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We demonstrate the existence of robust bulk extended states in the disordered Kane-Mele model
with vertical and horizontal Zeeman fields, in the presence of a large Rashba coupling. The phase
diagrams are mapped out by using level statistics analysis and computations of the localization
length and spin-Chern numbers C±. C± are protected by the finite energy and spin mobility gaps.
The latter stays open for arbitrarily large vertical Zeeman fields, or for horizontal Zeeman fields
below a critical strength or at moderate disorder. In such cases, a change of C± is necessarily
accompanied by the closing of the mobility gap at the Fermi level. The numerical simulations
reveal sharp changes in the quantized values of C± when crossing the regions of bulk extended
states, indicating that the topological nature of the extended states is indeed linked to the spin-
Chern numbers. For large horizontal Zeeman fields, the spin mobility gap closes at strong disorder
prompting a change in the quantized spin-Chern numbers without a closing of the energy mobility
gap.

PACS numbers: 72.25.-b, 72.10.Fk, 73.20.Jc, 73.43.-f

I. INTRODUCTION

Topological insulators (TIs) are materials character-
ized by robust properties against smooth deformations
and disorder. Representative examples are the Chern
(CI),1 quantum spin-Hall (QSH),2–5 and the strong topo-
logical insulators.6,7 Samples of these materials display
robust conducting states at the edges while being insula-
tors in the bulk. The edge modes are connected to robust
metallic states residing in the bulk and away from the
Fermi level.8,9 The robustness of the edge and the bulk
metallic states is a manifestation of a bulk topological in-
variant and, as such, there has been a concentrated effort
on understanding the bulk states in disordered TIs.10–19

In two-dimensional bulk systems, the extended quan-
tum states can survive localization only in extraordinary
circumstances. In CIs, the bulk extended states carry a
Chern number and, as such, they cannot be destroyed
until these numbers are “annihilated” through collision
with other extended states. In QSH insulators with time-
reversal symmetry (TRS), it is believed that a similar
scenario happens, but this time the bulk extended states
carry the Z2 invariant,3 which is protected by the insu-
lating gap and TRS. Consequently, TRS is thought to be
crucial for delocalization in the bulk QSH insulators. The
lack of a definitive answer is due to the lack of a com-
plete theory of the Z2 invariant for aperiodic systems
(for recent progress see Refs. 20 and 21). For example,
the behavior of the Z2 invariant is not understood when
the insulating gap is filled with dense localized spectrum,
and the numerical approaches12,17 based on the twisted
boundary conditions (BC) were not able to probe this
regime. Nevertheless, transfer matrix calculations11,15

and level statistics analyses19 have firmly established the
presence of bulk extended states in representative models
of disordered QSH systems with TRS.

An alternative approach is provided by the spin-Chern
invariants C±.10,22 While for QSH systems with TRS
the C± and the Z2 invariants predict perfectly consis-
tent phase diagrams,19,23,24 they give conflicting predic-
tions when TRS is broken. An early study11 on the bulk
extended states in disordered QSH systems concluded
that the protection against localization comes from both
topology and TRS: Lack of any of the two will result in
the immediate destruction of the bulk extended states.
This conclusion was aligned with the predictions based
on the Z2 invariant and was quickly accepted by the com-
munity. But recent studies on QSH systems with broken
TRS revealed a more complex picture. Ref. 25 showed
that robust gapless edge states can happen in QSH sys-
tems with TRS replaced by other symmetries. Yang et
al.26 studied the Kane-Mele model2,3 with a Rashba cou-
pling and vertical Zeeman field and found a topological
QSH-like phase characterized by C± that remain quan-
tized until the bulk energy gap closes. Such quantization
indicates that the topological order of these QSH systems
is intact, and thus extended bulk states should exist.

