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We analyze the results of scanning near-field infrared spectroscopy performed on thin films of
a-SiO2 on Si substrate. The measured near-field signal exhibits surface-phonon resonances whose
strength has a prominent thickness dependence in the range from 2 to 300 nm. These observations
are compared with calculations in which the tip of the near-field infrared spectrometer is modeled
either as a point dipole or an elongated spheroid. The latter model accounts for the antenna effect
of the tip and gives a better agreement with the experiment. Possible applications of the near-field
technique for depth profiling of layered nanostructures are discussed.
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I. INTRODUCTION

Scattering scanning near-field optical microscopy (s-SNOM)1–3 is a powerful tool for probing local electromagnetic
response of diverse materials. The s-SNOM achieves spatial resolution of 10–20 nm, which is especially valuable in the
physically interesting infrared region4,5 where the resolution of conventional spectroscopy is fundamentally limited
by a rather large wavelength λ ∼ 5–500µm. The s-SNOM techniques have been rapidly advancing,6,7 which enabled
their applications to imaging spectroscopy of complex oxides,8–14 organic monolayers,15 and graphene.16

The s-SNOM utilizes scattering of incident light by the tip of an atomic force microscope (AFM) positioned next
to the probed sample (Fig. 1). The tip couples to the sample via evanescent waves of large in-plane momenta
q ∼ 1/a, where a is the tip radius of curvature (a few tens of nm). This is why the lateral resolution of the s-SNOM
is determined primarily by a rather than λ.17–19 (This property is quite general and holds for other tip-enhanced
near-field techniques, e.g., scanning impedance microscopy20 and inelastic light scattering.21,22)

One of the interesting open questions is the depth (z-coordinate) resolution of the s-SNOM probes. Previous
experiments suggested that it is comparable to the lateral resolution ∼ a, based on imaging of small sub-surface
particles.23 In this paper we report near-field measurements of SiO2 thin films which demonstrate that films as thick
as several hundred nm have a response clearly different from that of the bulk material. Thus, if instead of particles
the sample is made of layers, then the s-SNOM is able to detect them at much larger depths.

We compare our experimental results with two theoretical models, the conventional point-dipole approximation1,24

and the spheroidal model. The former is very simple to implement but is also very crude. Predictably, it yields a
bulk-like response of the s-SNOM signal as soon as the SiO2 film thickness exceeds the tip radius, in disagreement
with the experiment.

A plausible reason for shortcomings of the point-dipole model is its failure to account for the strongly elongated
shape of the tip. Such a tip acts as an optical antenna1–3 that greatly enhances the electric field inside the tip-sample
nanogap. Existing analytical models25,26 that attempt to treat elongated tips are not suitable for layered substrates.
This compels us to study the problem numerically.

To make the calculations tractable, we follow examples in the literature27–29 and model the tip as a metallic spheroid
of total length 2L� a, see Fig. 1. As shown below, this gives results in a much better agreement with the experiment
in terms of both the frequency and the thickness dependence of the near-field signal. We attribute the origin of the
more gradual film-thickness dependence in the spheroidal model to the aforementioned antenna effect. The magnitude
of this effect is determined by the material response over length scales ranging from a to 2L, and so it truly saturates
only when the film thickness becomes much larger than 2L.
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FIG. 1. (Color online) Schematics of an s-SNOM experiment. A scanned probe, modeled as a metallic spheroid of length 2L
and the apex curvature radius a, is positioned distance ztip above the sample. The sample contains a film of thickness d1 and
dielectric function ε1 on a substrate with dielectric function ε2. The system is illuminated by infrared field Eext at an angle of
incidence θ. Scattering of this radiation by the tip creates evanescent waves with in-plane momenta q ∼ 1/a. The experiment
measures the total radiating dipole p of tip, which is determined by multiple reflections of the evanescent waves between the
tip and sample. The reflections off the sample are characterized by the coefficient rP(q, ω).
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FIG. 2. (Color online) (a) Main panel: measured infrared near-field spectra for several SiO2 film thicknesses. The quantity
plotted is the absolute value s3 of the third harmonic of the scattering amplitude normalized by that for the Si wafer. Inset i: a
topographic AFM image of a region of an 18-nm sample. Inset ii: a near-field image of the same region acquired near the peak
frequency ω ≈ 1130 cm−1. (b) Theoretical results for the spheroid model with a = 30 nm and L = 15a. (c) Theoretical results
for the point-dipole model with a = 30 nm and b = 0.75a. (d) Measured approach curves for the 105-nm thick SiO2. Note that
z0 is determined up to an additive constant ∼ 1 nm (see text). (e) Calculated approach curve for the spheroid model. (f) The
same for point-dipole model.

