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We develop an analytical tool to extract bulk electronic properties of unconventional superconductors from
inelastic neutron scattering spectra. We show that the upward and downward branches of the spin excitation
spectra have distinct origins, with the upper branch representing a gapped spin-wave dispersion and the lower
branch associated with Bogoliubov quasiparticle scattering on the Fermi surface. Combined, they produce an
‘hour-glass’ dispersion with 45o rotation of the spectrum, as found experimentally. The downward dispersion
can be inverted to reveal the Fermi momentum dispersion of the single-particle spectrum as well as the corre-
sponding SC gap function, analogously to the quasiparticle interference effect in scanning tunneling microscopy
(STM). Whereas angle-resolved photoemission spectroscopy and STM provide surface sensitive information,
this inversion procedure provides bulk electronic properties. The technique is essentially model independent
and can be applied to a wide variety of materials.

PACS numbers: 74.25.-q,74.25.Jb,74.20.Rp,74.72.-h

I. INTRODUCTION

The study of cuprate superconductivity has led to the dis-
covery of a number of unexpected relationships between
seemingly different spectroscopies. Scanning tunneling mi-
croscopy (STM) provides an outstanding example of this:
while basically a real-space probe, it can extract momentum-
(k)-space information of the electronic Fermi surface and
SC pairing symmetry usually associated with angle-resolved
photoemission spectroscopy (ARPES). Elastic scattering of
Cooper pairs leads to the quasiparticle interference (QPI) pat-
tern measured by STM.1,2 By analyzing the QPI pattern as
a function of scattering angle (in q-space) it is possible to
reconstruct both band structure and gap information in k-
space. While the technique was originally developed for d-
wave cuprates, it is finding wide applications in other materi-
als, including pnictides, where the SC gap is probably of s±
symmetry, and in non-superconducting topological insulators.

The development of a similar technique for inelastic neu-
tron scattering (INS) has obvious advantages. First, ARPES
and STM are surface sensitive probes, which in practice
means that they can only be performed on materials that are
readily cleaved. For the same reason, they are mainly re-
stricted to quasi-two-dimensional materials, and the question
always remains how sensitive the results are to surface effects,
such as pinning, reconstruction, and excess scattering. In con-
trast, INS is a bulk probe which does not need special surface
preparation and can readily be applied to three-dimensional
materials. For instance, INS results on heavy fermion ma-
terials were available years before the first high-resolution
ARPES studies. Here we demonstrate that inelastic scatter-
ing between the particle and hole Bogoliubov quasiparticles
generates a similar magnetic quasiparticle scattering (MQPS)
profile which can be probed directly by INS measurements.3–5

Taking all three spectroscopies together, we are able to es-
tablish a definite consistency between the r−space (STM),
k−space (ARPES), and q−space (INS) dynamics of the un-
conventional Bogoliubov quasiparticles.

The overall phenomenology of neutron scattering in
cuprates is well-known, and a number of universal fea-
tures have been experimentally identified6–14 and theoretically
interpreted.3–5 The results indicate that a distinct low energy
magnetic mode is present near the antiferromagnetic nesting
vector Q = (π, π) in almost all the cuprates. The intensity of
this mode is enhanced in the SC state while its energy scales
ωres(Q) ∝ 2∆SC for all cuprates15,16, suggesting a close
connection of these modes with SC pairing. The dispersion
of spectral weight away from this resonance peak also has a
universal character, forming an ‘hour-glass’-like pattern cen-
tered on the resonance mode and displaying a 45o rotation
on passing through the resonance peak. Below the resonance
energy, spectral weight disperses along the Cu-O bond direc-
tion, while above the resonance the dispersion peak lies along
the diagonal direction. Despite an overall universality, many
features of this ‘hourglass’ dispersion are highly material spe-
cific and we show that the difference comes mainly from the
nature of the pseudogap order among other band structure re-
lated properties.

