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Based on density-functional theory calculations, we report a detailed study of the single-molecule
charge-transport properties for a series of recently synthesized biphenyl-dithiol molecules [D. Von-
lanthen et al., Angew. Chem., Int. Ed. 48, 8886 (2009); A. Mishchenko et al., Nano Lett. 10, 156
(2010)]. The torsion angle ¢ between the two phenyl rings, and hence the degree of 7 conjugation,
is controlled by alkyl chains and methyl side groups. We consider three different coordination ge-
ometries, namely top-top, bridge-bridge, and hollow-hollow with the terminal sulfur atoms bound
to one, two, and three gold surface atoms, respectively. Our calculations show that different coor-
dination geometries give rise to conductances which vary by one order of magnitude for the same
molecule. Irrespective of the coordination geometries, the charge transport calculations predict a
cos? ¢ dependence of the conductance, which is confirmed by our experimental measurements. We
demonstrate that the calculated transmission through biphenyl dithiols is typically dominated by
a single transmission eigenchannel formed from 7 electrons. For perpendicular orientation of the
rings a residual conductance arises from o-7 couplings. But only for a single molecule with a com-
pletely broken conjugation we find a nearly perfect degeneracy of the o-m eigenchannels for the
hollow-hollow-type contact in our theory.

PACS numbers: 85.65.+h, 73.63.Rt, 73.23.Ad, 31.15.es

I. INTRODUCTION

transport mechanisms involved and to interpret trends

After the first realizations of single- or few-molecule
contacts,” @ a major theme of research represents the
controlled fabrication of molecular junctions with desired
properties. As an example, several groups demonstrated
recently that the conductance of junctions containing
biphenyl derivatives can be controlled by the torsion an-
gle ¢ between the two phenyl rings.*® However, not
only the investigation of the conductance of more com-
plex molecules has become feasible,” ¥ but also the study
of additional aspects such as the signature of molecu-
lar vibrations in the electric current,'® current-induced
heating,!"!? and the distinction of electron or hole con-
duction by measurement of the thermopower.'® Further-
more, information on individual conduction channels can
be obtained by use of superconducting electrodes'® or
shot-noise measurements.'®> All these advances allow for
a better characterization of the single-molecule charge
transport when compared with theory.

Despite experimental and theoretical achievements,
measurement and modeling of electron transport in
molecular junctions are still challenging tasks. This is
mainly due to the observed variability in junction con-
ductances and the corresponding statistical nature of the
experiments.®1617 In this regard, calculations based on
the approximate density functional theory (DFT) can be
helpful to obtain a better understanding of the charge

in the experimental data based on computed structure-
transport relationships. In agreement with the experi-
mental observations, they show, in particular, that the
electric conduction strongly depends on the molecular
conformation? 61823 and the precise geometry in the
single-molecule junctions.?4 23

In our recent studies,®? we have explored the con-
duction properties of biphenyl-dithiol (BPDT) molecules
bound to Au electrodes. For these molecules, named here
MO-M7 and displayed in Fig. 1, the molecular conjuga-
tion is gradually varied by the use of alkyl chains and

Figure 1: Chemical structure of the investigated molecules.
“S” is the sulfur atom, and “R” represents the acetyl group for
the synthesized form of the molecules, a hydrogen atom after
the in-situ deprotection, or the Au electrode for the transport
measurements.



methyl side groups. In this follow-up paper, we present
a more detailed theoretical analysis of their transport
properties based on DFT calculations. We study an ex-
tended, systematic set of contact geometries and place
special emphasis on transport for perpendicular ring ori-
entations. The conduction mechanisms are revealed by
means of a tight-binding model (TBM),2%3° the more
frequently used Lorentz model (LM),3! and the eigen-
channel decomposition of the conductance.?> The TBM
accounts only for the 7 orbitals of the BPDTs, which are
typically the most relevant electronic states for the charge
transport through such conjugated organic molecules. By
fitting the transmission curves computed within DFT to
the TBM expressions, effective parameters for the elec-
tronic structure of the 7 electron system are extracted.
The complexity of the TBM is reduced further in the LM.
In the form applied here, it only considers the transmis-
sion resonances of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO), which are both assumed to be of a Lorentzian
form. Finally, the eigenchannel decomposition of the
conductance, based on the DFT results, allows to study
the validity of these simplified models, and transmission
eigenchannel wavefunctions offer an intuitive visual inter-
pretation of the complicated numerical results. Our anal-
ysis suggests that the coordination site (“top”, “bridge”, or
“hollow”) of the anchoring sulfur atom at the Au surface
plays a decisive role in conduction through the molecular
junction.

The paper is organized as follows. In Sec. II we briefly
summarize key experimental findings.>?° Technical as-
pects of the DFT and transport calculations are dis-
cussed in Sec. III. Studies of the dependence of junc-
tion conductance on the torsion angle and the substrate-
adsorbate coordination geometry are presented and an-
alyzed in Sec. IV. The main text ends with a summary
and conclusions in Sec. V. The appendices contain de-
tails on the methods used to analyze the DFT results in
Sec. IV. Thus, in Appendix A we explain our scheme to
construct transmission eigenchannel wavefunctions with-
out the need to resort to Lowdin transformations when
nonorthogonal, local basis sets are used in the DFT cal-
culations. Finally, Appendix B discusses the relation be-
tween the TBM and the LM.

II. EXPERIMENTS

We synthesized the BPDT molecules MO0-M7 of
Fig. 1 with acetyl-protected terminal thiol groups,
i.e. R=COCHS3.29:33 35 The torsion angle ¢ between the
phenyl rings is gradually varied by introduction of alkyl
side chains of variable length or methyl groups.®2° This
leaves the length of the molecule unchanged. The torsion
angles were determined by an X-ray structure analysis of
single crystals formed from each of these compounds, ex-
cept for MO.