The remainder of the paper is organized as follows. In Sec. II we summarize the experimental procedures and results.
In Secs. III and IV we discuss the two theoretical models and compare their predictions with the measurements.
Concluding remarks are given in Sec. V.

II. EXPERIMENT

In this Section we summarize our experimental procedures and the results. We investigated commercially available
calibration gratings, which contain strips or islands of SiO2 thermally grown on Si, see the insets in Fig. 2(a). The
manufacturer specified thicknesses of the SiO2 layer spanned the range d1 = 2, 18, 22, 108, and 300 nm. A combination
of CO2 and tunable quantum cascade lasers (Daylight Solutions) allowed us to cover the frequency range 890–
1250 cm−1. The near-field data were collected using a Neaspec system.

The measured s-SNOM signal represents the electromagnetic field backscattered by the probe and the scanned
sample. The complex amplitude s(ω, t) of the backscattered field varies periodically with the tapping frequency
Ω ∼ 40 kHz as the distance ztip between the sample and the nearest point of the tip undergoes harmonic oscillations

ztip(t) = z0 + ∆z (1− cos Ωt) , (1)

where ∆z ≈ 50 nm, typically. In order to suppress unwanted background and isolate the part of the signal scattered
by the probe tip, the signal is demodulated. Namely, we extracted the absolute values sn(ω) and phases φn(ω) at
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tapping harmonics

sne
iφn =

T∫

0

dt

T
einΩt s(ω, t) , T =

2π

Ω
. (2)

The experimental results for the third harmonic s3 are shown in Fig. 2(a). Each spectral data point in the main panel
of Fig. 2(a) was extracted from s-SNOM images that were acquired at a fixed frequency ω of the tunable laser. A
representative s-SNOM image is shown in the inset ii of Fig. 2(a). The imaged area was chosen such that it contained
Si and SiO2 regions identified from the simultaneously acquired AFM topography images, see the inset i of Fig. 2(a).
The data points in the main panel of Fig. 2(a) represent the normalized amplitude s3(SiO2)/s3(Si), where s3(SiO2)
and s3(Si) are the raw third-order demodulation signals averaged over the entire SiO2 and Si areas, respectively. The
statistical uncertainty of these averaged data traces is about 2%.

The measured z0-dependence of s3 (the approach curves) is shown in Fig. 2(d). It was recorded while the set-point
of the tip oscillations was gradually moved either towards or away from the sample. The point of the tip-sample
contact z0 = 0 was assumed to coincide with the largest observed s3. [The spectra shown in Fig. 2(a) correspond to
this condition.] The data at smaller tip-sample distances were discarded to avoid contamination of the third harmonic
of the s-SNOM signal by mechanical rather than optical interaction between the tip and the sample. This procedure
is convenient in practice but has a drawback that an error in identifying the contact point causes the approach curve
to be shifted by some constant. We estimate this error not to exceed ∼ 1 nm in most cases, where the approach curve
rapidly and monotonically decays with z0. Our results are in a qualitative agreement with a previous experimental
study,23 which reported approach curves for SiO2 for a few discrete frequencies and film thicknesses.

For each studied SiO2 thickness d1, the normalized amplitude s3(SiO2)/s3(Si) exhibits a clear maximum at ω ≈
1130 cm−1. A trace of this resonance can be reliably identified even for d1 = 2 nm sample. The key aspect of the data
is a rapid decrease in the normalized amplitude of the main maximum as the thickness is reduced. Another notable
feature is the growing strength and frequency shift of the secondary peaks on the high-ω side of the main peak as d1

is decreased.
Since the response of Si is ω-independent in our experimental range, the frequency dependence of the spectra in

Fig. 2(a) originates from that of SiO2. We attribute the maxima of s3(SiO2)/s3(Si) to the phonon modes localized at
the air-SiO2 interface.6 These resonances occur in the frequency region between the bulk transverse and longitudinal
modes of SiO2 (the outer dashed lines in Fig. 3 below).