In this paper, we establish the existence of such ex-
tended states in disordered QSH systems with strongly
broken TRS. The phase diagrams are explored using
the level statistics analysis,27 the localization length
calculations,28,29 and the spin-Chern invariants.10,22 We
show that the Kane-Mele model2,3 with a large verti-
cal Zeeman field displays a nontrivial phase diagram in
the (EF ,W ) plane (EF = Fermi level and W = disor-
der strength), with a topological phase characterized by
quantized spin-Chern numbers, surrounded by CI phases.
Each phase is completely surrounded by lines of robust
extended states. The situation remains the same for hor-
izontal Zeeman fields up to a critical strength when the
spin gap closes at strong disorder and the extended states
disappear without a closing of the energy mobility gap.
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Our results can be consistently explained based on the
non-commutative theory of the spin-Chern invariants.

II. THE NON-COMMUTATIVE SPIN-CHERN
NUMBERS.

The non-commutative spin-Chern numbers and their
quantization conditions have been discussed extensively
in Refs. 22, 30 and 19 and they will be briefly summarized
here. We elaborate, however, on the question of when
do the quantization conditions hold and what are the
physical effects triggered by a change of the spin-Chern
numbers.

A. Definition and The Quantization Condition

In a lattice model with many-orbitals per site |n, α, σ〉,
where n are the coordinates of a site, σ = ±1 rep-
resents the spin degree of freedom and α some other
possible quantum numbers. Let σ̂z be the spin oper-
ator σ̂z|n, α, σ〉=σ|n, α, σ〉. Since we are dealing with
a general Hamiltonian H, the space of occupied quan-
tum states is not invariant under the action of the spin
operator but, if P denotes the projector onto the occu-
pied states, one can consider the projected spin operator:
Pσ̂zP , which does leave this space invariant. Therefore,
if one considers the spectral projectors P± onto the pos-
itive/negative spectrum of Pσ̂zP , one can effectively ob-
tain an exact splitting P = P−⊕P+ of the occupied space
into two spin sectors. In the presence of disorder, one can
associate non-commutative Chern numbers31 C± to the
projectors P±,22 which are referred to as the spin-Chern
numbers. They are defined by the following explicit for-
mula:19

C± = 2πi E
{

tr0
{
P±
[
− i[x̂1, P±],−i[x̂2, P±]

]}}
, (1)

where E{ } denotes the disorder average, tr0 means the
trace over the states at n = 0 and x̂ = (x̂1, x̂2) is the
position operator.

The spin-Chern numbers C± remain quantized and in-
variant as long as λ2± = E

{
tr0
{
P±x̂

2P±
}}

< ∞.19,30

These are the quantization conditions. The quantities
λ± can be viewed as localization lengths and λ± <∞ is
enforced by a positive mobility gap at EF in the Hamilto-
nian spectrum, and by a positive mobility gap at the ori-
gin in the spectrum of the projected spin operator Pσ̂zP .
We will refer to these two mobility gaps as the energy
and the spin mobility gaps, respectively. The closing of
either of these two gaps can prompt a sudden change of
the spin-Chern numbers.

The non-commutative spin-Chern numbers defined in
Eq. (1) can be numerically evaluated using only one
(periodic-) boundary condition and one disorder configu-
ration (C± are self-averaging).19 This provides a tremen-
dous numerical advantage over other existing methods
for the evaluation of the Chern numbers, such as those

based on twisted boundary conditions, and this together
with the precise quantization conditions make C± very
effective practical tools.18

B. Discussion of The Quantization Condition

Let us denote the localization length of the full pro-
jector P by λEF : λ2EF = E

{
tr0
{
P x̂2P

}}
. Note that in

general 1
2λ

2
EF
≤ λ2− + λ2+, so λ± <∞ implies λEF <∞,

and λEF →∞ implies λ− or λ+ →∞. Therefore, when-
ever C± are seen to take quantized values, one can safely
conclude that the quantum states are localized at EF .
In practice, this quantization was observed to hold with
many digit precision, which is a remarkable fact given
that it occur in the presence of strong disorder.18 It also
follows that C± will almost sure take non-quantized val-
ues when the states are delocalized at EF . This allows
one to map the regions of the phase diagrams that can
harbor extended states, which are necessarily located in
between the regions where C± assume different quan-
tized values. The spin-Chern numbers can, in principle,
take quantized values just by accident, even when the
states are delocalized at EF , but these are events with
extremely low probability.