This systematic set of molecules exhibits several re-

markable features in single-molecule transport measure-
ments, which we examine further below. First, stable
junctions can be formed with gold leads by the termi-
nal sulfur atoms after deprotection. Second, the confor-
mation of the biphenyls is efficiently locked by the alkyl
chains and the steric hindrance of the methyl side groups.
Variations of torsion angles are hence expected to be
low.19:36:37 Third, strongly electron-donating or electron-
withdrawing side groups are avoided, which have been
demonstrated to influence noticeably the single-molecule
transport.38

We studied the conductance of single-molecule junc-
tions by means of a scanning-tunneling-microscopy-
break-junction method (see Ref. 5). The experiments
were carried out at a solid liquid interface under am-
bient conditions in a solution of 1,3,5-trimethylbenzene
and tetrahydrofuran at a mixing ratio of 4:1, contain-
ing 0.15 mM of the respective BPDT derivatives. The
substrate was a flame-annealed, atomically flat Au (111)
single crystal. The gold tip was electrochemically etched,
revealing a sharp apex, capable of molecular resolu-
tion imaging. We recorded several thousands of cur-
rent—distance traces representing the breaking of gold-
substrate/molecule/gold-tip junctions. The statistical
analysis of these traces led to conductance histograms,
as illustrated for M7 in the inset of Fig. 2. Further de-
tails of the experimental conditions and data analysis
have been presented in Refs. 5,17. The most probable or
“typical” molecular junction conductance is determined
as an average of the peak values in the conductance his-
tograms, measured at three different bias voltages (see
Fig. 2, inset).50

When we plot this typical conductance as a func-
tion of the torsion angle on a linear scale, we find a
G = acos? ¢ dependence with a = 2.49 - 107G, as ex-
pected for off-resonant 7-dominated charge transport.®!?
Here, Gy = 2¢2/h is the conductance quantum. Fig. 2
shows a semi-logarithmic plot of G vs. ¢. The graph re-
veals several distinct features. The conductance of M1 is
lower than expected from the general trend. We observed
a similar exceptional behavior of M1 in a recent investi-
gation of cyano-terminated molecules (i.e. S is replaced
by CN in Fig. 1), showing, however, a higher value than
expected, and these irregularities are currently of an un-
clear origin. On the other hand, there are deviations from
the cos? ¢ law for the larger torsion angles for molecules
M5, M6, and M7. While the measured conductance of
M5 is too low, those of M6 and M7 with ¢ 2 80° is above
the cos? ¢ curve. A simple 7-orbital model?°30 looses
its validity for large torsion angles, and any other than
m- couplings prevent the complete suppression of trans-
port. We show below that the residual couplings are of
m-0 type. Given some uncertainties with respect to the
torsion angles for M5 and M6 as discussed below (see
Sec. IV A), the measurement point for M7 is the clearest
evidence of such a residual conductance for nearly per-
pendicular ring orientations. Note also the conductance
histograms in the inset of Fig. 2, which clearly indicate
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Figure 2: (Color online) Dependence of the experimental con-
ductance G (points) on the torsion angle ¢ for MO-M7 with
¢ determined from X-ray structures. The solid line repre-
sents a fit to G = acos® p with a = 2.49 - 107*Gy. The in-
set shows conductance histograms for M7, obtained at three
different bias voltages. The typical single-molecule conduc-
tance (corresponding to a point in the main panel) is ob-
tained as the average of the peak positions of the fitted log-
normal distributions at the three different biases, and error
bars are determined from the peak variations. For M7 this
yields G = (9 £2) - 107%Gy.

a non-vanishing typical conductance value for M7.

We observe that the conductance histograms, such
as those shown in the inset of Fig. 2, are asymmet-
ric with a long tail towards higher conductance val-
ues. The broad tail region could be related to junc-
tions with multiple molecules, modifications in substrate-
adsorbate coordination from junction to junction, atomic
rearrangements upon stretching, local surface roughness,
or electrode-induced changes of the average torsion an-
gle due charge transfer and geometric constraints. In
contrast to results for biphenyl-diamines,* we do not ob-
serve clear correlations between the full-widths-at-half-
maximum of the conductance peaks and the expected
differences in torsion-angle-related energy barriers of the
various BPDTs studied.®¥ If a substantial part of the
experimental conductance scatter would be due to the
variation of the torsion angle of the biphenyl core, then
MO with a low energy barrier for ring rotation of about
0.1 eV'Y should exhibit a particularly broad conductance
distribution. However, we see no evidence to support this
hypothesis. In agreement with conclusions from other
works?® we propose that the use of thiol anchoring groups
leads to the variation of the single-molecule conductance
being dominated by changes in the metal-molecule con-
tact.

III. THEORETICAL PROCEDURES
A. Electronic structure and geometry optimization

Electronic structure calculations and geometry opti-
mizations are performed within DFT. We use the quan-
tum chemistry package TURBOMOLE 6.2.3° For all
calculations, we employ the standard basis set, def-
SV(P), which is of split-valence quality with polariza-
tion functions on all non-hydrogen atoms.*? 42 We treat
all molecules and contact geometries as open-shell sys-
tems with no unpaired electrons, and use BP86 as the
exchange-correlation functional.34% Total energies are
converged to a precision of better than 1076 a.u. and
geometry optimizations are carried out until the change
of the maximum norm of the Cartesian gradient is below
1074 a.u.

B. Charge transport calculations

We determine conduction properties within the
Landauer-Biittiker formalism.*> The energy-dependent
transmission 7(F) is expressed using standard Green’s
function techniques (see also Appendix A). The conduc-
tance at low temperatures is then given by

G = Gor(Ep) = Go Y _ mu(Er), (1)

with 7, being the transmission probability of the trans-
mission eigenchannel n.

In the calculations, we model the electrodes of a molec-
ular junction as perfect semi-infinite crystals to the left
and to the right. The molecule is connected to their sur-
face by atomically sharp metal tips. We describe this by
computing a finite “extended central cluster” (ECC), as
displayed in Fig. 3, into which large parts of the metal
electrodes are included to ensure the proper alignment of
molecular levels with respect to Ep.