The results of our theoretical calculations for the normalized scattering amplitude are presented in the remaining
panels of Fig. 2. They are discussed in the following Sections.

III. RESPONSE FUNCTIONS AND COLLECTIVE MODES

The sample is modeled as a two-layer system. The first layer with dielectric function ε1(ω) occupies the slab
−d1 < z < 0. The second layer with dielectric function ε2(ω) occupies the half-space z < −d1. The half-space z > 0
(“layer 0”) is filled with air (dielectric constant ε0 = 1). The fundamental response functions of the system are the
reflection coefficients rX(q, ω), which are functions of in-plane momentum q, frequency ω, and polarization X = S
or P . The domain of definition of rX(q, ω) is understood to include nonradiative modes q >

√
ε0 ω/c. It is known

from previous studies that the s-SNOM signal is dominated by the P -polarized waves. In our two-layer model their
reflection coefficient is given by a Fresnel-like formula

rP(q, ω) =
ε∗kz0 − ε0kz1
ε∗kz0 + ε0kz1

, (3)

ε∗(q, ω) = ε1
ε2k

z
1 − ε1kz1 tanh ikz1d1

ε1kz2 − ε2kz1 tanh ikz1d1
, (4)

where z-axis momenta kzj are defined by

kzj =

√
εj
ω2

c2
− q2 , Im kzj ≥ 0 . (5)

Equation (3) is valid for arbitrary q. In the near-field case where q is large and kzj ' iq, it simplifies to

r
P
(q, ω) ' ε∗ − ε0

ε∗ + ε0
, ε∗ ' ε1

ε2 + ε1 tanh qd1

ε1 + ε2 tanh qd1
. (6)



5

Assuming all εj are q-independent, the effective dielectric function ε∗(q, ω) depends on q only via the product qd1

in this limit. Therefore, r
P
(q, ω) for one thickness d1 can be obtained from another by rescaling q. As discussed in

Sec. I and shown in more detail below, the most important momenta are q ∼ 1/a where a ∼ 30 nm is the tip radius.
Therefore, we can get an approximate understanding of the system response by examining the behavior of r

P
(q, ω) as

a function of ω at fixed qd1 ∼ d1/a. This behavior is dictated by the spectrum of surface collective modes, as follows.

In general, surface modes correspond to poles of the response functions rX . Function r
P

given by Eq. (6) can have
up to two poles at each qd1, see, e.g., Ref. 30. They are defined by the following condition on ε1(ω):

ε1(ω) = − ε0 + ε2
2 tanh qd1

±
√

(ε0 + ε2)2

4 tanh2 qd1

− ε0ε2 . (7)

At large qd1, where tanh qd1 = 1, this condition yields ε1(ω) = −ε0 or ε1(ω) = −ε2, which correspond to modes
localized at the upper 0–1 and the lower 1–2 interfaces, respectively. Actually, the latter “pole” has vanishingly small
residue because evanescent waves do not reach the lower interface at qd1 = ∞. There is no q-dispersion and no
coupling of the two modes in this limit. The dispersion appears at finite qd1, where the two modes become mixed. In
particular, we find

ε1(ω) ' − qd1

ε−1
0 + ε−1

2

, “0–1” (8a)

' −ε0 + ε2
qd1

“1–2” (8b)

at qd1 � 1. At finite q, both interfaces participate in generating these excitations. The labels “0–1” and “1–2”
are for convenience: they indicate at which interface a given dispersion branch is ultimately localized as q increases.
At qd1 = 0, the “0–1” and “1–2” branches are characterized by ε1(ω) = 0 and ε1(ω) = −∞, which correspond,
respectively, to the bulk longitudinal and transverse phonon frequencies ωLO and ωTO .

