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We discuss the characterization and stability of the Hagdrase in integer spin chains on the basis of simple,
physical arguments. We find that an oddaldane phase is a topologically non-trivial phase whigiridected
by any one of the following three global symmetries: (i) thieediral group ofr-rotations about, y andz axes;
(i) time-reversal symmetnf“¥>* — —S%¥2: (jii) link inversion symmetry (reflection about a bond cent
consistently with previous results [Phys. Rev.8B 064439 (2010)]. On the other hand, an evieitaldane
phase is not topologically protected (i.e., it is indistifrom a trivial, site-factorizable phase). We show some
numerical evidence that supports these claims, using emexamples.

PACS numbers:

I. INTRODUCTION an integer spirt

Huar = ngj S, 1)
States of matter can be classified into different phases, J

Which are often distinguished by (Iog:al) orde_r parametersy pere s - 0, has a nonzero excitation gap and exponentially
Identification of phases generally requires certain symeset decaying spin correlation functions, while the same moslel i

qu example, the ordere_d _and the _disordered phases of tr&;‘?atpless and has power-law correlations for a half-intéger
Ising model are sharply distinct only in the presence ofZhe Following Haldane’s prediction, Affleck, Kennedy, Lieb,

symmetry of spin reversal. In the "%‘bsence ofthe symmeey, thand Tasaki (AKLT) presented model Hamiltonians, for which
two phases can pe_connected V\."thOUt a p_hase transition ,arfﬁle ground state can be obtained exatfiyn addition to pro-
thus cannot be distinguished uniquely. This phase tramsiti

q h breaki 7 viding a tractable model in which the Haldane conjecture can
corresponds to the spontaneous breaxing o Jleymm_etry_. be tested, the ground state (AKLT state) was later found-o ex
Therefore, it is natural that thé, symmetry is required in this

I he ordered oh lI-defined oh hibit several unexpected properties, such as a nonlocaigst
example to protect the ordered phase as a well-defined phag@ye» and edge states, which extend also to states witkin th
distinct from the disordered phase.

same phase.
On the other hand, despite the relative simplicity of quan-

Even if there is no symmetry which distinguishes the two . . _ )
y y g tum spin chains and intensive study over several decades, th

phases, they can still be separated by a transition. Howidaverf K for d ibing thei logical .
is generically first order and terminates at a critical enith{po ramework for describing their topological properties st
Thus, as in the case of liquid/gas phases, there is a smabith pe[ecemly been und_erstoc_)d. In f‘.%t’ It was onI_y recently that
which connects the two phases, without any phase transitiorlihe Importance of inversion (parity) symmetry in the H"".Han
In this sense, in the absence of protection due to symmetr hase was pointed out. Based on a field-theory (bosoniation

h i it till exist but thev d ¢ ot inalysis of a related boson model, Bo;rtgalz p_ointed out in
gssgr?ti;igséilsotinnsc(t:?)?lgs:esexs utthey do not genedsifyne Ref. 6 that theS = 1 Haldane phase is distinct from other

phases only in the presence of inversion symmetry. Next,

On the other hand, even when there is no local order pabased on the Tensor Entanglement Filtering Renormalizatio
rameter or spontaneous breaking of a global symmetry, wé&roup (TEFR) approach, Gu and Wen stated thatShe 1
sometimes find distinct quantum phases separated by quantuf@ldane phase is protected by tbembinationof the trans-
phase transitions. We then attribute the distinction to @ no lation, complex conjugation (‘time reversal”), and invers
trivial or “topological phase”. While there are several kmo ~ Symmetry® Gu and Wen pointed out that the combined sym-
characterizations of topological phases, the completernd Metry above protects the topological phase, even when the ex
standing in general dimensions is still lacking. The relate isting characterizations (edge states and string orderjodo
question, what kind of symmetry, if any, is required to poote work. It turns out that the symmetry protection can be un-
the topological phase, is much less obvious compared to thderstood in terms of “fractionalization” of symmetry opera
case of a standard spontaneous symmetry breaking. In th®ns at the edges and is reflected by non-trivial degenera-

article, we will consider one-dimensional systems to disiab ~ Cies in the entanglement spectrdf. The fractionalization
some intuition about this question. is described precisely using projective representatidriseo

symmetry group. This approach was then generalized to any
One of the simplest examples of a topological phase is thgapped 1D system and shown to give a complete procedure in
Haldane phase in quantum spin chaidsAs predicted by one dimension for identifying the topological phase of such
Haldane, the Heisenberg antiferromagnetic (HAF) chaih wit systemg1~13Several 1D models in which symmetry fraction-



alization plays an important role have been studied regentl Tasaki (AKLT) state. TheS = 1 AKLT state exhibits the
see for example Ref. 14-17. following two remarkable propertiegl) FreeS = % degree