This paper is organized as follows. In Sec. II, we introduce
our inversion procedure and its analogy with the QPI pattern.
The microscopic description of the magnetic resonance peak
and its associated ‘hour-glass’ pattern is given in Sec III. In
this section, we have also used the experimental INS data and
ARPES data to reconstruct one from the other. The constant
energy profile or the magnetic quasiparticle scattering pattern
is given in Sec. IV, including the observation of several new
q-vectors away from Q = (π, π), 45o rotation of the constant
energy profile, and direct comparison with QPI patterns. We
discuss our results in the context of previous model calcula-
tions and conclude in Sec. V.

II. INVERSION PROCEDURE AND ITS ANALOGY WITH
QPI PATTERN

Recalling the QPI pattern:- We begin by describing the in-
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FIG. 1. (Color online) Origin of MQPS vectors. (a) Sketch of cuprate
constant energy cut, showing four ‘banana’-shaped regions (green
shapes) with intense spectral features at their tips (red dots). The
gap as a function of angle is shown on one banana (red and black
lines). Above the Fermi pocket, the superconducting gap is cut off
by a competing-order pseudogap (black solid line). On this gap curve
the contrasting behavior of QPI and MQPS vectors is illustrated: the
QPI vectors connect two banana tips at the same energy, as shown
by the long-dashed cyan line, while the MQPS vectors connect ba-
nana tips across the Fermi energy, from an electron tip at ω < 0
to a hole tip at ω > 0, shown by the dotted cyan arrow for the Q3

branch. For convenience the various MQPS vectors are defined by
projected horizontal arrows, labelled Q1 − Q3, illustrating the two
bright points that they connect. (b) The q-space representation of the
MQPS. Symbols represent theQi-vectors of the same color as shown
in (a). The associated arrows point in the direction that theQi vectors
shift with increasing energy along the Fermi surface. (c) The energy
and momentum dispersions of two Qi vectors are shown along the
diagonal direction [Qx = Qy]. [The intensity of Q3 is expected to
be low (see text).] The black solid line depicts the spin-waves which
are gapped below the SC gap while the black dashed line stands for
the gapless spin-wave (schematic) dispersion expected in the non-
superconducting state. (d) Both spin-wave (solid black) and MQPS
(solid blue) have monotonic intensity variation as a function of en-
ergy, and as they meet at Q, the total intensity (red line) attains a
sharp peak.

version procedure in INS, which is analogous to the common
inversion procedure performed using the QPI features in the
STM spectra. Fig. 1(a) depicts a typical form of the Fermi
surface (green shadings) which is assumed to be truncated be-
low the antiferromagnetic Brillouin zone due to the presence
of underlying pseudogap ordering. When the superconducting
gap has a d-wave form ∆k = ∆0(cos(kxa) − cos(kya))/2,

where a is the in-plane lattice constant, the spectral function
at any particular energy ω ≤ 2∆0 has a maximal intensity at
eight bright-pointsK(ω) that develop on four banana-pockets
which satisfy ω = ∆K(ω) (red dots). In STM experiments,
elastic scattering at energy ω is dominated by scattering be-
tween these points, leading to a form of Friedel oscillations
known as QPI, satisfying the condition1,2

ω = ∆K(ω) = ∆K(ω)+qi . (1)

The long-dashed cyan arrow in Fig. 1(a) illustrates one possi-
ble qi-vector.

Origin of MQPS:- The INS experiments, which measure the
imaginary part of the transverse spin-spin correlation function
χ′′, can also be understood through an analogy with the QPI
pattern.3,5 Indeed, since χ is related to the joint density-of-
states (JDOS), the neutron scattering will be dominated by
transitions from banana tips below the Fermi level to banana
tips above the Fermi level, as illustrated by the dotted cyan
arrow in Fig. 1(a). The energy of a particular transition will
be given by

ω(Qi) = |∆k|+ |∆k+Qi
| = ∆0 [|gk|+ |gk+Qi

|] , (2)

where the d-wave structure factor is gk = (cos (kxa) −
cos (kya))/2.