If we try to apply this formalism to real materials, we face the problem that Eq. (7) has no solutions for real
ω because the dielectric functions have finite imaginary parts. This is why in practice the collective mode spectra
are usually defined differently. They are identified with the maxima of dissipation, i.e., Im r

P
. The number of these

maxima can be fewer than the total allowed number of the modes because some of them can be overdamped. Similarly,
we define ω

LO
and ω

TO
as the frequencies that correspond to the maxima of −Im ε−1

1 (ω) and Im ε1(ω).

To see what kind of spectra are realized in our system, we use our ellipsometry data for ε1(ω) [Fig. 3(a)] and Eq. (6)
to compute rP for several values of qd1. (The ellipsometry was done on d1 = 300 nm sample.) The plot of these
quantities as a function of ω is presented in Fig. 3(c). Three maxima on each curve in the region of primary interest
ω > 1000 cm−1 are apparent. They exist already at qd1 = ∞, and so all of them belong to the upper (air-SiO2)
interface. In fact, we do not expect sharp modes at the lower (SiO2-Si) interface because the dielectric function of Si
is quite large ε2 ≈ 11.7 in the studied range of ω. The lowest value of Re ε1 ≈ −5.0 is not sufficient to compensate ε2
and generate “1-2” modes, cf. Eq. (7).

The main peak of Im r
P

at qd1 = ∞ defines the surface phonon frequency of SiO2 ωSP
≈ 1164 cm−1. There also

exist secondary peaks at ω ≈ 1100 cm−1 and ω ≈ 1220 cm−1. Their evolution as a function of qd1 comply with the
general scheme outlined above. As qd1 decreases, all the three peaks loose strength, as expected, because the volume
of SiO2 probed by the tip diminishes. The lower-ω secondary peak redshifts, moving towards ω

TO
, and then quickly

disappears. This agrees with the SiO2-Si resonance being highly damped. The higher-ω secondary peak becomes
dominant at qd1 < 0.5 and demonstrates a systematic shift towards ω

LO
, see Fig. 3(c).

A notable feature of Fig. 3(b) is the clustering of the crossing points of the different curves near ω = 1036 cm−1.
This is the frequency where the dielectric function of SiO2 is the closest to that of Si, ε2 ≈ 11.7. As a result, the two
layers act almost as one bulk material, so that r

P
(ω) is approximately thickness-independent.

There is a qualitative correspondence between the features displayed by the reflection coefficient r
P

and the ob-
served near-field signal s3(SiO2)/s3(Si), cf. Figs. 2(a) and 3(b),(c). However, the relation between r

P
(q, ω) and the

measured s-SNOM signal is nontrivial. For example, the frequency positions of the maxima in Im r
P
(q, ω) and those

in s3(SiO2)/s3(Si) differ by as much as 40 cm−1. We also suspect that there may be some slight differences between
the optical constants of thick films we assume in our calculations and those of the small SiO2 structures we probe by
the s-SNOM. This is the likely reason why the crossing point of the experimental curves occurs near 1060 cm−1 rather
than 1036 cm−1 predicted by both our models, cf. Fig. 2.

Developing a reliable procedure for inferring r
P
(q, ω) from s3 remains a challenge for the theory. The next section

presents our current approach towards this ultimate goal.
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IV. TIP-SAMPLE INTERACTION

Both radiative and nonradiative waves may play significant roles in the s-SNOM experiment.27 The radiative modes
magnify the signal by a certain far-field factor (FFF) F (qs, ω), where

qs =
ω

c
sin θ (9)

is the momentum of these modes for the angle of incidence θ. The nonradiative modes influence the effective polariz-
ability χ(ω, ztip) of the tip, i.e., the ratio of its dipole moment pz and the external electric field Ezext. Altogether the
demodulated s-SNOM signal sne

iφn can be written as

sne
iφn ∝ χnEext

sin 2θ F (qs, ω) , (10)

χn(ω) =

T∫

0

dt

T
einΩt χ

(
ω, ztip(t)

)
. (11)