Due to the locality of the Gaussian basis sets employed,
we are able to partition the ECC into three subsystems,
formed from basis states in the left (L), central (C), and
right (R) parts. The atoms in the L and R regions of
the ECC are assumed to represent that part of the semi-
infinite crystal surface which couples to C. We extract
the parameters for a description of region C' and its cou-
pling to the left and right electrode surfaces from the
electronic structure of the ECC. On the other hand, the
surface Green’s functions of the L or R electrodes are
constructed using parameters obtained from a spherical
Au cluster of several hundred atoms. This calculation
yields a Fermi energy of Ep = —5.0 eV. With these in-
gredients, we compute the transmission probability 7(E).
A more detailed description of our cluster-based density-
functional approach to quantum transport can be found
in Ref. 46.



Figure 3: (Color online) Division of the ECC into the L, C,
and R regions. A large number of gold atoms (around 120 in
L and R, respectively) is used to represent the electrodes in
the DFT calculations.

In transport experiments with single molecules, often
only the low-bias conductance, proportional to the sum
of the 7, in Eq. (1), is measured. However, also the indi-
vidual 7,, can be resolved.'*1® On the theory side, in ad-
dition to the transmission probabilities of the conduction
eigenchannels, also the projection of their wavefunction
onto the central region can be obtained from quantities
at hand in the Green’s-function formalism.3?47 In order
to construct energy-normalized transmission eigenchan-
nel wavefunctions, which can be compared to each other,
we proceed along the lines of Ref. 32. Our efficient pro-
cedure, which avoids the Lowdin transformation of Ref.
32, is presented in detail in Appendix A.

C. Contact geometries

The statistical nature of the single-molecule conduc-
tance experiments (see Sec. II) does not provide an a
priori assignment of representative junction geometries.
Therefore, we have decided to study three contact struc-
tures with different coordinations of the terminal sulfur
atoms. The procedure adopted to determine the struc-
ture of the ECC is summarized in Fig. 4.

In order to model the molecular junctions, we connect
the molecule to two Au (111) pyramids, both stemming
from the same ideal fcc Bravais lattice. We consider the
following three types: For hollow-hollow (HH) [Fig. 4(a)]
the S atoms of the molecule are bound at each side to
three Au atoms, for bridge-bridge (BB) [Fig. 4(b)] to
two Au atoms, and for top-top (TT) [Fig. 4(c)] to only a
single Au atom.

For the determination of the HH and T'T geometries,
we start from the gas-phase structure of each molecule
(with SR=H in Fig. 1), replace the terminal H atoms by
an S-Au; group (R=Auw,; in Fig. 1), and compute ground-
state geometries. For HH contacts, the Au; atoms are
removed. An Aujg cluster, resembling a Au (111) pyra-
mid with a thiolated benzene attached, is computed sep-
arately. The cluster is positioned at each side of the
BPDT such that the S atoms on top of the pyramids co-

relaxed ':fixed:

©

fixed

relaxed

fixed' relaxed "fixed

Figure 4: (Color online) Procedure used to set up the contact
geometries for (a) HH, (b) BB, and (c) TT binding, respec-
tively.

incide with the S atoms of the molecule [Fig. 4(a)]. To
obtain the TT geometries, the molecule is oriented such
that each Au; atom coincides with a tip atom of the Ausg
pyramids [Fig. 4(c)]. To determine the equilibrium struc-
ture for both HH and TT, the inner part is relaxed and
only the two outermost gold layers, consisting of 6 and
10 atoms, are kept fixed in the ideal Au fcc structure.

For the BB geometries we follow slightly different steps.
First the terminal H atoms of the gas-phase molecules
(with SR=H in Fig. 1) are replaced with S, one side is
connected to a Augg pyramid in bridge position, while
the other one is terminated with Au;. The outermost
gold layers of the pyramid are kept fixed, while the rest
is optimized. A second Auyy pyramid is finally added to
the Auj-terminated side, where the relative distances of
the binding S atom with respect to the new Auyg cluster
are chosen to be the same as for the S atom in bridge
position at the Augg-terminated side [Fig. 4(b)]. Fixing
again only the two outermost Au layers, the structure is
optimized to determine the ground-state geometry.

We note that the contact geometries do not only dif-
fer with respect to the coordination of the sulfur atoms
to the gold electrodes, but also in the stress exerted on
the molecules. As visible in Fig. 4(a), the (111) direction
is located in the ring plane of a mono-thiolated benzene
molecule on top of a Au pyramid. Since the S-S axis is
along the same direction, the BPDT molecule is expected
to adopt a minimum-energy configuration inside the HH
junction with ¢ close to its gas-phase angle. In contrast,
in the T'T geometries the biphenyl derivative bridges the



gold tip atoms, which are opposite to each other. In this
case the sulfur atoms are deflected from their equilibrium
positions, which would be located along the (111) direc-
tion on top of the pyramids [Fig. 4(c)]. In the geometry
optimizations we find that the phenyl ring planes of the
biphenyl molecules tend to align parallel to the surfaces
of the pyramids. Since this may not be possible on both
sides of the junction, some torque is exerted. Beside ef-
fects related to charge transfer, which may also be present
for the HH contacts, geometric constraints thus yield an
additional contribution to the change of the torsion an-
gle. Similar effects as for T'T are also present for the BB
contacts, since the orientations of the phenyl rings with
respect to the gold pyramids on both sides are generally
different according to our construction.

We have determined binding energies by subtracting
the total energy of the contact geometries from those
of the frozen separate parts, namely the left and right
Au clusters and the S-terminated biphenyl (without hy-
drogen on the sulfur atoms). With this procedure, we
find the following averaged binding energies for the set
of molecules: 5.9+ 0.3 ¢V (HH), 2.9+ 0.2 ¢V (BB), and
22+ 0.2 ¢V (TT). Hence, we find a trend of decreas-
ing binding energies with decreasing coordination of the
sulfur atoms to Au.

