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We revisit the critical behavior of the sub-ohmic spin-boson model. Analysis of both the leading
and subleading terms in the temperature dependence of the inverse static local spin susceptibility
at the quantum critical point, calculated using a numerical renormalization-group method, provides
evidence that the quantum critical point is interacting in cases where the quantum-to-classical
mapping would predict mean-field behavior. The subleading term is shown to be consistent with
an ω/T scaling of the local dynamical susceptibility, as is the leading term. The frequency and
temperature dependences of the local spin susceptibility in the strong-coupling (delocalized) regime
are also presented. We attribute the violation of the quantum-to-classical mapping to a Berry-phase
term in a continuum path-integral representation of the model. This effect connects the behavior
discussed here with its counterparts in models with continuous spin symmetry.

PACS numbers: 71.10.Hf, 05.70.Jk, 75.20.Hr, 71.27.+a

I. INTRODUCTION

The standard Kondo model, describing exchange scat-
tering between a local moment and a fermionic band,1

can be generalized to various Bose-Fermi Kondo mod-
els that include coupling of the impurity to one or more
bosonic baths. It is conventional to consider bosonic
baths described by a power-law density of states

∑

p

δ(ω − wp) ∝ ω1−ǫ Θ(ωc − ω), (1)

where wp is the dispersion of the bosonic bath (see be-
low), Θ is the Heaviside function, and ωc is a high-energy
cut-off. For a subset of sub-ohmic (positive-ǫ) baths
corresponding to 0 < ǫ < 1, the Bose-Fermi Kondo
problem has a quantum (temperature T = 0) phase
transition2–5 between a Kondo phase in which the ground
state is a Kondo singlet formed between the local mo-
ment and conduction-electron spins, and a local-moment
phase in which the coupling to the bosonic bath inhibits
the Kondo effect. In all the Bose-Fermi Kondo mod-
els that have been studied—corresponding to Ising, XY ,
and SU(2) symmetry of the bosonic couplings—this tran-
sition is continuous.

The Landau theory for continuous phase transitions
invokes the fluctuations of an order parameter. For the
Bose-Fermi Kondo problem, a suitable order parameter
is the local magnetization M = 〈Sz〉, which vanishes in
the Kondo phase but is nonzero throughout the local-
moment phase. Within the Landau approach, the quan-
tum criticality is described by a local φ4 theory with a dis-
sipative quadratic term corresponding to a long-ranged
interaction in imaginary time: 1

2S
z(τ)χ−1

0 (τ − τ ′)Sz(τ ′)
with

χ−1
0 (τ − τ ′) ∼

1

|τ − τ ′|2−ǫ
. (2)

In keeping with the standard theory of quantum crit-
icality, this description is called a quantum-to-classical
mapping.
In a study of the Bose-Fermi Kondo model with SU(N)

spin symmetry and SU(M) channel symmetry, it was
shown in the limit of largeN andM withM/N fixed that
the quantum critical point (QCP) breaks the quantum-
to-classical mapping.6 The violation is especially clear
for 1

2 < ǫ < 1. In this range, the local-φ4 description

gives rise to a Gaussian fixed point,7 and a dangerously
irrelevant φ4 coupling leads to a critical static spin sus-
ceptibility

χcl
crit(T, ω = 0) ∼

1

T x
with x = 1

2 for 1
2 < ǫ < 1. (3)

However, the large-N results for the local spin suscepti-
bility and Green’s function in the quantum critical regime
of the SU(N)× SU(M) Bose-Fermi Kondo model satisfy
ω/T scaling, which implies that the QCP is interacting.
In particular,

χqu
crit(T, ω = 0) ∼

1

T x
with x = 1− ǫ (4)

and

χqu
crit(T = 0, ω) ∼

1

(−iω)y
with y = x (5)

hold over the entire range 0 < ǫ < 1. This violation of the
quantum-to-classical mapping survives the inclusion of
1/N corrections, and has been attributed to the effect of
the Berry phase in the spin path-integral representation
of the local moment.8