Below we discuss the FFF and the tip polarizability separately.
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FIG. 3. (Color online) (a) Dielectric function of bulk SiO2 as a function of frequency from ellipsometry. (b) The real and (c)
the imaginary parts of the near-field reflection coefficient, rP(q, ω) for several qd1. In all the panels three dashed lines indicate
the transverse optical phonon frequency ωTO ≈ 1074 cm−1, the surface optical phonon frequency ωSP ≈ 1164 cm−1, and the
longitudinal optical phonon frequency ωLO ≈ 1263 cm−1.
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A. Far-field factor

The FFF takes into account that the total external field illuminating the tip consists of the incident wave and the
wave reflected off the sample. Similarly, the dipole radiation of the tip reaches the detector in two ways: directly and
after being reflected by the sample.27,31,32 Therefore, the FFF is given by31,33,34

F (qs, ω) = (1 + rP)2 . (12)

For a system in which all the layers are much wider than the wavelength, so that they can be considered effectively
infinite in the x–y plane, the reflection coefficient in Eq. (12) is the the usual Fresnel reflection coefficient computed
including all the layers, rP = rP(qs, ω). Previous s-SNOM experiments on systems of this type32,34 have shown that
the FFF may be an important part of the quantitative analysis. Conversely, there are reasons why in our case the
FFF should not play much role.

First of all, in our samples SiO2 layer occupies a minor fraction of the x–y plane forming small sub-wavelength
regions. [These regions are shaped as either narrow stripes, cf. Fig. 2(a), or small squares.] Therefore, r

P
in Eq. (12)

should be nearly equal to the Fresnel reflection coefficient of the underlying Si substrate alone. Thus, the FFF should
drop out from the ratio s3(SiO2)/s3(Si) plotted in Fig. 2.

Second, even if we willfully include the infinite-plane FFF in the calculation, it would produce only minor effects.
Comparing Fig. 2(b) and (c) with Fig. 4(c) and (d), we see that the height of the main maximum would change
by no more than 10% at all studied d1. Actually, using the infinite-plane FFF produces features not present in the
experimental data, Fig. 2(a). They include additional humps in s3(SiO2)/s3(Si)) near ωTO ≈ 1074 cm−1 and dips
near ωLO ≈ 1272 cm−1, cf. Fig. 2(b) and (c). These features arise because the absolute value of the infinite-plane
FFF has a maximum near ωTO and a suppression near ωLO, see Figs. 4(a). The main maximum of s3(SiO2)/s3(Si)
is located at ω ≈ 1030 cm−1, away from both ωTO and ωLO. This is why it is not greatly affected by the FFF.

These considerations imply that the observed strong d1-dependence of the main peak in s3(SiO2)/s3(Si) is not due
to the trivial far-field illumination effect. Accordingly, below we use the theoretical results of Fig. 2(b) and (c), which
are computed without the FFF.

B. Point-dipole model of the tip

The effective tip polarizability χ(ω, ztip) is the most important factor on the right-hand side of Eq. (10) and it is
also the most difficult one to compute. This quantity is dictated by the near-field coupling between the tip and the
sample. For irregular tip shapes it can be calculated only numerically. To reduce computational complexity, previous
studies have also considered various regular shapes, e.g., a spheroid,27–29 a small sphere,28,33,35–38 a rounded cone,39 a
“finite” dipole,6,25 and a point dipole.34,40,41 The actual tip shape in our experiments is close to a rounded pyramid.

The point-dipole approximation is the simplest one and it has been used extensively for modeling s-SNOM experi-
ments, including those performed on multilayer systems.16,34 The point-dipole model has two adjustable parameters:
the polarizability a3 of the effective dipole and its position b with respect to the bottom of the tip. The results
obtained following the standard analysis16,34 are shown in Fig. 2(c) using a = 30 nm and b = 0.75a. We see that
even for this rather large a the point-dipole model does not reproduce the observed prominent dependence of s3 on
thickness at d1 > 22 nm. (Such dependence cannot be reproduced even with unrealistically large a = 50 nm, see
Sec. V.)

