
namely, α = 2. Our calculations show that the former
is the correct answer. This is in accordance with the
fact that short-range disorder preserves the pseudogap in
graphene.15 Therefore, the presence of weak short-range
disorder in undoped graphene is not anticipated to in-
duce any major change in physical properties related to
the RKKY interaction. The situation is drastically dif-
ferent in the localized regime, where the geometrical av-
erage values is exponentially suppressed with distance,
as shown in Fig. 3b. This behavior is captured by the
following relation,12

Jgeo
RKKY ∼ e−R/ξ, (9)

where ξ is the localization length. Fig. 4 presents the
mean free path and the localization length obtained by
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FIG. 4. (Color online) Plots of the mean free path le and the
localization length ξ as functions of the disorder strength W
(in units of t). The blue dashed line represents a fitting to
the relation le = c1/W

2 with c1 = 60, whereas the red dashed
line represents the resulting localization length[Eq. (10)], with
vFΛ =

√
10 treated as another fitting constant.

fitting the relations Eq. 8 and Eq. 9 to the numerical
data. For W = t, the localization length is about 102,
which is close to the longest linear distance possible in
our calculations, namely Rmax = 60

√
3. Therefore, the

system crosses over from the diffusive to the localized
regime aroundW ∼ t. For uncorrelated, short-range dis-
order, which allows for intervalley scattering, the local-
ization length is given by ξ = le exp(πσ/G0),

16,17 where

σ = 4
π

[

(vFΛ)2

(vFΛ)2+W 4

]

, vF denotes the Fermi velocity, Λ is

the energy cutoff, and G0 = e2/h is the conductance
quantum. It is well known that the mean free path is
inversely proportional to the square of disorder strength
(le ∼ 1/W 2). Therefore, one expects the localization
length to obey the relation

ξ ≈ (c1/W
2) exp

[ 4(vFΛ)
2

(vFΛ)2 +W 4

]

, (10)

where c1 is a fitting constant. Indeed, these relations fit
reasonably well the numerical data, as shown in Fig. 4.

B. Off-diagonal defects

To find out the effect of disorder with no sublattice
symmetry breaking, we added randomness to the hop-
ping integral and eliminated on-site disorder (wi = 0),

H = −
∑

〈i,j〉

tijc
+
i cj , (11)

where tij = t + ∆tij , with ∆tij being distributed uni-
formly between [−W/2,W/2]. We perform the same cal-
culations of the on-site disorder case, but now with a
lattice of 2× 104 sites and a Chebyshev polynomial cut-
off M = 103. For comparison, we plot the results to-
gether with those for the on-site disorder calculations in
Fig. 5. A total of 4 × 102 configurations of disorder are
used, with the thick dashed line indicating the average
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FIG. 5. Plots of the RKKY interactions along the zigzag-AA
directions with strength W = 3t of (a) diagonal disorder, (b)
off-diagonal (random hopping) disorder, and distributions of
the RKKY interactions for (c) R = 3, (d) R = 5 with 400
realizations. Here the distance unit is

√
3a. A lattice with

2× 104 sites and a polynomial degree cutoff of M = 103 are
used in these numerical calculations. The black dashed line
is the averaged interaction.

value. While the on-site disorder generates random fluc-
tuations in the sign and amplitude of the RKKY inter-
action (Figs. 5a), the hopping disorders affect only the
amplitude, even in the presence of very strong random-
ness (Fig. 5b). The distributions of the RKKY interac-
tions are shown in Figs. 5c,d and those show that the
off-diagonal disorder (red lines) does not change the sign
of the RKKY coupling.

V. CONCLUSION

In conclusion, we have confirmed that the RKKY in-
teractions in clean graphene has a strong anisotropy of its
sign and oscillation amplitude, and it decays as 1/R3 for
all directions. Increasing the amount of nonmagnetic,
on-site disorder causes the averaged amplitude of the
RKKY interaction to decrease exponentially at distances
exceeding the elastic mean free path, similarly to what is
obtained for conventional metals. At smaller distances,
however, the fluctuations of the amplitude are found to
increase strongly, with sign oscillations even for a pair
of magnetic impurities located on the same sublattice,
for all directions except the armchair direction. When
the randomness is instead applied to the hopping (off-
diagonal disorder), the sign oscillations disappear. This
shows that these sign changes at weak disorder poten-
tial are caused by the breaking of the sublattice symme-
try, since off-diagonal disorder preserves this symmetry.
Our calculations also confirm that the geometrical aver-
age of the RKKY interaction in disordered graphene has
the same power law decay at short distances as in the
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clean case. However, it is exponentially suppressed at
distances exceeding the localization length. We plan, to
extend these studies by considering the effects of long-
range disorder and resonant impurities.
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