Subsequently, a violation of quantum to classical map-
ping was also discussed for the sub-ohmic spin-boson
model.9 This model (fully specified in Section II) couples
the component Sz of an SU(2) local spin to the displace-
ment of a sub-ohmic bosonic bath with coupling constant
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g and the component Sx to a transverse magnetic field
Γ. The model has a QCP between a delocalized phase
in which the impurity degree of freedom is quenched by
the field and a boson-dominated localized phase that re-
tains a two-fold local-moment degree of freedom. These
phases are analogous to the Kondo and local-moment
phases, respectively, of the Bose-Fermi Kondo model. In
the special case where the bosons form an ohmic bath,
the spin-boson model and the fermionic Kondo model can
be transformed into one another via bosonization10; how-
ever, this transformation breaks down for ǫ > 0. In Ref.
9, it was shown using a bosonic extension11,12 of the nu-
merical renormalization-group (NRG) method that the
critical exponents for 1

2 < ǫ < 1 obey hyperscaling (as

they do for 0 < ǫ < 1
2 ). In particular, just as for the

Bose-Fermi Kondo model,4,5 the critical local susceptibil-
ity satisfies Eqs. (4) and (5), suggestive of an interacting
fixed point with ω/T scaling—a conclusion at odds with
the quantum-to-classical mapping.
Recently, two sets of Monte-Carlo calculations5,13 were

carried out for a one-dimensional classical spin chain with
long-range Ising interactions

∑

i,j JijS
z
i S

z
j , where Jij ∼

1/|ri − rj |
2−ǫ for |ri − rj | ≫ τ0. Reference 5 applied a

cluster Monte-Carlo method at various nonzero values of
the short-range cutoff τ0, while Ref. 13 used a similar
method after taking the limit τ0 → 0. These works both
confirmed an earlier conclusion14 that the critical points
of such long-ranged classical spin chains are interacting
for 0 < ǫ < 1

2 and Gaussian for 1
2 < ǫ < 1, consistent

with the predictions of the local φ4 theory.7,15

The results of the classical Monte-Carlo calculations
have been interpreted in two very different ways. In
Ref. 5, we suggested that these results differ from NRG
calculations for the Bose-Fermi Kondo model because a
classical spin chain of length L sites does not faithfully
represent the quantum-mechanical model at temperature
T = 1/(Lτ0). More specifically, the limit τ0 → 0 of the
classical spin chain does not reproduce the path integral
of the quantum problem because this limit smears the
topological effect of the Kondo spin flips. Along this line,
it has recently been shown16 that a proper path-integral
for the sub-ohmic spin-boson model involves a Berry-
phase term. Numerically, Ref. 5, generalizing the NRG
result of Ref. 4, showed that the temperature dependence
of the local spin susceptibility of the Bose-Fermi Kondo
model obeys Eq. (4) over about 20 decades in tempera-
ture.
By contrast, Ref. 13 assumed the the classical spin

chain faithfully represents the spin-boson model. Cor-
respondingly, it interpreted the Monte-Carlo result
as demonstrating a fundamental error in the NRG
results9,11,12 for the sub-ohmic spin-boson model. It was
further suggested in Refs. 17 and 18 that over the range
1
2 < ǫ < 1, the NRG result for the temperature depen-
dence of the local spin susceptibility obeys Eq. (4) due to
an artifact of the method, reminiscent of the effect of a
temperature-dependent mass term19 discussed in Ref. 5,
and that removal of a spurious T 1−ǫ term from χ−1

crit(T )

exposes an underlying T 1/2 term representing the true
critical behavior.

In this paper, we investigate more thoroughly the tem-
perature and frequency dependences of the local spin sus-
ceptibility of the spin-boson model, as calculated using
the bosonic NRG approach.11,12 The subleading term in
the temperature dependence at ω = 0 is shown to be de-
scribed by an exponent x2 that depends on ǫ and exceeds
1
2 , contradicting a central assumption of Ref. 18. The ex-
ponent y2 of the subleading term in the frequency depen-
dence at T = 0 satisfies y2 = x2, paralleling the equality
y = x of the leading exponents. This provides evidence
that both the leading and subleading terms in the lo-
cal susceptibility satisfy ω/T scaling. Finally, we show
that NRG gives consistent frequency and temperature
dependences of the local spin susceptibility in the strong-
coupling (delocalized) phase. All these features indicate
that the temperature and frequency dependences of the
critical local spin susceptibility are consistent with an
interacting fixed point for 1

2 < ǫ < 1, thereby augment-
ing previous evidence for the violation of quantum-to-
classical mapping in the sub-ohmic spin-boson and Bose-
Fermi Kondo models.

The remainder of the paper is organized as follows.
The model and the bosonic NRG method are described
in Sec. II. Section III is devoted to the analysis of the
leading and subleading terms in the temperature and fre-
quency dependences of the inverse local spin susceptibil-
ity at the QCP. In Sec. IV, we discuss the local suscepti-
bility in the strong-coupling (delocalized) phase. Section
V addresses the implications of our results, the form of
the proper path integral for the spin-boson model, and
the role of the Berry phase. The paper concludes with a
brief summary in Sec. VI.