For reasons of computational feasibility, the structural
optimizations (and calculations of binding energies) are
carried out with Au pyramids consisting of 19 atoms for
HH, and 20 atoms for TT and BB, respectively. To ensure
a proper description of the Fermi-level alignment in the
transport calculations, the gold pyramids are extended
to 115 (HH) and 116 (BB, TT) atoms, as displayed in
Fig. 3. All added atoms are positioned on the ideal fcc
lattice with a lattice constant a = 0.408 nm, matching
those of the fixed layers for the smaller pyramids. No
further geometry optimization is carried out for contacts
with extended Au pyramids, and transport properties are
computed after a self-consistent, single-point DFT calcu-
lation.

IV. THEORETICAL RESULTS

In this section we discuss in detail the effect of different
contact geometries on the molecular conformation of the
BPDTs and their conduction properties.

A. Molecular Conformation

Fig. 5 shows the torsion angle between the two phenyl
rings for the molecules as determined by X-ray measure-
ments and by DFT calculations in the gas-phase as well
as in the junction geometries. We notice that gas-phase
angles (with SR=H in Fig. 1) generally coincide well
with the angles from the X-ray measurements.2%:33:34 The
discrepancy for M6 by roughly 10° has been observed
previously.® It is likely due to differences between gas-
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Figure 5: (Color online) Comparison of the torsion angle ¢
as determined from X-ray measurements and from DFT cal-
culations in the gas phase (isolated; SR=H in Fig. 1) as well
as in the molecular junctions (HH, BB, TT; see Fig. 4).

phase and crystal structures caused by the limited stabi-
lization of the conformation, when there is just a single
methyl group on each phenyl ring. Note that no X-ray
structure measurement exists for MO.

For the contacted molecules deviations of ¢ from the
gas-phase conformation are small for HH, but can be
larger for the BB and TT geometries. This is expected
from the discussion in Sec. III C. The conformation of the
alkyl-bridged BPDTs M1 to M5 is very stable. A slight
trend of increasing ¢ variations for the molecules with the
longer, configurationally more flexible alkyl chains can be
recognized, however. The torsion angles of MO and M6
result from the balance between conjugation and mod-
est steric repulsion effects due to H atoms or single CHg
groups in the ortho position with respect to the ring-
connecting carbons.!?:48:49 Therefore, their ¢ should be
rather sensitive to the geometric constraints in the con-
tacts or the charge transfer between the molecule and
the electrodes. As a result, deflections of ¢ from the gas
phase values of up to 40° occur in the calculations. In
contrast, the additional methyl side groups in M7 effi-
ciently stabilize ¢.?

B. Conductance

In Fig. 6 we present the computed conductance val-
ues as a function of the torsion angle ¢, which the
biphenyl molecules adopt in the optimized junction ge-
ometries. On the linear conductance scale we find a rea-
sonable G = acos? ¢ dependence for all binding situ-
ations with best fit coefficients®! apg = 2.3 - 1072G,,
ags = 1.2-107'Gy, art = 1.1 - 1071Gy. This behavior
is characteristic for off-resonant charge transport dom-
inated by 7-m coupling and is consistent with the ex-
perimental observations. Fig. 7 shows, for the sample
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arr = 1.1-107*Go (dash-dotted).

molecule M2, that irrespective of the coordination site,
the transport is indeed off-resonant and dominated by
the HOMO level.

The results suggest large variations in the conduction
properties for the different coordination sites of sulfur to
gold. The conductance of junctions with HH geometry is
roughly one order of magnitude lower as compared to BB
and TT, with the sequence of slopes agg < aTT ~ aBB.
Similar behavior of the conductance of dithiolated aro-
matic molecules on binding site has been reported before
by other authors.?4:25:27

For aliphatic alkane molecules, the conductance in the
bridge-bonded configuration was reported to be higher
than in the top-bonded one.'” While these findings are
compatible with our results in Fig. 6, transport through
alkanes is o-like!”%%51 and hence differs substantially
from the typical m-dominated transport through aro-
matic molecules. Beside the coordination of the an-
choring group the molecular tilt, which determines the
overlap of the delocalized 7 electrons with the electrode,
hence plays a crucial role for the conductance of aromatic
molecules.?852-54 We discuss these aspects further below.
However, we note that our contact geometries do not al-
low us to clearly separate the effects of coordination site
and tilt, since both are changed simultaneously.

Junctions of the form HB, HT etc. should also occur
in the experiments. While it would thus be desirable
for the comparison between theory and experiment to
consider a larger set of junction geometries,>?°%%6 for
practical reasons we need to work with a limited one.
Since the transport through the junctions is dominated
by the molecule, we expect no modification of the cos? ¢
law for contact structures with an asymmetric coupling
of the BPDT molecules to the gold electrodes.

With regard to absolute values, we observe that the
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Figure 7: (Color online) (a) Sketch of the m-orbital TBM

used to describe the transport through BPDT molecules. €
is the onsite energy, identical for all carbon atoms, ¢ the cou-
pling between nearest-neighbor atoms on each phenyl ring,
t’ = tcos the inter-ring coupling, and ¢ the torsion angle
realized in the particular junction geometry. The terminal
atoms of the biphenyl backbone to the left and right are in-
dexed o and w, respectively, and their couplings to the L, R
electrodes are described by the self energies X7, X%. (b-d)
Transmission as a function of energy for M2 in the different
junction geometries HH, BB, and TT. The solid line is the
DFT result, the dashed line the fit with the TBM, and the
dash-dotted line corresponds to the LM. Vertical dashed lines
indicate, in the order of increasing energy, the position of the
HOMO, the Fermi energy, and the LUMO.



calculated conductances are three (BB and TT geome-
tries) and two (HH geometry) orders of magnitude higher
than the experimental ones.>?° We attribute this over-
estimation mostly to the interpretation of Kohn-Sham
eigenvalues as approximate quasi-particle energies.®”%®
Since DFT in the generalized gradient approximation
generally underestimates the HOMO-LUMO gaps of con-
jugated organic molecules, transmission resonances are
located too close to the metal Fermi energy and molec-
ular junctions are usually too “metallic”. However, also
the experimentally measured conductances are subject to
uncertainties. Indeed, we compare our results to the “typ-
ical” experimental values, as given by the peak positions
in room-temperature conductance histograms, and these
peaks are rather broad. Variations of molecular conduc-
tance, for example due to interactions of the molecules
with the solvent and other close-by biphenyl molecules or
the influence of vibrations due to finite temperature and
current, have not been accounted for in our calculations
of static junctions in vacuum.'?48:49 The differences on a
quantitative level remain as a major challenge for future
work.