In this paper, we illustrate the behavior of topological or- of freedom appearing at each end of the chain in the case of
der in one dimension by reexamining spin systems and thepen boundary conditions. Namely, the ground state of the
robustness of their topological phases on the basis of simpl AKLT Hamiltonian is 4-fold degenerate due to thé edge
physical arguments and discuss a number of concrete exaratates, although the ground state is unique in the case ief per
ples. We say that the topological phase around the AKLT statedic boundary conditiong]1) A nonlocal order measured by
is robust if it cannot be adiabatically connected to angtherthe string order paramefer
“topologically trivial” state, without going through a pba
transition. Here, “topologically trivial” means that thiate is 04, =
site-factorizable, namely that the state is given by a siteyh-

sor product of local states. An example of such a topololgical These two features turned out to be characteristics of ngt on

rivial state is the AKLT state, but rather of th& = 1 “Haldane phase”,

D) =0 ...|0)z, ) which includes the ground states of the AKLT model and the
S = 1 antiferromagnetic Heisenberg chain. In fact, the degen-

which is the ground state of a chain with single-ion anigoyro eracy due to the edge states is split for a generic open chain

D(S#)? in the limit of D — +oc. (For a precise mathemat- in the Haldane phase, with a finite length. However, thesplit

ical definition of the robustness of the topological phases i ting is exponentially small for longer chains, resultingdin

one dimension, see also Refs. 11,12.) We show that for odtld quasi-degenerate ground states below the Haldan&gap.

values of the spirf, our results are consistent with those of Numerical calculations have shown that the string order pa-

Refs. 6,9: the AKLT state is robust as longaasy oneof the ~ rameter is also nonvanishing within the Haldane phase.

three symmetries mentioned in the abstraetdtation of the Kennedy and Tasal unified these two apparently unre-

spin aboutz, y, z axes, time reversal or inversion symmetry) lated features as consequences of hidden symmetry breaking

is respected. Surprisingly, these arguments suggestttnat o This concept is introduced as follows. We introduce a nonlo-

systems, such as even-spin AKLT states ané 1 spin lad- ~ cal unitary transformation defined by (see also Ref. 20)

ders with an even number of legs, aret topologically pro-

tected, even if all the symmetries are respected. In péaticu Ukt = H exp (z‘ijS,f). 4)

the S = 2 AKLT phase is indistinct from a trivial state, even j<k

if full SU (2) symmetry is maintained. We show here howto .

transform such states into one another, giving numeridal ev This transforms spin operators as

dence that there are no phase transitions along the way.

This paper is organized as follows: We begin by discussing UxtS; Ut = S5 exp (im Z Si)s (%)
the stability of the Haldane phase owing to a hidden discrete k>

symmetry in Section Il, with a clarification of the required  ,; — gv;-1 _ : §7)gY ; I 6
symmetry. We then generalize the Haldane phase in Sec- K12y Pxer = 5P (WZ £)Sj exp (WZ i, ©

lim  (S¢e™ Xisick ST Ge), (3)

|j—k|—o0

tion Ill to different symmetries and discuss the concept of b k=
symmetry protected topological phases. In Section IV we UktS Uit = exp (iWZS}j)Sj. (7
demonstrate concrete examples in the form of matrix-produc k<j

states and present numerical simulations to support arsd ill ] )
trate our arguments. In particular, we construct expliathg ~ Although these are nonlocal operators with “strings”, the
which smoothly connect th€ = 2 AKLT state to various Heisenberg chain Hamiltonian (1) is transformed into a
site-factorizable states, demonstrating that the fortatess ~ Hamiltonian with only short-range interactions:
trivial. Our results are summarized in Section V. ~
=% (S explinS;)S5
J

Il. HALDANE PHASE IN THE PRESENCE OF GLOBAL Y e (s y
D, SYMMETRY + 87 exp(im(S] + S711))S7 14

+ S5 exp(inS5)S5 ). 8)
First let us briefly discuss the hidden order and edge states

in the context of a hidde&, x Z; symmetry. Although this This is thanks to a cancellation of string factors simildr (a

concept had been developed in early 1990’s, the symmetry dhough not identical) to that in Jordan-Wigner transforiorat

the Hamiltonian required for this mechanism has not been dis The transformation (4) can be applied to a wide class of

cussed explicitly. Here we also clarify the required symmmet spin chain Hamiltonians. For the transformation to be use-

which could be understood as one of the symmetries protecful, the transformed Hamiltonian must have only short-eng

ing the Haldane phase as a distinct, topological phase. interactions. We point out that the sufficient and necessary
It is believed that the ground state of the standard Heiseneondition the Hamiltonian must satisfy for the transformed

berg chain belongs to the Haldane phase, which also inHamiltonian to have local interactions is that it has to have

cludes the translationally invariant Affleck-Kennedy+hie a global discrete symmetry with respect to rotation by angle
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S. = 0, we get a chain with a perfect antiferromagnetic or-
>< >< >< >< der,|... — 1,41, —1,+1,....).3% Thus the first non-zero spin

must be+1 in each term and from then on the non-zétds

alternate betweetrt1. WhenUxkr is applied, it flips the di-

+ > +<— + > *4— rection of every second nonzero spin, so that all the sitds en
up in either theS, = +1) or |S, = 0) state. When the-
component of the spi%—at the right end is also fixed, one can

FIG. 1: Four symmetry broken states (upper panel) which are o likewise argue that each site is in the, = +1) state or the
tained by applying the non-local transformatibin - to the degen-  |S: = 0) state (working in theS, basis instead). But these
erate edge states (lower panel). Note that the arrows ingperu two conditions together uniquely determine the state ofyeve
panel represent the spin polarization in the bulk, whilehia fower  site. Note that the only spinor that has orly and0 states

panel they represent the spin polarization at the edges. in both the x and z basis %Lsm — 0+ \/glsz —0) =

i (\/§|Sz =1)+ \/g|Sz = O>). So after applying theon-
local transformatior/ 7, the wave function is just a product
state with this state on every site, spontaneously breahimg
symmetry all along the chain.