II. MODEL AND SOLUTION METHOD

The spin-boson model is described by the Hamiltonian

HSB = −ΓSx + g Sz
∑

p

(

φp + φ †
−p

)

+
∑

p

wp φ
†
p φp , (6)

where Sα = σα/2 with σα being a Pauli matrix, and φp

annihilates a boson in a bath whose density of states is
specified by Eq. (1). The cutoff frequency ωc entering
Eq. (1) will be set to unity and will henceforth serve as
the unit of energy.

We have studied the model using the NRG method
described in Refs. 11 and 12. The bosonic bath is di-
vided into a set of bins spanning oscillator frequencies
Λ−(k+1) < ω < Λ−k for Λ > 1 and k = 1, 2, 3, . . ..
Within each bin, the continuum of bath states is replaced
by a single state, namely, the linear combination of states
that couples to the impurity spin. Then the Lanczos
method is used to map the spin-boson Hamiltonian to
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HNRG
SB = limn→∞ Hn, where

Hn = −ΓSx + g Sz
∑

p

(

b0 + b†0

)

+

n
∑

m=0

[

emb†mbm + tm

(

b†mbm−1 +H.c.
)]

. (7)

As a result of the logarithmic binning, the tight-binding
coefficients em and tm that encode the bath density of
states decay as Λ−m. This decay allows the Hamilto-
nian HNRG

SB to be solved iteratively starting with H0 and
using the eigensolution of Hn to construct the basis of
Hn+1. The basis of each site of the bosonic chain must
be truncated at b†mbm < Nb. Even with restriction, the
dimension of the Fock space grows exponentially with it-
eration number n. After a few iterations, it is possible
to retain only the Ns many-body eigenstates of lowest
energy after iteration n. All the results reported below
were obtained using Nb = 24 and Ns = 300.

Our focus in this paper is on the temperature and
frequency dependences of the local spin susceptibility.
Within the NRG approach, the local static susceptibility
is calculated as

χ(T, ω = 0) = lim
h→0

−
〈Sz〉

h
, (8)

where h is a local magnetic field coupling to the Sz com-
ponent of the localized spin through an additional Hamil-
tonian term ∆H = hSz. The imaginary part of the local
dynamical susceptibility can be computed as

χ′′(T, ω) =
π

Zn

∑

j,k

|n〈k|S
z|j〉n|

2
(

e−En,k/T − e−En,j/T
)

× δ(ω − En,k + En,j), (9)

where |j〉n is a many-body eigenstate of iteration n with
energy En,j , and Zn =

∑

j e
−En,j/T . In order to mini-

mize known artifacts of the NRG discretization, we cal-
culate the local susceptibility only at iterations of the
same parity (either n even or n odd) and at only one
temperature or frequency per iteration: Tn, ωn ∝ Λ−n.

III. LOCAL CORRELATION FUNCTIONS AT

THE QUANTUM CRITICAL POINT

The QCP is located in our NRG calculations by fixing
the transverse field Γ and tuning g. The critical strength
gc is identified as the value of g at which the scaled NRG
many-body energies ΛnEn are independent of the itera-
tion number n, signifying that the system is at a scale-
invariant fixed point. This invariance is illustrated in
Fig. 1 for two values of ǫ. The critical many-body spec-
trum is qualitatively similar for all baths corresponding
to 0 < ǫ < 1.
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FIG. 1: (Color online) NRG spectra of the spin-boson model
at its QCP: Scaled NRG energy ΛnEn vs iteration number
n for a transverse field Γ = 0.01, NRG discretization Λ = 3,
and bath exponent (a) ǫ = 0.8, (b) ǫ = 0.2. The flatness in
the n-dependence of the scaled energy shows that the system
is at a renormalization-group fixed point; here, it corresponds
to the QCP at g = gc.