Finally, we note that our calculations do not repro-
duce the experimental deviation observed for M1.% Since
 is unchanged upon contacting (see Fig. 5), we can ex-
clude an explanation based on conformational changes,
which would decrease the degree of conjugation and lead
to reduced conductances. In spite of the slightly bent
structure due to the short CHy bridge (see Fig. 1), the
intact M1 shows the highest calculated conductance for
all coordination geometries (see Fig. 6).

C. Analysis of transmission resonances

In order to understand better the charge transport
through the BPDT single-molecule junctions, we ana-
lyze the transmission in terms of a TBM and a LM.
The physically motivated TBM describes the delocalized
m-electron system, relevant for transport away from the
perpendicular orientation of the phenyl rings. Based on
the simplified Hamiltonian,?° the transmission is deter-
mined by Eq. (Al), and the probability considers the
contributions of the individual 7 orbitals and all interfer-
ences between them. In the LM instead, the transmission
is approximated as the incoherent sum of transmission
resonances originating from individual molecular states.
The resonances are assumed to be of a Lorentz form, and
the model hence requires the determination of resonance
peak positions and their broadenings. For this propose
the Lorentzians are often fitted directly to a transmis-
sion curve.?! In order to avoid such a fitting procedure,
we derive the parameters of the LM directly from those
of the TBM. The procedure is described further below
and in Appendix B. Since the molecular frontier orbitals
in the BPDT single-molecule contacts dominate the con-
duction properties, we will concentrate on the HOMO
and LUMO resonances only.

We use the TBM of Ref. 30, which is sketched in
Fig. 7(a). The Hiickel-like, molecular Hamiltonian con-
tains three parameters, namely the onsite energy g
of each carbon atom, the hopping ¢ between nearest-
neighbor atoms on each ring, and the torsion angle ¢,
specific to the considered junction geometry. Together,
t and ¢ determine the matrix element between the ring-
connecting carbon atoms ¢ = ¢ cos ¢. For the description
of transport we make use of the wide-band approxima-
tion, according to which the retarded self energy ¥’y due
to the coupling to the electrode X = L, R is energy-
independent and determined by the line-broadening ma-
trix I'y as X% = —il'x /2 (cf. Eq. A6). We assume a sym-
metric junction I' = (I'1)aa = (TR)ww and, in line with
the nearest-neighbor coupling in the molecule, consider
the self energy to be non-vanishing only on the termi-
nal carbon atoms « and w of the biphenyl backbone [see
Fig. 7(a)]. The TBM is hence characterized by the four
parameters @, €g,t, ', where ¢ is fixed by the considered
junction geometry.

To derive the parameters of the LM directly from those
of the TBM, we solve the non-hermitian eigenvalue prob-
lem >, (H + X")kv}, = Ayv) and select the complex
eigenvalues corresponding to the HOMO and the LUMO.
In the eigenvalue equation Hjj, and (X7),x = (X7 +X7%)k
are the Hamiltonian matrix and the self-energy matrix of
the TBM, respectively, and A\, = €, + i7y,. We measure
the real part of the complex eigenvalues with respect to
the Fermi energy, introducing €y = egoyo — Er and
€r, = ecumo — Fr. Due to the symmetries of the TBM
we find for the imaginary parts ygoamo = vrvmo, and
set I' = |ygomol|- From the relation between the TBM
and the LM discussed in Appendix B [see Eq. (B2)], we
can identify T with the width of the Lorentzian transmis-
sion resonances related to the HOMO and the LUMO.
Finally, we determine the transmission for the LM via
Eq. (B2) as a sum over these two frontier orbitals only.
The LM is thus characterized by €, €, I and is specific
to a certain molecule and junction geometry, as described
by ¢, €0, t,I" in the TBM.

Using the TBM, we have fitted the transmission 7(FE)
of the well-conjugated molecules M1-M4, as determined
by the DFT calculations. Setting ¢ to the value of the
torsion angle realized in the particular junction geome-
try, we place special emphasis on a good fit in the region
of the HOMO-LUMO gap. When such a fit is too ambi-
tious due to the simplicity of the TBM, we describe well
at least the region between the HOMO and Ef, to deter-
mine effective parameters for the dominant transmission
resonance, as well as the position of the LUMO peak. In
this way, we obtain the values for €q, t,I" given in Table I.
Specific LM parameters for M2 are provided in the same
table, and DFT, TBM, and LM transmission curves for
M2 are shown in Fig. 7(b-d).

The differences between the curves of the TBM and the
LM in Fig. 7(b-d) in the region of the HOMO-LUMO gap
illustrate approximations related to the neglect of inter-
ference effects in the LM. Indeed, we find that the trans-



|« | ¢ | T |er e
HH-4.40|-2.30{0.70|-1.05|2.25 | 0.11

BB|-4.02|-1.95/1.10{-0.42|2.38|0.18
TT|-4.00(-1.90{0.96|-0.36|2.36|0.15

Table I: Parameters of the TBM €g,t,I" obtained by fitting
the DFT-based 7(E) curves for M1-M4. The parameters
eM2 M2 PM2 of the LM are those derived from the TBM
for M2. All values are given in units of eV.

mission is slightly overestimated when it is regarded as
the superposition of incoherent transmission resonances.
In the following we restrict our discussion to the parame-
ters of the LM for M2, since they are easy to interpret and
those of the generic TBM contain similar information.

The data in Table I shows very similar values of ['M2
for the different junction geometries. While the increas-
ing linewidth I'™2 when going from TT to BB is con-
sistent with the expectation of a better electronic cou-
pling for a higher coordination of the sulfur atom, also
the molecular tilt plays a role. The perpendicular ori-
entation of the BPDTs for geometry HH thus leads to a
reduced I'™2. As an important conclusion, the values of
éM? and éM? show that the HOMO is closer to Ep than
the LUMO by more than 1 eV. In addition, the reduced
conductance for HH in Fig. 6 is explained by the HOMO
level being around 0.5 eV further away from Er than for
BB and TT.