Similarity and differences between MQPS and QPI:- While
the same banana points contribute to both QPI and neutron
scattering, there are actually more q−vectors in the former
case. In elastic scattering there are 7 qi−vectors at any en-
ergy that connect a given banana point to the other banana
points.1,2 However, in INS there is a coherence factor which
allows only the poles for which ∆k and ∆k+Qi

have oppo-
site signs, since the magnetic neutron scattering cross-section
is odd under time-reversal symmetry.3–5 Hence we identify
three neutron scattering vectors which dominate in cuprates
and give rise to a spin excitation profile, which can be called
MQPS pattern, in analogy with the QPI patterns. The MQPS
vectors, shown in Fig. 1(a), can be denoted as Q1,2,3 ∼ q3,6,7

[we do not distinguish the QPI vectors q2 and q6 which have
the same length, denoting both as Q2], where the lower-case
qs are the corresponding QPI vectors.1,2

There is a second, more important difference from QPI.
Note that for fixed ω Eq. 1 is the equation of a point in q-
space, while Eq. 2 is the equation of a curve, because there
will be a different Qi for each pair ∆k and ∆k+Qi which
satisfy Eq. 2. However, we show below that this is not a
problem: the gap and FS can be reconstructed from INS data
along any Q − ω cut. INS data are mostly available along
the diagonal cut Qx = Qy , and along the bond direction, i.e.
[(π, 0)→ (π, 2π)] and equivalent cuts as a function of energy.
We therefore define the spanning vectors as Q1 and Q3 along
the diagonal direction and Q′1 and Q′3 along the bond direc-
tion [note that Q2 does not lie on these two special cuts]. The
diagonal cut is a particularly simple choice, since along this
cut the MQPS vectors are exclusively associated with special
points, for which ∆k = −∆k+Qi

. For these special points the
analogy with QPI becomes exact, with ωMQPS = 2ωQPI .
Along the bond direction, the situation is similar as discussed
below.
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The Q-space positions of the poles of Eq. 2, or the MQPS
pattern, are plotted schematically at a constant energy in
Fig. 1(b). The associated arrows indicate the direction each
vector moves as the excitation energy increases which is de-
termined by the shape of the Fermi pocket and the d-wave
superconducting gap values at each Fermi momentum, just as
for QPI. To see this, we draw an illustrative energy versus
momentum dispersion relation for the two Qi vectors along
the diagonal direction in Fig. 1(c). Branch Q1 disperses from
ω = 0, where the incommensurate Q1-vector connects pairs
of nodal points, and hence measures the width of the hole
pocket, to the resonance peak at (π, π) at energy ω = ωres
connecting the hot-spots at the boundary of the magnetic Bril-
louin zone – that is, Q1 is the dispersion branch associated
with the magnetic resonance peak. Branch Q3 represents
an intrapocket scattering, and the corresponding branch starts
from Q3 = 0, ω = 0 at the nodal point, dispersing towards
a Q3-vector which spans the length of the hole pocket when
ω = ωres. Thus both curves attain the maximal ω when the
banana points correspond to the hot spots along the Brillouin
zone diagonals – the maximal diagonals of the hole pock-
ets. A similar phenomenon is found in the experimental QPI
spectra.1,2 In summary, the inelastic MQPS intensity pattern at
an energy ω = 2∆ in neutron scattering exactly corresponds
to the elastic QPI pattern seen at an energy ω = ∆ in STM,
and hence can also be used to reconstruct the Fermi surface
and SC gap properties.