A. Temperature dependence of the critical local

susceptibility

At the QCP, g = gc, the local static spin susceptibility
has a singular temperature dependence. Figure 2(a) is a
log-log plot of χ−1 vs T for ǫ = 0.8. A least-squares fit
(dashed line) of the logarithm of χ−1 to the logarithm of
a simple power law

f(T ) = aT x (10)

over 10−18 < T < 10−4 yields a critical exponent of
x = 0.202. Similar behavior is observed in the local static
susceptibility for ǫ = 0.7, fitted over 10−19 < T < 10−4

by x = 0.301 [Fig. 3(a)]; for ǫ = 0.6, fitted over 10−17 <
T < 10−4 by x = 0.406 [Fig. 4(a)]; and for ǫ = 0.2, fitted
over 10−13 < T < 10−4 by x = 0.809 [Fig. 5(a)]. These
temperature exponents are consistent with x = 1 − ǫ to
within about 1.5%.
The modest discrepancies between the exponents x ex-

tracted from the numerical data and their interacting val-
ues 1−ǫ can be attributed to a combination of fitting un-
certainties and errors associated with the NRG method.
Any NRG calculation contains discretization errors in-
troduced by working with Λ > 1, as well as truncation
errors arising from retaining only Ns many-body states
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FIG. 2: (Color online) Temperature dependence of the local
static susceptibility at the QCP (g = gc). (a) χ−1(T ) for
ǫ = 0.8, Γ = 0.01, and Λ = 3. The dashed line represents a
fit of χ−1(T ) to the leading term f(T ) specified in Eq. (10),
which yields an exponent x = 0.202. The solid line is a fit
to Eq. (11) in terms of both leading and subleading terms.
(b) Residual χ−1(T ) − f(T ) after subtraction of the fitted
leading term from (a). The fitted solid line gives a subleading
exponent x2 = 0.852. The residual clearly does not have a
T 1/2 dependence (dashed line).

after each iteration. For the bosonic bath treated here,
there is also the need to truncate the dimension of the
Fock space of each bosonic orbital on the NRG chain
to a finite value Nb. One should always bear in mind
such sources of systematic error, as one would for any
numerical method. Still, several features of the leading-
order results serve as nontrivial checks; in particular, the
NRG value of the frequency exponent y of the critical
local susceptibility (see Sec. III B) agrees with that of an
ǫ expansion2, and (b) the temperature exponent x and
several other critical exponents satisfy hyperscaling rela-
tions (as discussed in Sec. V).
Motivated by considerations laid out in the introduc-

tion, we further explore the critical behavior by exam-
ining the subleading temperature dependence defined
through the fitting function

χ−1(T ) = aT x + a2T
x2. (11)

For the case ǫ = 0.8 shown in Fig. 2(a), fitting to Eq. (11)
yields a subleading exponent x2 = 0.852. The quality of
the fit of the subleading term can be seen more clearly in
Fig. 2(b), which plots the residual χ−1(T ) − f(T ) after
subtraction of the fitted leading term. The residual is
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FIG. 3: (Color online) Like Fig. 2 but for ǫ = 0.7, Γ = 1, and
Λ = 4.

seen to be well-described by a power law over about four
decades of temperature 10−6 < T < 10−2. The fitted
exponent is different from the value x2 = 1

2 that would
correspond to the dashed line shown in Fig. 2(b).
Similar results hold for ǫ = 0.7, fitted over 10−5 <

T < 10−1 by x2 = 0.671 [Fig. 3(b)]; for ǫ = 0.6, fitted
over 10−5 < T < 0.5 by x2 = 0.665 [Fig. 4(b)]; and for
ǫ = 0.2, fitted over 5×10−5 < T < 0.5 by x2 = 1.25 [Fig.
5(b)]. For each of the three cases in the range 1

2 < ǫ < 1
where the validity of the quantum-to-classical mapping
is at issue, we find no evidence for the T 1/2 contribution
to χ−1(T ) that is assumed in Ref. 18.

B. Frequency dependence of the critical local

susceptibility

Next, we investigate the frequency dependence of the
zero-temperature critical local dynamical susceptibility
χ(ω). Since the NRG delivers χ′′(ω) = Imχ(ω), this
quantity is the focus of our analysis. If necessary, χ′(ω) =
Reχ(ω) can be obtained via a Hilbert transform of χ′′(ω),
but this procedure introduces some error due to the lower
accuracy of the NRG-calculated χ′′(ω) at high frequen-
cies.
Figure 6(a) plots χ′′(ω) for ǫ = 0.7. The low-frequency

behavior is singular:

χ′′(ω) =
sgnω

b|ω|y
. (12)

The exponent is, to an accuracy considerably better than
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FIG. 4: (Color online) Like Fig. 3, but for ǫ = 0.6.