Similar arguments can be applied to relate any of the four
polarizations of the edge states to the four broken symmetry
states after the non-local transformation, as shown in Eig.

= aboutz, y, andz axes (i.e.][; exp(iwS7), and similar for

y and z). This symmetry group, sometimes called the dihe

dral group B, is equivalent taZ, x Zs, since the product of

m-rotations about the andz axes gives ther-rotation about

they axis. We note that, although global, Invariant mod-

els and time-reversal invariant ones have a large ovetiap, t

are not identical. For ‘?Xa.mp'e' the anisotropic pertudsai A closely related analysis from a different perspective reas

> (87871 + 8757, 5) is time-reversal invariant but not,D cently discussed in Ref. 21.

invariant. On the other hand;, S757, , S5, is Dy invariant The stability of the Haldane phase f6r> 1 has been less

but not time-reversal invariant. understood. Once the transformation is written as Eq. (4), i
The transformecHamiltonian UxtHUy has the same can be readily applied to any integérand the transformation

Zy x Zy symmetry as the original one. This is becauserthe of the Hamiltonian and the string order parameter remain the

rotations around:, y, andz transform into themselves under same. However, it turns out that the hiddénx Z symmetry

Ukt (€.9.,¢™S7 commutes with each of the factar§s25:) s spontaneously broken in the translationally invariakit &

However, as the states of the spins are transformed in a-nonlstate only ifS is odd, but unbroken if is even?® This can also

cal way, a state without any broken global symmetry may bébe seen by counting the degeneracy of the edge states. There-

transformed into a state with long-range ferromagnetiegrd fore, with regard to the hidde#, x Z, symmetry, the even-

that is, there may bkiddensymmetry breaking. S AKLT states are indistinguishable from a trivial disordére
The symmetry breaking in the transformed system is an instate. However, the physical meaning of this finding was not

dication of edge states in the original Hamiltonian. Not&tth well understood; it was unclear if the evéhAKLT states are

edge states on a finite chain can breakZhex Z, symme-  really indistinguishable from a trivial state, or whethkey

try. Although this symmetry breaking occurs only at the endsare distinct from a trivial state by another, unknown cid@er

the non-local transformation spreads this symmetry brepki

through the entire bulk. In fact, thé, x Z, symmetry is bro-

ken completely in the bulk, implying a 4-fold degenerate set I11. STABILITY OF THE HALDANE PHASE
of ground states with magnetization along diagonal dioasti
as illustrated in Fig. 1. The andz components of the mag-  |n the following, we discuss different ways to understand

ngtization in the bulk after the non-local transformatiement- topo|ogica| phases in one-dimensional quantum Spin Sﬁtem
mine thez component of the spig-at the left end and the  without referring to the hidde®, x Z, symmetry. We find
x-component of the spin at the right end in the original systhat the odds and evens AKLT state differ in the robustness

tem, respectively. The string order of the original systBl  of the topological phase, as was suggested, in retrospect, b
also simple to understand in terms of the hidden breaking ofhe hiddenz, x Z, symmetry analysis.

the symmetry: it is the result of applying the Kennedy-Tasak
transformation (4) to the usual ferromagnetic order patame

To understand the correspondence between the edge stateg. Characterization by edge statesin the presence ot Time
and the broken symmetry in the bulk, it is easiest to consider reversal symmetry
the AKLT state. The four degenerate states which transform
into the four symmetry-broken states are defined by giviegth | et us now discuss the topological phase, from the view-
= component of the free spij-at the left end and the com-  point of “edge physics”. Here we apply the idea similar to
ponent of the spin; at the right end definite values. To see what was used to characterize the quantum spin Hall insula-
this, start by fixing just the spin at the left end49er = +§. tor?? As long as the gap does not close in the bulk, we may
Then expand this state in terms $f eigenstates. The string focus on the nearly degenerate ground states corresponding
order is perfect in the AKLT state, meaning that in everyto the edge states. The spthAKLT state with open bound-
component of the wave function, if we erase the sites withary conditions has a spifi/2 edge degree of freedom at each
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1 7|(4,5)) = —|(4,5)). The other valence bonds are flipped
2 7 as well, for exampl€|(3,4)) = —|(5,6)). However, being
paired withZ|(5,6)) = —|(3,4)), we findZ|(3,4))|(5,6)) =
[(3,4))|(5,6)). The symmetrization operation in the AKLT
construction is also invariant und&r Thus we obtain

Il‘I/AKLT> L7 = |\IJAKLT> . (9)