For clean QSH systems with TRS and certain models
without TRS, it is known that the spin-gap stays open
when the system crosses the QSH phase boundary where
the energy gap closes.19,23,26 This remains true in the
weak disorder regime and, as such, a sudden change of
C± necessarily implies delocalization at EF . For QSH
systems with TRS, the spin-gap is known to stay open
beyond the weak disorder regime.19

In general, for systems with and without TRS, we have
the following simple identity:

(Pσ̂zP )2 = P
(
1− (i[σ̂z, P ])2

)
P, (2)

from where one can see that the spectrum of Pσ̂zP near
the origin is determined by the spectrum of i[σ̂z, P ] near
±1. We recall that we are interested in the nature of the
spectrum of Pσ̂zP near the origin because we want to
understand the localization properties of the projectors
onto the positive and negative parts of its spectrum. So
in some sense the origin plays here the same role as the
Fermi level does for the energy spectrum. Now, the spec-
trum of i[σ̂z, P ] is contained inside the interval [−1, 1], so
the spectrum of Pσ̂zP near the origin is determined by
the edges of the spectrum of i[σ̂z, P ]. Therefore, the main
question becomes: what is the nature of the spectrum of
i[σ̂z, P ] near its edges?

To address this question, we looked at the average and
the fluctuations of the matrix elements of i[σ̂z, P ]. Us-

ing P =
∮
C(ζ − H)−1 dζ2πi , with C encircling the energy

spectrum below EF , one has

i[σ̂z, P ] = 1
2π

∮
C(H − ζ)−1[σ̂z, H](H − ζ)−1dζ . (3)
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Note that [σ̂z, H] is independent of the (non-magnetic)
disorder. Using the universal localization estimate:32

E{|〈n|(H − E)−1|m〉|s} ≤ cse−s|n−m|/λE , (4)

valid for any s < 1 (cs = generic constant, λE = the lo-
calization length at E), one can establish (see Appendix):

E {|〈n|i[σ̂z, P ]|m〉|} ≤ cs[σ̂z, H]
s
2λ2EF e

−s|n−m|/4λEF ,
(5)

where Ō = the largest matrix element of O. Thus the
averaged matrix elements of i[σ̂z, P ] decay exponentially
and are small when [σ̂z, H] and λEF are both small, and
the same is true for the fluctuations. In such cases, the
spectrum of i[σ̂z, P ] is expected to be absent or localized
at the edges ±1, and consequently the spectrum of the
projected spin operator is expected to be localized near
the origin. Thus quantization and invariance of the spin-
Chern numbers should hold. Another important conclu-
sion is that, whenever we see a sudden change in C± and
[σ̂z, H] is small, which is the case for the typical values of
the Rashba interaction, EF necessarily crosses an energy
region where λEF is large or infinite.

Heuristically, we can go further and make the following
predictions: 1) Since a vertical Zeeman field enhances the
spin-gap, in a QSH system with only vertical Zeeman
field, a sudden change in C± signals the divergence of
λEF ; 2) Since a horizontal Zeeman field has a direct effect
on i[σ̂z, P ], the spin-gap is expected to decrease and then
close as the field is increased. Nevertheless, the spin-gap
is expected to remain open for fields below a threshold
value or at moderate disorder, where a change in C± will
signal again the divergence of λEF .

III. THE MODEL

The above predictions will be confirmed by a numerical
analysis. Our numerical simulations are based on the
Kane-Mele model,2,3 which is defined on a honeycomb
lattice:

H = −t
∑
〈nm〉

c†ncm + 2i√
3
VSO

∑
〈〈nm〉〉

c†nσ̂ · (dkm × dnk)cm

+iVR
∑
〈nm〉

c†nez · (σ̂ × dnm)cm +
∑
n
c†n(wn + h · σ̂)cn .