The discrepancy can be seen more clearly in Fig. 5, where the height of the peak in s3(SiO2)/s3(Si) corresponding
to the surface phonon is plotted as a function of d1. For the point dipole model the curve flattens at d1 ∼ b. In
contrast, the experimentally measured s3(SiO2)/s3(Si) maximum continues to rise with d1. The point-dipole model
also predicts a steeper than observed approach curves, Fig. 2(f).

The physical origin of the saturation of the thickness dependence in Fig. 2(c) is easy to understand. One can think
about the near-field coupling between the point dipole and the sample in terms of the method of images. For a dipole
positioned at zpd = ztip +b, the image is concentrated at the depth zpd below the surface. Therefore, films of thickness
larger than zpd would act as a bulk material. Another way to arrive at the same conclusion is to notice that the
characteristic range of momenta of the relevant nonradiative waves is q <∼ 1/zpd. Since r

P
depends on q through the

term tanh qd1 [Eq. (6)], the dependence of the near-field coupling on d1 should saturate at d1
>∼ zpd ∼ b.

C. Spheroid model of the tip

The lack of saturation in the observed s-SNOM signal as a function of d1 at d1 � a indicates that evanescent waves
with momenta q � 1/a also play a role in the near-field coupling between the tip and the sample. This is a signature
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FIG. 4. (Color online) (a) The absolute value and (b) the phase of the infinite-plane far-field factor computed as a function of
frequency for the incidence angle θ = 45◦. The black trace is for bulk Si substrate, the blue one is for bulk SiO2 substrate, the
green one is for 300 nm thick SiO2 followed by bulk Si. The meaning of the dashed lines is the same as in Fig. 3. (c) Same as
Fig. 2(b) but with this far-field factor included. (d) Same as Fig. 2(c) but with the far-field factor included.

of models in which the tip has a finite extent in space 2L� a, see Fig. 1. Although such models are certainly more
realistic than a point-dipole approximation, there has not been a systematic study of how the results would depend on
the exact shape of the tip. Given some initial success of the point-dipole approximation, we speculate that a suitable
simple shape can provide a good compromise between increase in computational effort and ability to capture relevant
physics.

To test this idea, we modeled the tip as an elongated metallic spheroid positioned above a two-layer medium. This
follows a tradition in the literature wherein similar models were considered27–29 for the case of bulk substrates. In
Ref. 25 an analytical formula for the spheroidal tip was also proposed, based on heuristic arguments. However, it
cannot be easily extended to the q-dependent r

P
we study here. Instead, our calculations are done numerically. They

involve only two essential approximations. One is neglecting retardation, which is justified is the length 2L of the
spheroid is smaller than λ. The other one is neglecting the finite skin depth of the metal (Pt-Ir alloy) covering the
tip. Due to computational difficulties involved, this issue is left for future investigation.

The calculations were performed in two ways. First is the standard boundary-element method. In this method
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FIG. 5. (Color online) The thickness dependence of the s3 peak for different tip models. The circles represent the point-dipole
calculations, one for a = 30 nm (blue) and the other for a = 50 nm (green). The diamonds are for the spheroid model with
a = 30 nm and L = 15a, the same as in Figs. 2(b). The black squares are derived from the experimental data shown in Fig. 2(a)
after some smoothing over fluctuations.

we divide the entire tip — assuming azimuthal symmetry — into a large number (typically, 200) of small cylindrical
segments. We assume that different segments interact by Coulomb interaction as coaxial rings. The interaction of
each segment with itself is defined in such a way that the polarizability of the tip in the absence of the sample coincides
with the known analytical result for the prolate spheroid. The effect of the sample is included by adding ring-ring
interactions mediated by reflected electrostatic fields. This is accomplished by numerical quadrature over the product
of r

P
(q, ω) and suitable form-factors. This is the most time-consuming step of the simulation. After the interaction

kernel is generated in this way, it is straightforward to solve numerically for the dipole moment of the tip induced by
a unit external field, which is the desired polarizability χ(ω, ztip).

We also developed a second numerical method of computing χ (to be described elsewhere), based on an expansion
of the electric field in ellipsoidal harmonics. This alternative method is similar to that used for a metallic sphere
above a dielectric half-space.31,33 We verified that the two methods give identical results.