We attribute the shift of the HOMO level towards
lower energies for increasing coordination number of
the sulfur atoms to the different amounts of trans-
ferred charge at the molecule-Au interface. Indeed, both
Lowdin and electrostatic-potential-derived charges yield
a leakage of electrons from the molecule, including the S
atoms, to the Au electrodes, when going from TT over
BB to the HH geometry. Variations of the conductance
therefore mostly arise from changes in the alignment of
the HOMO level with respect to the Fermi energy of the
Au electrodes, and originate from charge redistributions,
which are sensitive to the coordination site of the sulfur
atom at the molecule-electrode interface.

D. Transmission eigenchannels

To explore further the electron transport through
BPDT molecules, especially for the situation ¢ ~ 90°
where the TBM looses its validity, we consider the eigen-
channel decomposition of the conductance and the cor-
responding wavefunctions. The results are displayed in
Figs. 8 and 9.

We observe one dominant eigenchannel, whose trans-
mission probability is decreasing gradually with increas-
ing torsion angle for geometries with ¢ < 80° (Fig. 8).
The wavefunction of this channel is formed from those
p orbitals of the C atoms, which are perpendicular to
the phenyl-ring planes (see the results for M1 and M2
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Figure 8: (Color online) Calculated conductance G and the
conductance G,, = Go7,(EFr) with n = 1,...,4 of the four
transmission eigenchannels with the highest contribution to
G for the set of BPDTs in (a) HH, (b) BB, and (¢) TT con-
figurations.

in Fig. 9). The resulting 7 orbitals, which comprise the
terminal thiol groups, hence exhibit nodes in the ring
planes. The findings agree with the expectation that for
the small torsion angles, resulting in a high degree of
conjugation, electric transport should occur via the delo-
calized m-electron system of the BPDTs.

The 7-7 coupling between the rings is suppressed for
© ~ 90°, since it varies as cos p.19:292% In this case the
molecular states become more localized on the individual
rings. The incoming Bloch waves from the leads can still



Figure 9: (Color online) Wavefunction of the dominant, left-incoming transmission eigenchannel for selected BPDT molecules
in the HH, BB, and TT geometries. The same isosurface value of the wavefunctions is used in all the plots to allow for their
comparison. However, the isosurface value has been reduced by a factor of 4 on the right phenyl ring of M7 for HH to visualize
the -0 and o-7 character of the two eigenchannel wavefunctions, which yield the same contribution to the conductance.

couple through the sulfur linker atom into the m-electron
system of one of the rings, but they are back-reflected at
the ring-connecting carbon atom. This results in a large
suppression of the transmission (Fig. 8), and becomes
manifest in a low amplitude of the wavefunction on the
second ring (see the results for M5 and M7 in Fig. 9).
In this regime, the m-o coupling, proportional to sin ¢,
dominates.???® The o character of the wavefunctions is
apparent from the absence of nodal planes in the phenyl
ring planes and the high amplitude of the eigenchannel
wavefunction on the axis which connects the neighboring
carbon atoms.

The isolated biphenyl molecules MO and M7 (SR=H in
Fig. 1) with ¢ set to 90° possess Doy symmetry. Then,
o-m and 7-o orbitals are degenerate, which should lead to
two dominant transmission eigenchannels with the same
contribution to the conductance.2%:25> However, the pres-
ence of the electrodes generally leads to a low symme-
try of the junction as a whole and may also modify the
molecular geometry. Hence, it is interesting to analyze
the degeneracy of eigenchannels in the different coordi-
nation geometries for M7 with the nearly perpendicular
gas phase torsion angle. Using the ratio of the channel
conductances G2 /G with G,, = Go7,,(EF) as a measure
for the degeneracy, we find the values given in Table II.

The data in Table IT demonstrates the general absence
of the channel degeneracy and a high sensitivity of G2 /G
to the junction geometry. Only for the HH contact geom-
etry we find a nearly perfect degeneracy of the two dom-
inant transmission eigenchannels. Consistent with this,

|HH|BB| TT
M7[0.95[0.15/1.0 - 10

Table II: Ratio G2/G1 of the highest eigenchannel contribu-
tions to the conductance for M7 in the three junction geome-
tries studied.

Fig. 9 demonstrates that their wavefunctions are indeed
of -0 and o-7 type. The degeneracy can be explained by
the fact that M7 in the HH geometry stands perpendicu-
lar to the electrodes. The torsion angle of the contacted
molecule is hence close to those in the gas phase (see Fig.
5), and the overlap of the molecular 7 orbitals with the
electrode states is such that the degeneracy of molecular
orbitals is not strongly lifted. Therefore, the transmis-
sion reflects symmetry properties of the molecule. For
the BB and TT junctions, deviations from the channel
degeneracy result from the geometric constraints set by
the electrodes, which cause ¢ in the junctions to devi-
ate from 90°, and from the asymmetric overlap of the
molecular 7 states with the electrode states to the left
and right (see also Sec. IIIC). Contact structures with
a different coordination of the sulfur atoms at the left
and right electrodes would only enhance the asymmetry
effects. Thus, our results clearly show that the reduced
symmetry of the complete junction has to be considered
for transport and not just the symmetry of the isolated
molecule alone.?"

These findings suggest that measurements of the trans-



mission eigenchannel degeneracy may serve as a sensi-
tive probe to determine the coordination geometry in
biphenyl-type single-molecule junctions. However, there
are several factors not included in our idealized treat-
ment. Thus, it would be interesting to study, how
strongly a finite bias voltage will lift an existing 7-o and
o-7 channel degeneracy by breaking of the left-right sym-
metry. Furthermore, also dynamic effects due to vibra-
tional modes and Jahn-Teller distortions should lead to
an effective splitting of the two dominant eigenchannels.
Beside these issues, it remains an experimental challenge
to determine the conduction eigenchannel transparencies
for contacts with a low transmission, since the existing
techniques, employing superconducting electrodes' or
shot noise,'® yield very low signals in such situations.