4 5 (For a related discussion in a different setting, see Réf. 23
The same argument can be easily applied to higher-spin AKLT
FIG. 2: (Color online) Thes' = 1 AKLT state onaringwithl = 7 states: an odd: AKLT state is odd under inversion on a ring
sites. '.I'he. connecting lines represent spisinglets. We consider with any odd lengthZ, because there are an odd number of
the lattice inversion about the vertical line. valence bonds on every link. Even if we introduce pertur-
bations to the odd> AKLT model, the ground state on the
odd length ring should still be odd under inversion, as long
as the Hamiltonian respects inversion symmetry and the gap
oes not close. On the other hand, a trivial state given by a
ensor product of local states, such|@ defined in eq. 2,
is even undef. Therefore we conclude that there must be a
1ase transition between the oddAKLT state and the trivial
%> state, if inversion symmetry is kept. That is, the o#id-
sH aldane phase is a topological phase protected just by-inver
sion symmetry. We emphasize that the topological phase is
characterized by the odd parity under inversion mottby a
spontaneous symmetry breaking.
In contrast, an eves-AKLT state is even under inversion,
regardless of the length of the chain because there is an even
umber of valence bonds on the links. This argument suggests
hat inversion does not protect the phase represented by the
evensS AKLT state. Together with the previous section, this
supports our conjecture that the ev€MKLT state is, in fact,
indistinct from a trivial state.

end, and thugS + 1)-fold degeneracy at each end. In gen-
eral, if we introduce a perturbation to the Hamiltonian, the
edge degeneracy is expected to be lifted. However, if the ed
spin is half-integer, namely for the odglAKLT state, as long
as the Hamiltonian has time-reversal symmetry, the twd-fol
Kramers degeneracy at each edge should remain. As a con
guence, the odd&-AKLT state must be separated from a trivial
disordered state by a quantum phase transition. In thigsen
the topological phase in the odfJAKLT state is robust and
protected by time-reversal symmetry.

On the other hand, for the evéhAKLT state, the edge spin
is an integer. Thus the degeneracy is lifted by a genericpert
bation even if the Hamiltonian is invariant under time resaty
because there is no Kramers degeneracy. If the Hamiltoni
is SU(2) invariant, the lowest + 1 degeneracy related to the
edge should remain up to a finite strength of the perturbation
However, as a function of the perturbation strength, tread-i
ways a possibility that & = 0 state separates from the bulk,
crosses th&'+1 multiplet and becomes the ground state. Note
that in such a process, the bulk gap need not close anywhere.
Thus, it seems that an evéhAKLT state is, strictly speak-
ing, indistinct from a trivial state, regardless of the presence
of time reversal or S2) symmetries. We demonstrate this
explicitly in Sec. IV, where we show that the = 2 AKLT
state can be smoothly connected to a fully dimerized state.

C. Argument based on the Matrix-Product state
representation

The above heuristic argument, based on the global proper-
ties of the ground state under inversion, requires the ng t
have an odd length. However, this is not essential, as can be
seen in the following more general formulatfdfl based on
matrix product staté42°(MPS). For completeness, we repeat
the argument of Ref. 9 below. Let us consider an inversion-
. , symmetric system. Although our analysis does not depend

We will now argue that the odd-Haldane phase is also gggentially on translation symmetry, here we also assume a
protected just by link inversion symmetry (lattice inversi  angjation invariant MPS as in Eq. (10), for the sake of sim-

a_bout the cer)ter o.f a bond). To illustrate the point, it isvemn plicity. On a chain of lengtt with periodic boundary condi-
nient to consider first an AKLT state on a chainoafdlength  tions a translation invariant MPS is given by

L with periodic boundary conditions. Although the system is
frustrated for odd., the ground state of the AKLT model is _
still unique, reflecting the short-range spin correlatioRsr ) = Z (A - Ay ) I, o), (10)
example, we discuss the = 1 AKLT state forL = 7 as
shown in Fig. 2, and inversiah about the vertical line. where4,, arey x x matrices, andin;) represents a local state
Letus recaII the original AKLT construction, starting from at site;j. We shall refer to the matrix dimensignas the an-
two S = }'s per site, and denote a valence bond (sin-cilla dimension. We assume that the ground stétg fulfills
glet of two S = 3's) between siteg and k by [(j,k)).  the following conditionsi(a) |¥,) can be well approximated
The valence bon¢l(j, k)) is antisymmetric under inversion, by the MPS Eq. (10) with finite dimensional matricds,,
namely the exchange of and k. Thus, under inversion (b) The matricesd,,, evolve continuously as we change a pa-
Z, the valence bond(4,5)) crossing the line changes sign: rameter of the Hamiltonian, ar(d) |¥) is not a “Cat state,”

B. Inversion symmetry of aring

mi,...,mp,
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i.e. a superposition of two states that are not connected biyansfer matrixi” which implies a quantum phase transition,
any local operator (in analogy with Schrodinger’s cat oy an as discussed in detail in Ref. 31.

superpqsition of two macroscopically different st_at’és]‘he Inthe S = 1 AKLT state, we can represent the state by
correlation length of an MPS state can be determined fromthg \1ps \withr'. = o /\/2. Hereo, (a = .y, 2) are Pauli

eigenvalue spectrum of the completely positive map acting Omatrices and we use the time-reversal invariant spin basis