1%, y = 1 − ǫ = 0.3. This implies that the full retarded
susceptibility has the form specified by Eq. (5). The
equality of y and the temperature exponent x is con-
sistent with an ω/T scaling form for the leading scaling
term in the inverse local susceptibility.
We will assume that χ(ω) has a subleading term with

exponent y2 defined through

1

χ(ω)
= B(−iω)y +B2(−iω)y2. (13)

Correspondingly, for ω > 0,

1

χ′′(ω)
≃ bωy + b2ω

y2, (14)

where b = B/ sin(πy/2),

b2 = B2

[

cos (π(y + y2)/2)

sin(πy/2)
+

sin(πy2/2)

sin(πy/2)2

]

, (15)

and the approximation in Eq. (14) involves ignoring
higher-order terms ∼ ω2y2−y. Fitting to Eq. (14) [Fig.
6(b)] yields an exponent y2 = 0.73 that agrees with the
subleading temperature exponent x2 = 0.67 [Fig. 3(d)]
to within about 9%. Given that extracting y2 from
1/χ′′(ω) is less accurate than determining the exponent
from 1/χ(ω) [whose determination requires a calculation
of χ′(ω), however], we interpret our results as being con-
sistent with y2 = x2. This suggests that the subleading
term of the inverse local spin susceptibility also obeys
ω/T scaling.
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FIG. 6: (Color online) Frequency dependence of the local
dynamical susceptibility at the QCP (T = 0, g = gc). (a)
Imχ(ω) for ǫ = 0.7, Γ = 1, and Λ = 4. The solid line repre-
sents a power-law fit to Eq. (12), which yields the exponent
y = 0.3002. (b) Residual [Imχ(ω)]−1

− bωy after subtraction
of the leading term inferred from (a). The fitted solid line
gives a subleading exponent y2 = 0.729.
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FIG. 8: (Color online) Imaginary part Imχ(ω) of the zero-
temperature local dynamical susceptibility at four different
bosonic couplings g < gc or, equivalently, δg ≡ (gc−g)/gc > 0,
for (a) ǫ = 0.7, Γ = 1, and Λ = 4; and (b) ǫ = 0.2, Γ = 0.01,
and Λ = 3.

The same procedure can also be applied to the case
ǫ = 0.2, as shown in Figs. 7(a) and 7(b). The extracted y
is again to a good accuracy equal to 1−ǫ = 0.8, the same
as the leading temperature exponent x, so the leading
term of the inverse local susceptibility is consistent with
ω/T scaling. The fitted value of the subleading frequency
exponent is y2 = 1.32, which agrees with the subleading
temperature exponent x2 to within 6%. It is worth noting
that for this value of ǫ, which falls in the range 0 < ǫ < 1

2 ,
the level of agreement between x2 and y2 is similar in
percentage terms to that for ǫ = 0.7 in the range 1

2 <
ǫ < 1.

We conclude this subsection with a comment about the
use of Eq. (9) to calculate the dynamical susceptibility.
It has been shown20 that in cases (such as a magnetic im-
purity in a weak external magnetic field) where the true
ground state only emerges below a small temperature
scale T∗, the analogous NRG calculation of the single-
particle spectral function yields inaccurate results at fre-
quencies |ω| & T∗. By contrast, a QCP is a scale-free
point of the system. The frequency exponent y entering
Eqs. (13) and (14) is a property of the asymptotic low-
energy many-body spectrum, which is self-similar on dif-
ferent energy scales, while the exponent y2 characterizes
the power-law (i.e., scale-free) approach to the asymp-
totic spectrum. Therefore, the standard NRG method
employing Eq. (9) is expected to produce reliable results
right at the critical point, the only case considered above.
This conclusion is consistent with the absence of contro-
versy over the critical frequency dependence of the local
susceptibility in the ongoing debate over the validity of
the quantum-to-classical mapping. It is also compatible
with our finding that the subleading critical term has the
same exponent in the frequency and temperature depen-
dences.

IV. LOCAL CORRELATION FUNCTIONS IN

THE DELOCALIZED PHASE

To further analyze the NRG results, we turn to the lo-
cal susceptibility in the delocalized phase, g < gc, which
has not received much attention in previous studies. Fig-
ure 8(a) shows the ω dependence of χ′′(ω) at zero tem-
perature for ǫ = 0.7 and several values of δg ≡ (gc−g)/gc.
The leading frequency dependence is seen to be χ′′(ω) ∼
|ω|1−ǫ. The results are well described by

χ(T = 0, ω, g < gc) =
1

A+B(−iω)1−ǫ
. (16)

The decrease of χ(ω = 0) with increasing δg (i.e., de-
creasing g) in Fig. 8(a) reflects the increase of A as g
moves away from gc. These conclusions are also valid for
ǫ = 0.2, as seen in Fig. 8(b).