III. MAGNETIC RESONANCE PEAK AND
‘HOUR-GLASS’ DISPERSION

QP-GW Model:-To illustrate how the above results play out
in practice, we compare them to experiment and to realistic
calculations of INS. We calculate the INS spectrum of the
cuprates from a one-band Hubbard model, with self-energy
corrections from a GW calculation called the quasiparticle-
GW (QP-GW) model.17,18 The QP-GW hamiltonian consists
of four components which are calculated self-consistently:
HLDA + HSDW + HSC + Σ. The electronic dispersion,
HLDA, is based on a tight-binding fit to the material-specific
first-principles single band dispersion of the antibonding com-
bination of Cu dx2−y2 and O px/y orbitals.19 As in our earlier
analysis of QPI20, the pseudogap state is treated as a spin-
density wave (SDW), HSDW , based on a Hubbard term in the
Hamiltonian, which is treated using standard random-phase-
approximation (RPA) theory.21 Below Tc, d-wave SC order
develops HSC which couples naturally to the SDW state.22

The resulting energy spectrum is E(k) =
√

(Es)2(k) + ∆2
k,

where the non-superconducting dispersions for both spin
states are Es = ξ+(k) ± E0(k) [for E2

0 = ξ−(k)2 + G2,
ξ±(k) = (ξ(k) + ξ(k + Q))/2, ξ(k) is the non-interacting
band in the Bloch state, and G is the effective SDW gap
which produces the pseudogap above the antiferromagnetic
zone boundary]. The SDW gap causes a substantially recon-
structed Fermi surface (FS) at low-temperature as shown in
Fig. 2(c). At low temperature the d-wave superconducting
gap coexists with the SDW state. By fixing U and the pair-

ing interaction V , to account for the experimental values of
pseudogap and superconducting gap respectively (see Table
I), there are no free parameters in the susceptibility calcula-
tion. Finally, we calculate the self energy due to the magnetic
and charge excitations which renormalizes the overall disper-
sion by a momentum independent mass renormalization.

Spin susceptibility:-The full susceptibility is computed in
all spin channels within random phase approximation (RPA).
In RPA, the resonance pole is determined by the real part of
the Lindhard susceptibility, χ′0 which has a logarithmic diver-
gence at all the Bogoliubov quasiparticle scattering vectors.
Simultaneously χ′′0 possesses a discontinuous jump due to the
Kramer’s Kronig relation. In this spirit, the positive diver-
gence in χ′0 or the discontinuous jump in χ′′0 can be used as an
indicator of the observed magnetic spectra in the SC state. In
the SDW state, the situation is more complicated. Neverthe-
less, the overall phenomenology can be understood approxi-
mately from the imaginary part of the transverse spin suscep-
tibility which mainly consists of three important factors (see
appendix for more details):

χ′′0(q, ω) ≈ π

N

∑∑
k

A(k, q)C(k, q)δ(ω − ωres(k, q)).(3)

Here, ωres(k, q) = E(k) + E(k + q), which converges to
Eq. 2 on the Fermi surface [Es(k) = 0]. Since the INS spec-
trum is proportional to the RPA susceptibility χ′′, the asso-
ciated intensity of a given pole in the spectrum is controlled
mainly by the two coherence factors A and C associated with
antiferromagnetic zone folding and SC gap symmetry break-
ing, which can be approximated for the present discussion as

A(k, q) =
1

2

(
1− ξ−(k)ξ−(k + q) +G2

E0(k)E0(k + q)

)
, (4)

C(k, q) =
1

2

(
1− Es(k)Es(k + q) + ∆k∆k+q

E(k)E(k + q)

)
. (5)

At the normal state Fermi surface [Es(k) = 0], the su-
perconducting coherence factor reduces to C = 1/2(1 −
sgn(gk)sgn(gk+q)) which attains its maximum value of 1
whenever ∆k and ∆k+q have opposite signs, thereby explain-
ing why the spectrum is dominated by the three magnetic scat-
tering channels Qi with (i = 1 − 3). Furthermore, at small
|q − Q|, the SDW coherence factor, Eq. 5, simplifies23 to
A→ 1−(ξ−(k)+ξ−(k+q))G2/4E4

0(k) = 1−O((Q−q)2),
which attains its maximum value of 1 at q = Q. This ex-
plains why, since the Q1 branch is closer to Q, its intensity
dominates over the other branches and the intensity gradually
increases to its maximum value at Q.