L .
the space of x x matrice$ ) = (1)~ [-0), ) = 2= (1) +]-1), [2) = |0).
Under reflection of the system, the matrices transform as
— T !
£(X) _ZA’”XAW (11) oo — ol = —oy0,0,. ThereforeUr = o, andf; =

¢z = . We also finddz = ¢z = = for other oddS while

This map can be interpreted as a transfer matrix which defz = ¢z = 0 for eve:r;S. The statgD), on the other hand,
termines correlation functions. The largest eigenvalug of transformssimply ak;, = I',, (since thd,, are scalars) and
for a normalized MPS is always equal to one. The secondustz = ¢z = 0. Consequently, the system has to undergo

largest (in terms of absolute value) eigenvalueletermines @ phase transition when going from the oSAKLT state to
the largest correlation length the trivial statd D), in agreement with the heuristic argument

of Sec. Il B.
1

§=—— (12)

In |eo]
for a state that is not a cat state.

It is useful to write the matriced,,, in a canonical form IV. TRIVIALITY OF THE EVEN S AKLT STATE
asA,, = I',,A, whereA is a diagonal matrix containing the

square roots of the eigenvalues of the reduced densityxmatri ) ) )
The matriced’,,, andA are then chosen to satigfy?® We now complete the discussion by demonstrating that, on
the other hand, the eveSiAKLT state is in the same phase as
oA 2t trivial states when a number of different symmetries are im-
ZF’”A L' = Land ZFWA Lo =1 (13) posed. We begin by describing a state, formed by an MPS
" " similar to the one proposed in Ref. 13, which shows that the
This implies that the transfer matrix Eq. (11) has an eigenve S = 2 AKLT state is smoothly connectable to the trivial state
tor 1 with eigenvalue\ = 1, and if condition (c) is fulfilled, ~Wwith S* = 0 on every site. In this example, translation, time-
all other eigenvalues have smaller magnitutfes. reversal, and inversion symmetries are maintained through
A reflection corresponds to transposing all matriEgs—  out the path, but S{2) symmetry is broken. We continue by
I'" . This transformation preserves the canonical form of thestudying an S2) preserving example, in which we interpo-
MPS. Since we assume the state to be invariant under invelate smoothly from the = 2 AKLT state to a fully dimerized
sion, we know from Refs. [9,29] that there exists a unifdgy ~ State. The same construction fails for= 1, suggesting that

with [Uz, A] = 0 such that in this case the topological phase is protected in the poesen
of sufficient symmetry, in agreements with our conclusiat th
r% L U%FmUI- (14) the odd-spin and even-spin states are distinct phasedlyfina
we analyze a spin ladder example, in which an interpolation
By iterating this relation twice, we arrive af,, = fromanS = 2 AKLT state to a trivial state without breaking

itz (UIU;)T I',,U;U;. Combining this relation with any symmetry is possible.

Eq. (13), we obtairy", Tl AULU;AT,, = *zU,U;. le.,

the matrixU, U7 is an eigenvector of the transfer matrix with

an eigenvalue®?z. Since we assume that all eigenvectors

with unimodular eigenvalues are proportionalltwith eigen- 1. FromS = 2 AKLT to largeD limit
value\ = 1, 67 is either 0 orr andU,U; = e "*Z1, or

Uf = e"%zUz. Iterating the latter relation twice, we find | ot ys present an explicit interpolation between the ttivia
that ¢z can be eithed or «, i.e., Uz is either symmetric or state|D) (Eq. 2) and an eves-AKLT state, in terms of MPS.
antisymmetric. Eq. (14) implies that, fbr,, to evolve contin-  \yie focus on theS — 2 case as the simplest example. We
uously,Uz has to be continuous (up to a phase) and thereforgyke the standard?-basis so thatn, — —2,-1,0,1,2 can
must remain symmetric or antisymmetric. Therefore, thg onl e igentified with the eigenvalue &,_z_ We takey = 3 as

way in which¢z andfz can change is through a phase transi-for the § — 2 AKLT state and choose the matricds, as a
tion, in which one of the assumptions above break down. Fof,nction of a parameter

example, second order phase transitions through conformal

critical points are characterized by a diverging entangleim

entropy and thus violate (&Y.A violation of (b) corresponds 000

to a first order (discontinuous) phase transition. Violasio Ap(t) = tAYT L (1= )do| 01 0]. (15
of (c) correspond to a level crossing in the spectrum of the 000
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FIG. 3: (Color online) Eigenvalue spectrum of the transfetnm ‘ ‘ ‘
(completely positive map (11)) for the interpolating MP Siled 0'8,0 0.2 0.4 0.6 0.8 1.0
in (15). Except for the largest eigenvalue (unity), all thgeaval- (b) t

ues have absolute value smaller thaior 0 < ¢ < 1, implying finite

correlation length. Thus the trivial sta®) att = 0 and theS = 2 F|G, 4: (Color online) (a) Dimerized state of spihsinglets on every