Figure 9(a) shows that for ǫ = 0.7, the local static
susceptibility in the delocalized phase is well described
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FIG. 9: (Color online) (a) Inverse χ−1(T ) of the local static
susceptibility at different bosonic couplings g < gc or, equiva-
lently, δg ≡ (gc−g)/gc > 0, for (a) ǫ = 0.7, Γ = 1, and Λ = 4;
and (b) ǫ = 0.2, Γ = 0.01, and Λ = 3.

by

χ(T, ω = 0, g < gc) =
1

A+ aT 1−ǫ
. (17)

The same conclusions, once again, apply to ǫ = 0.2, as
seen in Fig. 9(b).
We close this section with two general remarks. First,

the exponent 1− ǫ describing the frequency dependence
(and, by extension, the temperature dependence), takes
the largest possible value that satisfies the Griffiths
inequality,21 which states that correlation functions de-
cay in time no faster than does the interaction [as spec-
ified in this case by Eqs. (26) and (27) below]. Second,
this frequency and temperature dependence only exists in
the delocalized phase for g 6= 0, implying that turning on
the coupling g to the bosonic bath within the delocalized
phase is a singular perturbation.

V. DISCUSSION

A. Implications of our results

We have considered in detail the critical behavior of
the local spin susceptibility of the sub-ohmic spin-boson
model calculated using the NRG. For four different bath
exponents spanning the range 0.2 ≤ ǫ ≤ 0.8, we have
confirmed that the leading term in the inverse static lo-
cal spin susceptibility has the T 1−ǫ temperature depen-

dence described by Eq. (4) and demonstrated that the
subleading term varies as T x2 with x2 > 1

2 .
This analysis allows us to assess the alternative inter-

pretations (as outlined in the Introduction) of the Monte-
Carlo results for the critical behavior of the local suscepti-
bility in a long-ranged classical Ising chain. In the regime
1
2 < ǫ < 1, the chain yields a temperature exponent of
1
2 . This originates from a dangerously irrelevant vari-
able, which also leads to a violation of ω/T scaling. In

particular, the T
1
2 dependence of of the inverse local sus-

ceptibility is not accompanied by a (−iω)
1
2 dependence

on frequency. These results differ from those of NRG
calculations for the quantum model.
The NRG results presented in Sec. III are consistent

with the interpretation advanced in Ref. 5 in the context
of the Bose-Fermi Kondo model, namely the difference
of the Monte-Carlo results from the NRG results and
reflects a violation of the quantum-to-classical mapping.
The latter is the result of a Berry-phase term, which we
discuss in the next subsection.
Our results are inconsistent with the interpretation put

forward in Refs. 13, 17 and 18, which advocates the va-
lidity of quantum-to-classical mapping. In this picture,
the intrinsic temperature dependence of the inverse crit-
ical local susceptibility of the NRG calculation should be
T

1
2 , which is masked by an artificial leading T 1−ǫ term.

We have shown here that there is no subleading T
1
2 term

in the NRG results.
Reference 18 suggested the possibility of removing the

leading T 1−ǫ term using an “NRG∗” procedure involving
NRG calculations for the spin-boson model supplemented
by an ad hoc Hamiltonian term containing a coefficient
that was adjusted until the inverse local susceptibility at
the QCP had a temperature exponent close to 1

2 . Figure
10 provides a schematic comparison between the tem-
perature dependences of the critical static local suscepti-
bilities produced by the NRG (our data from Sec. III A
above) and by the NRG∗ procedure (Figs. 7 and 8 of
Ref. 18). If the leading term in χ−1(T ) corresponded
to x = 1

2 , then corrections arising from any subleading

term with an exponent z > 1
2 would induce a crossover

in χ−1(T ) around some T ∗ to a higher-temperature be-
havior with a greater slope. Instead, the ǫ = 0.6 and
0.7 NRG∗ results of Ref. 18 appear to show a T z depen-
dence with z < 1

2 for T > T ∗. One should expect, based
on criticality, any such T z term to persist to sufficiently
low temperatures that it, not the T