Our calculations illustrate that the alkyl chains do
not participate significantly in transport, as expected
from the large gaps between HOMO and LUMO levels of
alkanes.!” Considering the dominant transmission eigen-
channels in Fig. 9, we see that there is indeed practically
no weight of the wavefunction on the alkyl chain, even
for the short chains present in M1 and M2.

V. CONCLUSIONS

Motivated by recent experiments,”?? we have pre-

sented a detailed theoretical analysis of the charge trans-
port properties of Au-BPDT-Au single-molecule junc-
tions. The three different types of contact geometries
in our DFT-based study differed in essential aspects at
the molecule-metal interface. They were mainly the co-
ordination site of the anchoring sulfur atoms and the tilt
of the molecule with respect to the electrodes. Given the
extensive statistical analysis in the experiments, this set
of geometries is clearly very limited. Furthermore, with-
out an analysis of the junction formation process, it is
difficult to make a statement on the probability of their
occurrence. However, we hope that they can be used to
describe general trends, such as the influence of molec-
ular conformation on conductance and the variability of
transport properties with contact geometry.

We have investigated electrode-induced changes of the
molecular conformation due to charge transfer and geo-
metric constraints and find that they are rather small for
most molecules and types of junctions considered here.
Compared to the somewhat larger variations for M0 and
M6, whose ¢ is not fixed by an alkyl strap or strong steric
effects, our calculations show that the appropriate design
of the side groups can help to stabilize the torsion angle.

The transport calculations confirm a cos?¢ de-
pendence of the conductance for the well-conjugated
molecules in each type of junction geometry. This is
in accordance with the experimental observations and
is characteristic for off-resonant transport through the
m-electron system.'® For biphenyl molecules with torsion
angles close to the perpendicular orientation, however, we
observe systematic deviations in our experimental data
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from the cos? ¢ law predicted by a simplified 7-orbital
TBM. In that regime of a broken conjugation, our anal-
ysis of DFT-based transmission eigenchannel wavefunc-
tions reveals residual conductance contributions from a
pair of m-o-type conduction channels.

Finally, our calculations suggest that molecular junc-
tions with sulfur atoms bound to the “hollow” site of gold
electrodes could exhibit an order of magnitude smaller
conductance as compared to junctions with sulfur atoms
bound via “top” or “bridge” sites. Our analysis shows that
the transport is dominated by the molecular HOMO level
in all cases, and variations of the conductance arise from
changes in the alignment of that level with respect to the
Fermi energy of the Au electrodes. These changes in turn
originate from the charge transfer between the molecule
and the electrode, which is sensitive to the coordination
site of the sulfur atom.

Acknowledgments

We acknowledge fruitful discussions with A. Bagrets,
F. Evers, and V. Meded. R. Ahlrichs and M. Sierka
are thanked for providing us with TURBOMOLE. M.B.
and G.S. were supported through the DFG Center for
Functional Nanostructures (Project C3.6), the DFG
priority program 1243, and the Initial Training Net-
work “NanoCTM” (Grant No. FP7-PEOPLE-ITN-2008-
234970), F.P. through the Young Investigator Group, and
J.K.V. through the Academy of Finland. D.V. and M.M.
acknowledge funding by the Swiss National Science Foun-
dation and the Swiss National Center of Competence in
Research “Nanoscale Science”. The work of A.M. and
T.W. was financed by the Swiss National Science Foun-
dation (200021.124643, NFP62), the Initial Training Net-
work FUNMOLS, the DFG priority program 1243, and
the University of Bern.

Appendix A: Determination of transmission
eigenchannels

In this appendix, we provide further details on how
we determine the transmission eigenchannels, in particu-
lar their wavefunctions. The result is equivalent to that
of Ref. 32. However, our procedure avoids the Lowdin
orthogonalizations and uses, instead, a consistent for-
mulation in terms of nonorthogonal basis states. This
reduces the numerical effort and eliminates possible nu-
merical instabilities resulting from the forward and back-
ward Lowdin transformations. Isosurfaces of eigenchan-
nel wavefunctions employing this scheme are plotted in
Fig. 9.

To compute the charge transport, we divide the
nanocontact into a left (L), central (C), and right (R)
region (see Fig. 3) and classify the states of our lo-
cal, nonorthogonal basis |e;) accordingly. The C region
is assumed to be long enough to neglect the elements



Hir = H};L and Spp = S};L of the real and symmetric
Hamiltonian Hjj, = (e;|H|ex) and overlap Sji, = (ejler).
Here H is the Hamiltonian operator in the combined
L,C, R space.

Adopting a notation along the lines of Refs. 32,46, we
express the energy-dependent transmission as

7(E) = Tr[AL(E)LR(E)], (A1)
where we define the spectral function
Ax(E) = Goo(E)'x (E)GEo(E). (A2)

Here and below, X stands for either L or R (X = L, R).
Ax (FE) is the contribution to the full spectral density of
C from scattering states originating in lead X .32 In the
expression,

cc(B) = [(E+in) Soc — Hoo — S1(E) — ZR(E)] ™

(A3)

is the retarded Green’s function of the device (or C' re-

gion), with n > 0 an infinitesimal constant, and G =

(G%o)T is the advanced function. For G%, we need the
self energies

Y% (E) = (Hex — EScx) 9x x(E) (Hxc — ESxc) ,
(A4)

where

9% x(E) = [(E+in) Sxx — Hxx] ™" (A5)

is the retarded Green’s function of region X. The matrix

I'x(E) = —2Im [Z% (E)] (AG)
is the line-broadening matrix. Note that both matrices
Ax(F) and T'x(F) are positive-semidefinite. For nota-
tional convenience, we will henceforth suppress the en-
ergy dependence of the quantities.