AKLT state att = 1 are adiabatically connected without any phase second bond at= 0 and the AKLT state formed b§/2 singlets on

transition. every bond at = 1. (b) Eigenvalue spectrum of the two-site transfer
matrix along the path connecting the fully dimerized staid the

AKLT state for the spinS = 2 chain (see text for details).
Here, AMKLT is the MPS representation for tite= 2 AKLT

staté?:
JAKLT 1 \/|_O> 1 \/§|1> \/\/El2> while preserving inversion, Pand time-reversal symmetries.
Z m M) = V10 _\/6:|3| _2>> \/§| |O>1> o |O3>|1> " Thisis in sharp contrast to the odtlease.
(16)

By construction, the resulting MPS stafie(t)) coincides with
theS = 2 AKLT state att = 1, and reduces to the trivial state
|D) att = 0. |¥(t)) is not invariant under the global SU(2)
symmetry, except at = 1. On the other hand, it respects
U(1) symmetry (conservation of tot&F), translation symme-
try, global D, symmetry, time-reversal symmetry, and inver-

fsc')(:r?]zssyg;mitm'PAS‘lt?g%gljlfg)l'tisteCI;'nS Qgir'gntgfifrﬁgg%cﬁl In the particular example above we used an SU(2)-breaking
' — " pathto connectth8 = 2 AKLT state adiabatically to a trivial

oo o o ot oL S xplanedinSec. A, however o cxpets
evolution without a phase transition. On the other hand, ifeven I SU(2) symmetry is respected, an eveAKLT state

; ; can be adiabatically connected to a trivial state, if tratshal

2| = 1.occurs ata va!ue ofind <t < 1 the correlation symmetry is broken. (Note that as long as translational sym-
length dl\{erges, signalling a phase transmon.. . metry is retained, there is no path connecting the AKLT state

The eigenvalue spectrum of for the interpolating 5 gjte-factorizable one, but for a trivial reason: thered
MPS (15) can be obtained analytically as a function,afs- g factorizable state with SB) symmetry forS > 0.)
ing MATHEMATICA. (The explicit expressions are lengthy
and thus omitted here.) The analytic expressions are plot- We demonstrate this by constructing a continuous path in
ted in Fig. 3. The largest eigenvalue (without degeneracyMPS space between a&h= 2 AKLT state and a fully dimer-
is unity for all values of, as expected. Clearly, the absolute ized state. The explicit form of the MP® (¢)) used to in-
value of all the other eigenvalues are smaller thamhus the  terpolate between the dimerized state at 0 and a uniform
correlation length remains finite far < ¢ < 1 and has no AKLT state fort = 1 is given for general spif¥' in Appendix
discontinuities, implying that th& = 2 AKLT state is con- A (see Fig. 4 (a)). The stat& (¢)) is invariant under S(2)
nected adiabatically to the trivial staiP’), without crossing and inversion for any value af To show that the correla-
any quantum phase transition. Moreover, the general theoretion length remains finite throughout the path, we have diago
of Ref. 26 ensures that’(¢)) is the unique ground state of nalized numerically the transfer matrix correspondinglto)
a Hamiltonian with only short-range interactions and thisre (Eq. 14), for a range of values between= 0 and1. The
a nonvanishing excitation gap. Thus the apparent nontriviaresults for the are shown in Fig. 4 (b). As can be seen in the
structure in the eves- AKLT states is rather fragile; these figure, although the correlation length is large, it reméimige
states can be be adiabatically connected to a trivial state e forany0 <t < 1.

2. Fromthe AKLT state to a dimerized phase
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FIG. 5: (Color online) (a) Ladder geometry used for the dalcu
tion. Entanglement spectra for (I%) = % and (c)S = 1 lad-
ders. The entanglement spectrum is plotted versus the Ratie
Jrung/ (Jieg + |Jrung|) fOr Jiegg > 0. ThusR = —1 corresponds to
infinite ferromagnet coupling on the rungs aRd= 1 to infinite an-
tiferromagnet couplings. The number of dots on each lewditates

its degeneracy.

3. Spin ladders

In order to illustrate the arguments in an especially intait

way, we contrasb = % andS = 1 two-leg ladder systems.

The Hamiltonian is given by
H = Jlegz {S1,;-S1,i41 +S2,i - S24+1}

+ Jrungz Sl,i . S2,ia (17)

with the rung and leg couplingéung and Jieg, respectively.

singlet —— = Entanglement specrum

of a trivial state

triplet  m—

parameter in the Hamiltonian

X

FIG. 6: Schematic diagrams of evolution of entanglementtsaeln
the trivial phase (upper panel), the degeneracy of the loemsn-
glement level can change, for example, between unity3afwehich
is indeed the case wheR changes sign, in the = 1 two-leg lader
discussed in the text). This means that the edge stateSwithl can
appear and disappear without a bulk phase transition. Itrasinin
the Haldane phase (lower panel), the entire entanglemewctrsimn
is doubly degenerate. Thus the lowest entanglement leadisys
doubly degenerate, which implies existence of an edge. stete
edge state can be removed only via a bulk phase transitiotingin
presence of an appropriate symmetry described in the text).

doublet

Entanglement spectrum
of a Haldane state

doublet

decoupledS = 1 Heisenberg chains which are gapped. Fur-
thermore, previous Monte Carlo studiebave shown that the
correlation length remains finite along the entire path. sThu
the two limits are connected adiabatically. This is in agree
ment with the above arguments: The= 1 Heisenberg model
cannot be connected to a trivial product state whileShe 2
Heisenberg point can.