1
2 term, dominates

the asymptotic behavior.
The T x2 subleading term in the temperature depen-

dence of the critical inverse static susceptibility is ac-
companied by a subleading term in the frequency depen-
dence of the inverse dynamical susceptibility of the form
(−iω)y2. Our results are compatible with y2 = x2 and, in
turn, with ω/T scaling for the subleading term (as well
as the leading term, where y = x). If one interprets both
the T x and T x2 terms in the temperature dependence as
artifacts of NRG, then any intrinsic term must vary with
a power of T even greater than x2; since x2 > 1

2 , such
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(cf. Figs. 2–5 of the present paper) and NRG∗ [cf. Figs. 7(b)
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line suggests that a T 1/2 dependence at T < T ∗ crosses over
at T > T ∗ to a T z dependence with a z smaller than 1

2
; this in

turn suggests that the asymptotic low-temperature behavior
has a temperature exponent less than 1

2
.

behavior would be inconsistent with the validity of the
quantum-to-classical mapping. Instead, the result rein-
forces the conclusion that the fixed point is interacting
and features ω/T scaling.
We now briefly discuss other critical exponents describ-

ing the variation of the local magnetization M = 〈Sz〉,
the corresponding susceptibility χ = ∂M/∂h|h=0, and
the (imaginary-time) correlation length ξτ in the vicinity
of the QCP:

M(T = 0, h = 0, g > gc) ∝ (g − gc)
β , (18)

M(T = 0, h, g = gc) ∝ |h|1/δ, (19)

χ(T = 0, g < gc) ∝ (gc − g)−γ , (20)

ξτ ∝ |g − gc|
−ν . (21)

An important conclusion from the NRG treatment of the
spin-boson model9 (as well as that of the Bose-Fermi
Kondo model4) is that, together with x and y, these expo-
nents satisfy hyperscaling relations22 expected to hold at
an interacting QCP. Ref. 18 argued that the NRG results
for δ and β are invalid for a reason that is entirely sep-
arate from mass-flow error, namely the NRG truncation
of the bosonic Hilbert space. (A variational procedure
has recently been proposed23,24 to circumvent the effects
of bosonic truncation.) However, it appears unnatural
that two independent sources of errors should conspire
to yield results that are consistent with hyperscaling.

B. Path integral and Berry phase

Any proper path integral requires taking the contin-
uum limit in time. The quantum critical properties of
the Bose-Fermi Kondo model or the spin-boson model
can be described within a proper path integral repre-
sentation. It was shown in Ref. 8 that the hyperscaling
observed in the large-N limit of the SU(N) × SU(M)

Bose-Fermi Kondo model even for 1
2 < ǫ < 1 can be un-

derstood as a consequence of a topological Berry-phase
term that characterizes the path integral over SU(N).
Thus, the breakdown of the quantum-to-classical map-
ping is not merely an artifact of the saddle point approx-
imation, and it survives the inclusion of 1/N corrections.8

The path integral over the group SU(2) also involves a
Berry-phase term that spoils the reinterpretation of the
resulting complex action in terms of a classical action. In
other words, the quantum-to-classical mapping cannot be
applied for N = 2 and the quantum critical properties
have to be obtained directly from the quantum model.
A proper path integral on SU(2) is given by the func-
tional integral on the Bloch sphere S2, the coset space of
SU(2). Every path on S2 is characterized by a geometric
phase independent of the spin Hamiltonian. It therefore
is natural to expect similar spin path integral represen-
tations for the SU(2) Bose-Fermi Kondo model and for
the spin-boson or easy-axis Bose-Fermi Kondo model.
It was observed in Ref. 16 that the construction of a

Feynman path integral for the spin-boson model through
a time-slicing procedure encounters difficulties in taking
the continuum limit when using the orthonormal eigen-
function basis of Sz. The standard procedure for circum-
venting this issue in the case of pure spin Hamiltonians
is to rewrite the short-time propagator as a transfer ma-
trix in spin space.25 A generalization of this method to
the spin-boson model rewrites the matrix element of the
infinitesimal (imaginary) time evolution operator as

〈σiφi|e
−Hτ0 |σi+1φi+1〉 = eφ

∗

i φi+1P
i,i+1, (22)

where P
i,i+1 is a matrix in the spin subspace, φ is a c-

number that labels the bosonic coherent states, eφ
∗

iφi+1 is
related to the bosonic Berry phase, and i indexes the time
slices. The matrix elements of P i,i+1 are then expressed
as the exponential of some function F (Si, Si+1) with Si =
±1:16

P
i,i+1

∣

∣

∣

Si,Si+1

= ea+b(Si+Si+1)+cSiSi+1 , (23)

with

a = 1
2

[

−ωτ0 φ
∗
i+1φi + ln(Γτ0)

]

,

b = − 1
2gτ0

(

φ∗
i+1 + φi

)

,

c = 1
2

[

−ωτ0 φ
∗
i+1φi − ln(Γτ0)

]

.