Here, the first term is the usual nearest neighbor hopping

term with c†n = (c†n,↑, c
†
n,↓) as the electron creation oper-

ator on site n. In the following calculations, the hopping
integral t will be chosen as the units of energy, for sim-
plicity. The second term is the intrinsic spin-orbit cou-
pling with σ̂ the Pauli matrix, where n and m are two
next nearest neighbor sites, k is their common nearest
neighbor, and vector dnk points from k to n. The third
term stands for the Rashba spin-orbit coupling. The last
term represents our addition of a spin independent on-
site potential wn with random amplitudes uniformly dis-
tributed in [−W/2,W/2], and of a uniform Zeeman field.
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FIG. 1. Variance of the level spacings ensembles collected at
various E’s, W ’s and for h = hzez with hz = 0.1 and 0.2.
A lattice of 50×50 unit cells and 200 disorder configurations
were used. The dotted line marks the 0.178 covariance of
GUE. The windows span horizontally between 0 and 1.

Both cases will be studied, where the Zeeman field h is
perpendicular or parallel to the plane of the lattice, i.e.,
h = hzêz or h = hxêx. We will fix VSO and VR at 0.1,
so that the model is inside the QSH phase when h = 0
and W = 0. While we adopt this specific model and
assume relatively high strengths of the spin-orbit cou-
plings, which is mainly for the illustration purpose, our
main conclusions are valid in general cases, as they de-
pend only on the nontrivial topology of the energy bands
and are independent of the details of the model.

IV. VERTICAL ZEEMAN FIELD

We consider first a vertical Zeeman field h = hzez
and various disorder strengths. We investigate the lo-
calized/delocalized character of the energy spectrum by
using level statistic analysis, the recursive Green’s func-
tion method and scaling analysis.

A. Level Statistics Analysis

The level statistic analysis involves an exact diagonal-
ization of the disordered Hamiltonian on a large lattice
with periodic boundary conditions and for a large number
of disorder configurations (= 200 for the present analy-
sis). The level spacings were collected in the following
way. We picked an arbitrary energy E and, for each
disorder configuration, we identified the unique energy
levels Ei and Ei+1 that satisfy: Ei < E < Ei+1. Then
we recorded the level spacings: ∆E = Ei+j+1 − Ei+j ,
letting j take consecutive values between −k and k. We
have experimented with k = 5 to 10 and the outcome of
the analysis was virtually the same. The results reported
here are for k = 10, and as such the ensemble of level
spacings contains 4200 spacings. Fig. 1 plots the variance
〈(∆E)2〉/〈∆E〉2 − 1 of the ensembles of level spacings
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recorded at various energies E and disorder strengths W
for hz = 0.1 and hz = 0.2.

The level spacing analysis allows one to identify the re-
gions of localized and delocalized spectrum. It is a firmly
established fact that the level spacings follow a Poisson
distribution when the spectrum is localized, for which the
variance equal to 1. It is also a firmly established fact
that in the region of the spectrum where the localization
length exceeds the size of the system, the statistics of the
level spacings coincides with that of a random Gaussian
ensemble of same general symmetries.33,34 In our case
the ensemble is the random Gaussian unitary ensemble

(GUE), which has the distribution27 PGUE(s)= 32s2

π2 e
− 4
π s

2

with s as the level spacing ∆E normalized by the mean
level spacing, which has a variance [〈(∆E)2〉/〈∆E〉2 −
1] = 0.178.

Examining Fig. 1, one can see that for both hz = 0.1
and hz = 0.2, there are energy regions where the vari-
ance is large, indicating localization, but also two regions
where the variance is practically equal to 0.178, the vari-
ance of the GUE. We can conclude that in these two
regions the localization length is larger than the size of
the simulated lattice. However, simulations with increas-
ing lattice size returned practically the same level statis-
tics and one should note that the disorder strengths in
Fig. 1 are comparable or exceeding the width of the clean
bands yet the variance remains pinned at 0.178. This
leaves very little doubt that the states in those two en-
ergy regions are in fact delocalized. We mention that the
level statistics has been extensively analyzed for Chern
and quantum spin-Hall insulators,16,19 and the conclu-
sions there were similar with the ones we draw here.