Substituting the computed tip polarizability χ into Eqs. (10) and demodulating per Eq. (11), we obtain approach
curves. Figure 2(e) illustrates that approach curves can be nonmonotonic near the resonances. This behavior has
been reported by other experimental groups23,41 but it was not anticipated when the experimental data were collected
in this study. As explained in Sec. II, we followed a simplified procedure in which z0 = 0 was assumed to be the
point where the observed s3 was the largest. The data points at shorter tip-sample separation were discarded. [In
computing the s-SNOM amplitude presented in Fig. 2(b) s3 we followed a similar procedure: we always chose ztip

that gave the largest s3.] Normally, this procedure can lead only to some small shift of the approach curves with
respect to the true point of the tip-sample contact z0 = 0. However, for nonmonotonic approach curves the shift of z0

could be as large as several nm. This may be one reason for the lack of perfect agreement between Figs. 2(d) and (e).
We leave a more careful investigation of the approach curves and their comparison with the calculations for future
work. Arguably, the approach curves predicted by the spheroid model, Fig. 2(e), are not as rapidly decaying with z0

as those for the point-dipole model, Fig. 2(f), and in this regard they better resemble the experimental observations,
Fig. 2(d).

The spheroid model has two adjustable parameters: the apex radius of curvature a and the half-length L. When
L = a the spheroid becomes a sphere. In this case the spheroid model gives results similar to the point-dipole model,
i.e., Fig. 2(c). As the ratio L/a increases, the differences appear. However, once L/a exceeds ten, the normalized
signal s3(SiO2)/s3(Si) does not change much at d1 ≤ 300 nm. Therefore, for long spheroids we effectively have a
single adjustable parameter a. Remarkably, the thickness dependence of the s3 peak for the spheroid model matches
the experiment very well (Fig. 5).
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V. CONCLUSIONS

In this paper we reported the results of scanning near-field optical spectroscopy of amorphous SiO2 films grown
on Si substrate. We discussed the collective mode spectra of such structures and compared measurements with two
theoretical calculations. The first one is based on a conventional approximation in which the tip of the scanned
probe is modeled as a point dipole. In the second one the tip is treated as an elongated spheroid, which significantly
improves agreement with the experiment.

We explain the qualitative difference between the two models as follows. An important physical ingredient missing
in the point-dipole model is the enhancement of the electric field near the apex of the tip — the antenna effect. This
phenomenon is well-known from classical electrostatics. The enhancement of the field is controlled primarily by the
ratio of the total length of the tip 2L (actually, the smaller of 2L and λ) and the apex radius of curvature ∼ a (Ref. 2).
The point-dipole model has been successful in the past without this enhancement factor because of the normalization
procedure. Instead of absolute sn, one usually reports sn normalized to some reference material such as Au or, in
our case, Si. This way, one eliminates any possible frequency dependence of the source radiation, but at the same
time cancels the part of the signal scaling with tip size. For a stratified sample this cancellation is imperfect because
the the field enhancement depends also on the dielectric response of the sample, which is a function of momentum q.
For a tip of length 2L, harmonics relevant for the field enhancement have momenta ranging from q ∼ 1/a down to
q ∼ 1/L. Therefore, one may expect that the dependence of the s-SNOM signal on the thickness d1 of the top layer
would saturate only when d1 ∼ L. Our simulations provide direct evidence for this claim.

Despite the important role of the q � 1/a momenta, the lateral resolution of the s-SNOM remains of the order of
the apex radius ∼ a. Further theoretical work is required to better understand this observation.

In closing, the strong experimentally observed thickness dependence of the near-field signal indicates that s-SNOM
is capable of not only high lateral resolution but can also probe the system in the third dimension. The response
of layered systems is shown to be different from that of systems with small subsurface particles.23 We hope that
experimental and theoretical approaches presented in this paper may be of use for accurate depth profiling of various
dielectric and metallic nanostructures.

The work at UCSD is supported by ONR, AFOSR, NASA, and UCOP. AHCN and LMZ acknowledge DOE grant
DE-FG02-08ER46512 and ONR grant MURI N00014-09-1-1063. We thank F. Keilmann and R. Hillenbrand for
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