Upward and downward dispersion:- Fig. 2 presents our
main result, showing that the dominant spectral features in
neutron scattering correspond exactly to the MPQS features,
in a SDW superconductor. For a specific example we ana-
lyze YBa2Cu3O6+y (YBCO). The color plots in Fig. 2(a) and
2(b) show two-dimensional q−ω intensity maps of the calcu-
lated imaginary part of the RPA spin susceptibility (χ′′) along
the diagonal and the bond directions for YBCO at y = 0.85.
Shown superimposed on the left side of Fig. 2(a) are the cal-
culated MQPS dispersions, with Q1 = (π ± δ, π ± δ) plot-
ted as a dashed blue line and Q3 = (±δ,±δ) as a dashed
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FIG. 2. (Color online) Reconstruction of Fermi surface from the
INS spectra. (a)-(b) Computed χ′′(q, ω) is plotted along the diago-
nal and bond directions respectively (see inset) in the superconduct-
ing state of YBCO. The experimental data for YBCO6+y are shown
in various symbols [green stars (y = 0.85) =Ref. 8, blue squares
(y = 0.85) =Ref. 12, blue triangles (y = 0.95)=Ref. 24]. The data
along the bond direction in (b) are obtained for y = 0.6 (red sym-
bols) from Ref. 25. The blue and cyan dashed lines in (a) are the
plot of Eq. 2 for Q1 and Q3 (red and yellow dashed lines are for
corresponding equivalent vectors Q′

1 and Q′
3 along bond directions

in (b)). The brown symbols give the resonance spectrum calculated
from Eq. 2 using ARPES dispersions26 for y = 0.6 as input [see (c)].
The experimental and theoretical lines are only plotted in one side of
two equivalent directions for clarity. We plot χ′′(q, ω) in log-scale
to highlight weaker features. The black line is a guide to the eye
for the dispersion expected for gapped spin-waves, which constitutes
the upward dispersion in the resonance spectrum. (c) Plot of com-
puted Fermi surface of YBCO. The black symbols are the locus of
the Fermi momenta determined from the experimental neutron data
shown in (a) solving Eq. 2 while red symbols are the same but along
the bond direction shown in (b). The brown symbols are the ARPES
Fermi surface from Ref. 26. All symbols have four-fold symmetry,
but are plotted here only along one particular quadrant for visualiza-
tion. The blue and red arrows are the scattering vectors Q1 and Q′

1.
The light-blue arrow represents Q3(ωres), which spans the length of
the hole pocket. (d) The extracted superconducting gap is plotted as
a function of Fermi surface angle [0o being the antinodal direction
and 45o the nodal direction] from the neutron data of (a) and (b),
compared to the ARPES data (brown symbols) of Ref. 27 and the
present theoretical curve.

cyan line, computed from Eq. 2. Similarly, in Fig. 2(b)
the dashed red [yellow] line represents the equivalent branch
along the bond direction: Q′1 = (π, π ± δ)/(π ± δ, π)
[Q′3 = (π,±δ)/(±δ, π)]. We find good agreement with
the experimental results, represented by symbols of various
colors8,12,24,25, on the right-hand side Figs 2(a) and 2(b).

Along both momentum cuts an intense resonance feature
is seen at (π, π), connecting to two oppositely dispersing
branches at higher and lower energies. The downward branch
is the MQPS branch in which Q1 and Q3 scatterings are ob-
served. The upward branch has a different origin, related to
the residual spin-density wave. At half-filling, the upward
spin-wave branch is linear and extends to a zero-energy Gold-
stone mode at Q = (π, π)21, see Fig. 6(a). When supercon-
ductivity is turned on, this Goldstone mode acquires a gap
ω < 2∆0, and the upward and downward dispersions coex-
ist and meet at the resonance energy. Note that the upward
dispersing branch can not be reproduced in a paramagnetic
metallic state or in any other time-reversal symmetry invari-
ant ground-state as discussed in Sec. V below.