One distinct feature that can be seen in Fig. 1 is the
drifting of the extended states regions towards each other
when the disorder strength W is increased. The regions
eventually collide, annihilate and then disappear. This is
a typical behavior of the extended states carrying topo-
logical numbers robust against disorder, which can be
understood in the following way: Such extended states
cannot suddenly localize because in that case the topolog-
ical number will suddenly switch to a trivial value. But
the spectrum of any short range disorder model will even-
tually localize at extreme disorder,32 and the only mecha-
nism to localize the extended states carrying a topological
number is through the neutralization of the topological
number via collisions with one or more extended states
carrying the opposite topological number. Therefore, the
drifting and annihilation will always occur for the states
carrying a topological number robust against disorder.
Such drifting and annihilation was never observed in a
trivial insulator. Thus, the drifting and annihilation ob-
served in Fig. 1 is a strong indication of the presence
of extended states carrying topological numbers, which
arguably are the spin-Chern numbers discussed above.
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FIG. 2. Normalized localization length λE(M)/M as a func-
tion of disorder strength W at various energies E, calculated
for a long (106 unit cells in length) tube of M unit cells in
circumference, in the presence of vertical Zeeman fields. Sym-
bols with different colors correspond to different sizes.

B. The Recursive Green’s Function Analysis

The delocalized character of the states can also be
firmly established by using the recursive Green’s func-
tion approach.28,29 In Fig. 2 we plot the normalized lo-
calization length λE(M)/M as a function of W for long
tubes with circumferences ranging from M = 6 to 32
unit cells, and for hz = 0.05, 0.1 and 0.2, and E=-2,
-1 and 0. The scaling analysis for these data will be
presented later. Now, for each E, we can see two re-
gions separated by a critical disorder strength Wc, where
λE(M)/M behaves qualitatively differently (see later for
how Wc is determined). For W > Wc, λE(M)/M de-
cays with M , corresponding to an insulator phase.28,29

However, for W < Wc, it remains nearly independent
of M , essentially forming a line of fixed points. This
implies that λE(M) grows linearly with M , therefore di-
verging in the thermodynamic limit. Consequently, the
electron states are delocalized at these E’s and W ’s. The
independence of λE(M)/M on M indicates that we are
dealing with critical states characterized by a vanishing
β scaling function,28,29. The extended states must have
a topological origin, otherwise the system will belong to
the trivial unitary class where all electron states are lo-
calized at positive W ’s. The consistency between the
data in Figs. 1 and 2 is evident.

C. Phase diagram and computations of the
spin-Chern numbers

To construct the phase diagram, we start from the
limit VR = hz = 0, while holding VSO at 0.1. In this
limit, the spin up/down sectors decouple and the phase
digram in the (EF ,W ) plane, for each sector, consists of
CI phases (with C± = ±1) surrounded by a line of ex-
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FIG. 3. (a) Phase diagram of a QSH system with a vertical
Zeeman field. The phase boundaries (solid lines) harbor ex-
tended states. The dotted line shows the phase diagram when
VR = 0. (b-c) Computations of C± along the paths (1-2) of
panel (a), respectively, completed for hz = 0.2 on a 50×50
unit cells lattice, for 10 disorder configurations.

tended states and then by a trivial insulating phase16,19.
TRS assures that the phase diagrams of the two sectors
overlap perfectly. As in Fig. 3(a), when hz is turned
on, the phase diagrams shift revealing two regions where
the total Chern number C = C− + C+ takes the val-
ues ±1, surrounding a region characterized by C± = ±1.
The stability of the Chern numbers assures that the CI
phases do not disappear when VR is adiabatically turned
on, but they could part away and open the phase dia-
gram at large W ’s. This cannot happen here because the
spin-gap stays open so the C± = ±1 and C± = 0 phases
must be separated by extended states, a fact that can be
seen explicitly in Fig. 2(a3-c3). We must conclude that
the C± = ±1 phase remains completely surrounded by
the CI phases as illustrated in Fig. 3(a).