We used the infinite Time Evolving Block Decimation
(iTEBD)?’ algorithm to numerically calculate the entangle-
ment spectrum along the path connecting the two limits.
(see Fig. 5) The results are presented as a functioRl ef
Jrung/ (Jieg + | Jrungl) for Jieg > 0. In case ofS = 1, we
clearly observe the predicted two-fold degeneracy in thie Ha
dane phas@.At the critical pointR = 0, the entanglement
spectrum collapses to one point, and for posifis¢he entan-
glement spectrum has no double degeneracies any more.

In the S = 1 case, the systems remains gapped along the
entire path and no divergence occurs, in agreement with the
results of Ref. 35. Note that, in this case, the lowest eri¢ang
ment level is three-fold degenerate f8r< 0, corresponding
to an effectiveS = 1 edge state, as expected in 8n= 2
AKLT state. However, this edge degeneracy is not sufficient
to distinguish the AKLT state from the trivial (rung singlet
phase. Indeed, @ = 0, a level crossing occurs in the en-

This Hamiltonian has been studied extensively in the literatanglement spectrum, and f& > 0 the lowest entanglement

ture for bothS = 1

and S = 1 (for example, see Refs.

level is singly degenerate, and the gap in the entanglement

33-37). Here, we are interested in the case where we cospectrum increases monotonically withreaching that of the
tinuously tune the couplindyung On the rungs from negative trivial state forR — co. Such a level crossing in the entan-
to positive values while we keep the coupling on the legs conglement spectrum can occur without a bulk phase transition.
stant {Jieg = 1). In the limit of J;,ng = —o0, the system maps  In this sense, the existence of an edge state generallyndbes

to a2S Heisenberg model. [ffyng — o0, the spins form

define a phase.

rung singlets, and the ground states is a product state.eln th The difference between the two situations can be summa-
S = 1 case, the pointiung = 0 is a critical point because rized as in Fig. 6. In the Haldane phase, the entire entangle-

the systems corresponds to two decouded % Heisenberg

ment spectrum is at least doubly degenefatberefore, even

chains, each having gapless excitations. Thus the twoslimitif level crossings occur, the lowest entanglement level-is a
cannot be connected adiabatically, at least through thts pa ways doubly degenerate. This degeneracy is related to @ edg
In the S = 1 case, the poinfung = 0 corresponds to two state, in the presence of global Dr time-reversal symmetry.
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Such an edge state is robust and signals a distinct phase. tma trivial state, as we demonstrated explicitly using # [rat

the presence of time-reversal symmetry, the protectioh®ft the MPS space. A similar adiabatic connection between the

edge state could also be understood as a consequence of the= 2 AKLT state and a trivial state is suggested recently

Kramers degeneracy at the edge; all the energy levels at the the analysis of finite-lengtl¥ = 2 chains with both ex-

edge are doubly degenerate and thus the edge state persistgnge and single-ion anisotroffyEven if the full SU(2) in-

even in the presence of a level crossing at the boundary. Theariance is maintained along the path, we have demonstrated

degeneracy of the lowest entanglement level or the edge stathat an evens AKLT state is adiabatically connectable to a

can be eliminated only via a bulk phase transition (in thepre trivial dimerized state with broken translational symmetr

ence of an appropriate symmetry), such as the critical point Our analysis can be extended to more general one dimen-

R = 0 of the two-legS = % ladder. This difference between sional quantum spin systems, such as chains with bond alter-

robust and non-robust edge states is also useful in unddrsta nation, spin ladders and tubes. In the AKLT-type constaurcti

ing more complicated systems such as spin tdbes. based on valence bonds, when a “cut” (such as the vertical
As a final remark, we comment on the relation of our resultdine in Fig. 2) is crossed by an odd number of valence bonds,

to those of Anfuso and Roséf They constructed a path in the the state has a robust topological phase protected by either

parameter space of a fermionic spjrtwo-leg ladder model time-reversal or link-inversion symmetry, thanks resjvety

which adiabatically connects thfe= 1 Heisenberg point (de- to the edge Kramers degeneracy or the odd parity with respect

scribed as a Mott insulator with strong ferromagnetic iater  to link inversion. For example, the-leg S = 1 Heisenberg

tions across the rungs) with a trivial product state (a band i ladder, in the weak rung coupling limit (where each chain be-

sulator). The Hamiltonian along this path is time-reveasal ~ comes independent), is topologically distinct from a prdu

D, symmetric, in apparent contradiction with our results forstate whem is odd. The topological phase survives at a fi-

the oddS AKLT state. (Their model breaks inversion symme- nite rung coupling (persisting until the system passesuiiino

try explicitly along the path.) The reason for this discnepa  a quantum transition) provided that either time-revershhé&

is that the model of Anfuso et al. includes the possibility ofinversion is kept.