Inserting Eq. (23) into the expression for the partition
function

Z = Tr e−βH (24)

= A
M
∏

i=0

∑

σi=↑,↓

∫

dφ∗
i dφi e

−φ∗

iφi〈σMφM |e−Hτ0 |σ0φ0〉

×

M−1
∏

k=0

〈σkφk|e
−Hτ0 |σk+1φk+1〉
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(where A is a constant and τ0 = β/M), results in an ef-
fective action having the form of the action for a classical
spin chain coupled to the φ-fields with nearest-neighbor
interaction 1

2

[

−ωτ0 φ
∗
i+1φi−ln(Γτ0)

]

, which is singular as
τ0 → 0. However, the terms coupling the bosons are not
singular for τ0 → 0, making it difficult to regularize this
limit. Nonetheless, keeping track of both the transverse
magnetic field Γ and the coupling g to the bosonic bath
is essential given that the competition between these two
yields the QCP, and also that turning on g is a singular
perturbation (as discussed at the end of Sec. IV). A re-
lated way to see this difficulty is that, for τ0 → 0, the
Kondo-like energy scale goes to zero and the topological
effect encoded in the spin flips is suppressed.5

On the other hand, in a spin coherent-state represen-
tation of the spin-boson model, the continuum limit fol-
lowing a time-slicing procedure poses no difficulty. It
leads to a well-defined path integral representation for
the sub-ohmic spin-boson model [Eq. (1)]:16

Z =

∫

D[~n] exp[−Seff/2], (25)

where the effective action for the spin degrees of freedom
is

Seff = −iA[~n]−

∫ β

0

dτΓnx(τ) (26)

+
g2

2

∫ β

0

dτ

∫ β

0

dτ ′ nz(τ)χ
−1
0 (τ − τ ′)nz(τ

′),

where5

χ−1
0 (τ − τ

′

) =

∫ ∞

0

dω ω1−ǫ cosh[ω(β/2− |τ − τ
′

|)]

sinh(ωβ/2)
,

(27)
and ~n defines a point on S2 (|~n(τ)|2 = 1). The effec-
tive action of the sub-ohmic spin-boson problem in the
continuum limit contains the Berry-phase term −iA[~n],
where A[~n] is equivalent to the area on the sphere S2

traced out by ~n(τ) for 0 ≤ τ ≤ β with ~n(0) = ~n(β).
As discussed previously for models with continuous spin
symmetry8, the Berry-phase term in the action, being
imaginary, can invalidate the mapping of the quantum
action to a classical one.

VI. SUMMARY

We have revisited the critical behavior of the sub-
ohmic spin-boson problem. An analysis of the subleading
term in the temperature dependence of the inverse local
spin susceptibility at the quantum critical point as calcu-
lated using the numerical renormalization-group (NRG)
method has provided evidence that the instrinsic behav-
ior of the critical static spin susceptibility is given by
Eq. 4 with a non-mean-field exponent. More specifically,
we have examined the implications of our data for the
two interpretations of the difference (for 1

2 < ǫ < 1)

between Monte-Carlo calculations for a classical Ising
spin-chain and NRG calculations for the quantum spin-
boson model. The leading and subleading temperature
dependences of the critical local susceptibility are consis-
tent only with the interpretation that the classical spin-
chain model fails to capture the critical behavior of the
quantum model and that the criticality is described by
an interacting fixed point characterized by ω/T scaling.
This conclusion is further supported by the fact that the
subleading frequency dependence of the inverse critical
dynamical spin susceptibility has (within numerical un-
certainty) the same exponent as that for the subleading
temperature dependence of the inverse critical static spin
susceptibility.
These results provide evidence for the violation of

the quantum-to-classical mapping in the sub-ohmic spin-
boson model. We have discussed the effect of a Berry-
phase term in a continuum path-integral representation
for this model. The importance of the Berry-phase term
connects the violation of the quantum-to-classical map-
ping observed here with that seen in models with contin-
uous spin symmetry.
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cussions. This work has been supported by NSF Grants
No. DMR-0710540, DMR-1006985, and DMR-1107814,
and by Robert A. Welch Foundation Grant No. C-1411.
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