The calculated values of C± in Fig. 3(b-c) for hz = 0.2,
along the paths 1 and 2 in Fig. 3(a) further confirm our
conclusions. Along path 1, both C± remain strictly quan-
tized to ±1 until they simultaneously start an abrupt
descent to 0. C± are seen to cross the values ±0.5 at
about W = 5, exactly where the annihilation is observed
in Figs. 1 and 2. Along path 2, C− remains quantized
at −1 well after C+ started its descent to 0, indicating
indeed the crossing of a region with total Chern number
-1 (also confirmed by a direct calculation of C). This
also provides direct evidence that the spin-gap remains
open when crossing the boundary between C± = ±1 and
the CI phases, because its closing would have effected
the quantization of both C± but in Fig. 3(c) C− clearly
remains quantized. A last remark here is that, since the
CI phases are surrounded by C = 0 phases, they are
necessarily surrounded by a line of extended states as
illustrated in Fig. 3(a).

V. HORIZONTAL ZEEMAN FIELD

We now consider the horizontal Zeeman field. In Fig. 4
we have repeated the level statistics analysis discussed in
the previous section, this time for hx = 0.1 and 0.2. Ex-
amining Fig. 4, at smaller W ′s we can again see regions
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FIG. 4. Same as Fig. 1 but for horizontal Zeeman fields.
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FIG. 5. Same as Fig. 2 but for horizontal Zeeman fields.

where the variance stays very close to 0.178, and we still
see these regions drifting towards each other. However,
the variance is clearly seen to move away from 0.178 be-
fore the annihilation is complete (see panels a4-5 and
b4-5). This is a first indication that the line of extended
states is broken, which is also confirmed by the recursive
Green’s function analysis shown in Fig. 5. At E = 0
for hx = 0.1 and 0.2, in panels (b3) and (c3) where the
annihilation more or less takes place, we see λE(M)/M
decreasing with M , indicating a finite localization length.
Nevertheless, both Figs. 4 and 5 indicate that extended
states are still present at lower W ’s. This is also evident
in Fig. 2 of Ref. 11. For the lower hx = 0.05, the data
clearly demonstrate that the extended states survive here
all the way till the annihilation point.

The predicted phase diagram for large hx is illustrated
in Fig. 6(a), together with computations of C±. To un-
derstand this diagram, it is useful to start from the one
shown in Fig. 3(a) and consider a rotation of h from
the z to the x-direction. During this rotation, we ex-
pect the phase diagram to open at large W ’s and the CI
phases to separate and to continuously reduce size. Since
there is an abrupt simultaneous change in the quantized
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C± along path 2, we conclude that all that is left when
the rotation is completed is a doubly-degenerate line of
extended states, which terminates abruptly at a critical
Wc (which is possible if the line is doubly degenerate).
For W < Wc, the mobility spin-gap stays open and the
change in the quantized C± when moving along path 2
must be due to the closing of the mobility energy-gap.
From Figs. 4 and 5, we know that the mobility energy-
gap stays open when moving along path 1, so the change
in the quantized C± seen in Fig. 6(b) must be due to
the closing of the mobility spin-gap. Therefore, as illus-
trated in Fig. 6(a), there must exist a line in the phase
diagram where the mobility spin-gap closes, and this line
together with the line of extended states completely en-
circle the region where C± = ±1. Our final note here
is that the change in the quantized C± brings measur-
able physical effects even beyond Wc, where we can still
see energy regions with very large localization lengths,
levitating and annihilating each other, in stark contrast
with what happens in trivial insulators,16,19 where the
extended spectrum simply fades away when the disorder
is increased.