charge fluctuations; i.e., the elementary objects are nitd

spins, but mobile&s = %fermions. In that case, one cannot de-

fine uniquely the parity og on a given site; even in the Mott

insulator phase, virtual fluctuations in the fermion nuntzar

switch the site from integer to half-integétr Therefore, the We thank S. Capponi, D. Charrier, J. E. Moore, K.

arguments presented above for protection by time-reversal Okamoto, K. Okunishi, P. Pujol, and T. Tonegawa for use-

D, symmetries, which relied crucially on the fact that everyful discussions. This work was supported by ARO grant

site has a well-defined spin, break down. In contrast, in th&/V911NF-07-1-0576 (F. P. and A. M. T.), by NSF grants

models we consider here, we assume that the particles are if@MR-0757145 and DMR-0705472 (E. B.), and by KAK-

mobile, and therefore the local spin is well-defined. On theéENHI grants 20654030 and 20102008 from MEXT of Japan

other hand, in the presence of a lattice inversion symmetryM. O.). F. P. and M. O. acknowledge the WorksHapPO09

we expect that the Haldane phase is still robust as a topologit MPIPKS Dresden, where a part of the present work was

cal phase, even in fermionic models. This does not contradicarried out.

with Ref. 39, as their model breaks the inversion symmetry

explicitly.
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Appendix A: MPS path from a dimerized stateto the AKLT
state

V. CONCLUSIONS _ . .
In this appendix, we construct a path between a fully dimer-

To summarize, we have shown that the topological phas'ezed state (a broken translational symmetry state in whieh e

in the oddS AKLT state is protected as long as either time- €ry pair of spin_s are c_oupled in_ asinglet) and an AKLT state,
reversal, link-centered inversion, or global Btational sym- for general spinS, which remains gapped when the spin is

. . . . even. The path is parametrized by a paramgteheret = 0
metry is preserved. This symmetry protection, which has beecorrespondsto the fully dimerized state @nd 1 corresponds

argued beforéon the basis of properties of the entanglemen :

states, is shown to follow from simple physical argumentsfto the AKLT state. The MPS along the path is of the form

the D, protection is a result of the hidden symmetry breaking| g\ —

in the AKLT staté?®; protection by time-reversal symmetry is ) 2 T (Am(OBms(0)- Ay (0B (1)) %

related to the Kramers degeneracy due to the effective half- | m m) (A1)

integer edge spin in an odelAKLT state; and the protection Lyee L/

by link inversion follows from the odd parity of this state-un where the matriced,,, (t), B, (t) are given by:

der inversion. Note that none of the above arguments depends LAl 1 — )AL

on translational symmetry. A (t) = ( ™o (1-1) pi ) ,
In contrast, we argue that evéhAKLT states are funda- t1 -4, (1-14n

mentally different. Even in the presence of all the above- By () = ( tBL t(1 —t)BL? )

mentioned symmetries, this state is adiabatically coraiet mA T\t - )B2L (1 -t)B2?

mi,...,m



Here,Allisan(S + 1) x (S + 1) matrix, A12is (S + 1) x 1,
A%lis (25 +1) x (S+1), andA?2 is (25 + 1) x 1. The
dimensions of3% are the same as those(of/)”".

As t varies from1 to 0, the state evolves from the AKLT 22 o B .
state, which corresponds to the upper left blocks of4rend 4 }aﬁ = (=1)7(5,,0,5; 5, m),
B matrices, into the dimerized state, which is defined by the (B2, = (_1)5 0,0, S, 3;S,m). (A5)

lower right block of A, B. For intermediate values af the
off-diagonal blocksd'?, 42!, B2, B2! mix these two states
together.

The matrix elements of the matricelg!, B:! are given by

11 _pll _ B .
[An]as = Brlas = (=1)"(5/2,0,5/2,5; S,m), Now for odd S, this path fails (as we expect) to be contin-

. . (A2) ~ yous. The matrix42! vanishes because it is not possible to
where (j1,my, j2,mo;J, M) are Clebsch-Gordan coeffi- make a spins state (which is an integer) out of integer- and

cients, and we index the 1nl1atri1>§ elements by3 = paif-integer spin particle§ andS/2. Thus, the AKLT state
—5/2,...,5/2. The matricesl,,, B,, are exactly the matri- and the dimerized state are not combined with one another in
ces of the AKLT state in Eq. (16). any way, and the transition is discontinuous. The statesis ju

Similarly, the matrix elements of the other matrices are tN|AKLT )+ (1—t)¥ |Dimerized; at a certain value of = .,

12 91 the two terms have equal weights. Everywhere else, one of
[Am}a,ﬁ = [Bmlap =0, (A3) the two terms is exponentially bigger than the other, so the
correlation functions change discontinuously from the AKL
state’s correlation functions to the dimerized state’'selar
[A21} _ (_1)/3 (S, S/2, 8; S, m), tion function. (The correlation length of the MPS cannot be
calculated using Eq. 12 in this case because the state is not a
[B2,s = (-1)7(5/2,, 8, 8:;5,m), (A4)  pure states in the sense of Ref. 31)
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