In the following we use a basis-independent notation
with operators such as Aj, and I'g, which are defined by
their matrix elements in the C space. We also assume
the existence of a dual basis |e7), satisfying (e]e) = ;i
and 1 = Yjec le/){ej]. Now let (Ap)* = (7| Ap|eF)
and (Tg);x = (¢;|Trler). The matrix elements (T'g);jx
are the components of Eq. (A6). They are “covari-
ant”, since the factors H;, — ES;, in Eq. (A4) are co-
variant. The elements (Ar)’* are also just the com-
ponents of Eq. (A2). However, they are “contravari-
ant”, since the Green’s functions G¢ and Gf [see Eq.
(A3)] are defined as the inverse of covariant matrices, i.e.
S IE +in)Sie + Hypl(eF|Grelel) = 3.

Motivated by Eq. (A1) we also define the transmission
probability operator

Ty = AT (A7)
We will now show how the eigenchannel wavefunctions for
waves coming in from the left are conveniently obtained
from the right eigenvectors of 77 in the nonorthogonal
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basis by slightly reformulating the procedure presented
in Ref. 32.
Consider the eigenvalue equation
ALlXG) = Ajlx;)- (A8)
The eigenvectors |x;) of the hermitian operator Ap are
orthonormal ({x;|xx) = d;x). Using them we define the

states |x;) = 1/ %|Xj> and the corresponding dual ones
59) = /2|y (For all A; # 0) so that (%) = &

It was shown in Ref. 32 that the states |x;) are the de-
vice part of orthogonal linear combinations of energy-
normalized scattering states, describing waves coming in
from the left lead. The transmission eigenchannels |¢,,)
can be expanded as

|¢n> = Z‘)Zj>cjna (Ag)

with ¢j, = (X?|¢n). The coefficients in this expansion
may be found from the eigenvalue equation

Tl |¢n> = 7-n|¢n>-

Multiplying by (x’| on the left and using Eqgs. (A8)-(A9),
this results in®2

(A10)

2 ZWJTR\)@)CM = TnCjn.
k

(A11)

Employing the normalization condition ), cj Chl = 01,
the linear combination of Eq. (A9) preserves the en-
ergy normalization of the left-incoming states. —For

(X;|ITRIXm) = Dkl ci}:.j(l"R)klcilm the coefficients dy,, =

(€ Xm) = ;’T’r dim are determined from Aj by multi-

plying Eq. (A8) by (e;| on the left and inserting 1. This
leads to the generalized eigenvalue problem

> Sik(AL) Simdimn = An Y Sikdin,

k,l,m k

(A12)

with d,,, = <6m|Xn> and Zk,l dszkldlm = 5jm-

Putting these results together, the explicit form of the
eigenchannel wavefunction for region C' in terms of the
basis functions is obtained from

(Flén) = Z<F|ej>d~jkckn~

g,k

(A13)

Using Egs. (A3)-(A6) and (A11)-(A13) the transmission
eigenchannel wavefunction can be computed without re-
sorting to a Lowdin transformation.

We note that the eigenvalues 7, of 71 in Eq. (A10) are
real, since I'g is a hermitian operator [see Eq. (A11)].
It is also easy to show that they agree with the eigen-
values of more symmetric, hermitian transmission oper-
ators of the form T, = f#if. Given |¢,) and 7, from



Eq. (A10) and assuming, e.g., = /TgG"/TL, the states
|91} = VT r|¢y) are eigenstates of Th with the eigenval-
ues 7/ = 7,. Furthermore, it is easy to prove* that the
eigenvalues satisfy 0 < 7,, < 1, as expected for transmis-

sion probabilities.

Appendix B: Relation between the tight-binding and
Lorentz model

The LM is frequently used to describe the transmis-
sion in the field of molecular electronics. Typically, a
Lorentzian function is fitted to the resonance dominating
the transmission at the Fermi energy. Here, we discuss,
in which situation the LM coincides with the TBM.

‘We consider the non-hermitian eigenvalue problem
(H 4+ X7)|pw) = Aplp) with A, = €, + iy, the symmet-
ric and hermitian Hamilton operator H, and the Sym-
metric, but non-hermitian retarded self-energy operator
3" = X7 + X% composed of contributions from the L
and R electrodes. By (fi] we denote the left eigenstate
with the same eigenvalue )\, as the corresponding right
cigenstate |u), i.e. (i|(H + X7) = M\ (ji|. The C re-
gion is assumed to be identical to the molecule in the
TBM [see Fig. 7(a)]. Using the spectral decomposition
of the Green’s function in the expression for the energy-
dependent transmission 7(E) [see Egs. (A1) and (A2)],
we obtain

B (T L) (7|1 R| )
T(E)=Y (E— €, — i) (E — e, +iv)

v

(B1)

where the sum is over all those eigenstates |u) of the
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biphenyl which obtain a finite linewidth v, # 0 by the
coupling to the electrodes and which hence contribute to
the transport.

Let us now make the wide-band approximation
and consider the energy-independent expression X" =
—i(T'L+T r)/2 to be a small perturbation. Within lowest-
order perturbation theory we obtain A, = 62 + iy, with
H|ul) = enlu’) and 7, = (107 | 0. Additionally, we
assume a symmetric coupling (I'p)aa = CR)ww = T,
where the indices a, w refer to those atoms of the biphenyl
backbone which are closest to the L, R electrodes [see
Fig. 7(a)] and where local basis states are understood to
be orthogonal in the spirit of the Hiickel approximation.
By exploiting the inversion symmetry of the TBM, it fol-
lows that 7, = (u°|Tx|u®) since M? =1, MHM = H,
and MT';, M = T'p with the operator M = M describing
the inversion of the molecule.

The perturbation theory is valid in the regime I' < ¢,
where t determines the separation between the resonance
energies €, relevant for transport. When they are well
separated, the largest contributions to the transmission
in Eq. (B1) arise when p = v, since cross-terms are sup-
pressed by a large off-resonant denominator. In this case
the transmission is well represented as the sum of inco-
herent Lorentz resonances

2
T(E) = Z;; (lzv_ez';g_i_%%ﬂ (B2)

and the TBM simplifies to the LM.
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