VI. SCALING ANALYSIS

According to the well-established one-parameter scal-
ing theory,28,29 the normalized localization length can
be fitted with a universal scaling function λE(M)/M =
f(M/ξ), where ξ is the localization length in the insula-
tor region or the correlation length in the metallic region,
in the thermodynamic limit. Indeed, we find that all the
data in the insulator phase shown in Figs. 2 and 5 at
energy E = −1 and E = −2 can be well fitted with
a universal function, as shown in Fig. 7(a). For exam-
ple, the resulting localization length ξ for hz = 0.1 and
hx = 0.1 at E = −2 is plotted as a function of disorder
strength W in Figs. 7(b,c), respectively. It is found that
the W dependence of ξ can be better fitted with an ex-

ponential function35,36 ξ ∝ eα/
√
W−WC than a power law

function, with α and Wc as two fitting parameters. The
critical disorder strength Wc determined in this way for
different parameter sets is indicated in Figs. 2 and 5.
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FIG. 7. Scaling analysis with data in Figs. 2 and 5 at E = −1
and E = −2 for different parameter sets. (a) Logarithmic plot
of renormalized localization length on the insulating side as
a function of ξ/M , where ξ is the localization length in the
thermodynamic limit, as a scaling parameter. (b,c) Fitting of
the localization length ξ (solid symbols) with the exponential

function ξ ∝ eα/
√
W−WC (solid lines) for hz = 0.1 and hz =

0.1, respectively, at E = −2. The fitting parameters are found
to be (b) Wc = 3.19 and α = 6.38, and (c) Wc = 3.12 and
α = 6.25.

VII. SUMMARY

In summary, we used the spin-Chern numbers to pre-
dict the existence of robust bulk extended states in TIs
with broken TRS and to map out the phase diagrams
of the models. The predictions were well confirmed by
the numerical computations of level statistics and local-
ization lengths. Our study settles a long debated issue,
namely, what protects the bulk extended states in TIs
in the strong disorder regime. The answer is: topology
alone. In contradistinction with the present common be-
lief that the breaking of TRS in QSH systems will lead to
the sudden and complete localization of the bulk states,
we found that QSH systems with large Zeeman fields con-
tinue to display robust bulk extended states.
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Appendix: Derivation of Inequality (5)

The following is a detailed presentation of how the in-
equality (5):

|〈n|i[σ̂z, P ]|m〉| ≤ cs[σ̂z, H]
s
2λsEF e

−s|n−m|/4λEF .
(A.1)

has been obtained. The derivation presented here follows
the lines used in Ref. 37 for the analysis of the Chern
invariant. For us, the starting point is:

〈n|i[σ̂z, P ]|m〉 = 1
2π

∮
C〈n|i[σ̂z, (H − ζ)−1]|m〉dζ.

(A.2)
where we will later use the identity:

[σ̂z, (H − ζ)−1] = (H − ζ)−1[σ̂z, H](H − ζ)−1. (A.3)

We are interested in the case when [σ̂z, H] is small. Al-
though the above formulas contain this factor explicitly,
before we can say that [σ̂z, P ] is small we must resolve the
following issue: the Green’s function (H − ζ)−1 diverges
when ζ crosses the dense localized spectrum at EF . This
can be resolved if we look at the averaged [σ̂z, H].

We will use the following localization estimate32

E{|〈n|(H − E)−1|m〉|s} ≤ cse−s|n−m|/λE (A.4)

where s is any number strictly between 0 and 1 and cs
is a generic constant. The constant cs diverges when
s → 1, which reflects the known fact that the averaged
Green’s function diverges when E is inside the dense lo-
calized spectrum (this is not the case when the Green’s
function is taken to be a power s with s < 1). We have
successively:

1
2π

∮
C〈n|i[σ̂z, (H − ζ)−1]|m〉dζ

= 1
2π

∮
C〈n|i[σ̂z, (H − ζ)−1]|m〉1−s/2

×〈n|i[σ̂z, (H − ζ)−1]|m〉s/2dζ.

(A.5)

For the first term in the integrand we will use the bound:

|〈n|i[σ̂z, (H − ζ)−1]|m〉|1−s/2 < 1

|Im ζ|1−s/2
. (A.6)

The key here is that, although the right hand side di-
verges when ζ crosses the real axis, its integral is finite
because of the power 1 − s/2. For the second term we
use Eq. A.3:

〈n|i[σ̂z, (H − ζ)−1]|m〉s/2 =

〈n|(H − ζ)−1[σ̂z, H](H − ζ)−1|m〉s/2

=
[∑

k,δ〈n|(H − ζ)−1|k〉〈k|[σ̂z, H]|k + δ〉

× 〈k + δ|(H − ζ)−1|m〉
]s/2

,

(A.7)

where k + δ goes over the first nearest neighbors of k
(thus δ takes a finite number of values around the origin).

Using Eq. A.4 and the fact that |x1 + x2 + . . . |s/2 ≤
|x1|s/2 + |x2|s/2 + . . ., we can bound this term as:∣∣〈n|i[σ̂z, (H − ζ)−1]|m〉

∣∣s/2
≤ [σ̂z, H]

s
2
∑
k,δ |〈n|(H − ζ)−1|k〉|s/2

×|〈k + δ|(H − ζ)−1|m〉|s/2

(A.8)

At this point we arrived at:

|〈n|i[σ̂z, P ]|m〉|

≤ 1
2π

∮
C |〈n|i[σ̂z, (H − ζ)−1]|m〉|1−s/2

×|〈n|i[σ̂z, (H − ζ)−1]|m〉|s|dζ|

≤ [σ̂z, H]
s
2 1
2π

∮
C
∑
k,δ |〈n(H − ζ)−1|k〉|s/2

×|〈k + δ|(H − ζ)−1|m〉|s/2 |dζ|
|Im ζ|1−s/2

.

(A.9)

We now take the expected value on both sides and use
E{XY } ≤ [E{X2}E{Y 2}]1/2:

|〈n|i[σ̂z, P ]|m〉| ≤ [σ̂z, H]
s
2 1
2π

∮
C

|dζ|
|Im ζ|1−s/2

∑
k,δ[

E{|〈n(H − ζ)−1|k〉|s}E{|〈k + δ|(H − ζ)−1|m〉|s}
]1/2

(A.10)
and use the localization estimate Eq. A.4:

. . . ≤ cs[σ̂z, H]
s
2 1
2π

∮
C
∑
k,δ

e−s(|n−k|+|k+δ−m|)/2λζ |dζ|
|Im ζ|1−s/2

.
(A.11)

The path C can be always chosen so that λζ is maximum
when ζ crosses the real axis at EF , thus λζ ≤ λEF so we
can make the sum independent of ζ:

. . . ≤ cs
(

1
2π

∮
C

|dζ|
|Im ζ|1−s/2

)
[σ̂z, H]

s
2

×
∑
k,δ e

−s(|n−k|+|k+δ−m|)/2λEF

≤ cs
(

1
2π

∮
C

|dζ|
|Im ζ|1−s/2

)
[σ̂z, H]

s
2

×
∑
k,δ e

−s(|n−k|+|k−m|−|δ|)/2λEF

(A.12)

and at this point we use

|n− k|+ |k −m| ≤ 1
2 (|n−m|+ |2k − n−m|)

(A.13)
to conclude

. . . ≤ cs
(

1
2π

∮
C

|dζ|
|Im ζ|1−s/2

)
(
∑
δ 1) [σ̂z, H]

s
2

×e−s(|n−m|+1)/4λEF
∑
k e
−s|2k−n−m|/4λEF

(A.14)

The last sum is independent of n and m and is pro-
portional to λ2EF . The round parentheses contain generic
constants independent of λEF so we can absorb them into
cs to finally obtain the desired bound:

E{|〈n|i[σ̂z, P ]|m〉|} ≤ cs[σ̂z, H]
s
2λsEF e

−s(|n−m|+1)/4λEF ,
(A.15)
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where the extra 1 at the exponent becomes irrelevant in
the asymptotic regime |n−m| >> 1.

Same bound can be used for fluctuations since:

E{|〈n|i[σ̂z, P ]|m〉|2} − E{|〈n|i[σ̂z, P ]|m〉|}2

≤ E{|〈n|i[σ̂z, P ]|m〉|2} ≤ E{|〈n|i[σ̂z, P ]|m〉|},
(A.16)

where we used the fact that |〈n|i[σ̂z, P ]|m〉| ≤ 1.
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