Why does bond direction obtain stronger intensity than the
diagonal one? There are two main sources of intensity vari-
ation for each Q-vector. As discussed earlier, the SDW co-
herence factor is strongly momentum dependent and reaches
a maximum at Q. Since branch Q3 stops dispersing well
before it reaches Q, its intensity is relatively low while the
Q1 branch gains more intensity as it moves towards the reso-
nance. The equivalent Q′1 (Q′3) branch along the diagonal di-
rection in Fig. 2(b) has twice as large intensity as Q1 (Q3) in
Fig. 2(a). This is due to an overall degeneracy factor. The scat-
tering vectors Q′1,3 have one commensurate direction and one
incommensurate one while Q1,3 are incommensurate along
both x− and y−directions except at the resonance at Q. Thus
Q′1,3 connect twice as many Fermi surface points as any other
Q1,3. As a result the intensity of the magnetic spectrum along
the bond direction [in Fig. 2(a)] is twice as large as that along
the diagonal direction [in Fig. 2(a)]. Therefore, below the res-
onance peak the intensity profile is rotated along the bond-
direction as shown in Fig. 3(a).

Extracting Fermi surface and gap information:- Now, the
hole-pocket Fermi surface and the d-wave superconducting
pairing can be extracted from the INS data and vice versa. The
lower branch of the experimental data which disperses down-
ward from (Q,ωres) is associated with the Q1 scattering vec-
tors. Therefore, by solving Eq. 2 at the experimental points in
Fig. 2(a) and 2(b), we determine a map of kF (black and red
dots) which agrees very well with the theoretical Fermi sur-
face as well as with the ARPES FS in Fig. 2(c). Note that we
find the same Fermi surface by utilizing the diagonal cut Q1

[black dots in Fig. 2(c)] or the bond direction Q′1 [red dots].
The light blue arrow in Fig. 2(c) shows howQ3 at ωres can be
used to determine the length of the hole pocket. Notably, re-
cent studies have been able to extract weaker features from the
INS data28, suggesting that determination of the remainingQ-
vectors may soon be possible. Alternatively, if the inversion
is guided by a model calculation, the Q1 vectors alone can
provide valuable information about the pocket shape.

Reconstructing INS spectra from ARPES Fermi surface:-
For a cross-check, we use the experimental FS [brown open
symbols in Fig. 2(c)] and gap measured by ARPES26 to com-
pute the magnetic resonance spectra by solving Eq. 2, brown
open symbols in Fig. 2(a). This agrees well with the INS data.
Furthermore, the extracted values of kF versus ω can be used
to determine the underlying superconducting gap symmetry
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using Eq. 2 which assumes dx2−y2−symmetry. This also
agrees well with ARPES data27 and the present theory, see
Fig. 2(d). The superconducting gap can be extracted up to the
edge of the magnetic Brillouin zone or the hot-spot [φ ∼ 15o],
above which the pseudogap dominates in the spectrum and the
MPQS features can no longer be followed.

IV. MQPS PATTERN AND COMPARISON WITH QPI
PATTERN

MQPS versus QPI:- Combining the MQPS and spin wave
spectra, Fig. 3 compares the ω-evolution of our present the-
oretical MQPS maps [Fig. 3(a)] with corresponding experi-
mental data [Fig. 3(b)]. In the low-energy region, the mag-
netic scattering profile of Fig. 3(a1) has the highest intensity
(red) along a square centered at (π, π). The intensity is larger
along the bond-directions than along the diagonal as discussed
above, consistent with experiments shown in the correspond-
ing lower panel. It should be noted that the experimental INS
data plotted in Fig. 3 are obtained after subtracting out the nor-
mal state contribution [χ′′(15 K)-χ′′(100 K)] to remove the
background subtraction and enhance weaker features. This is
why the MQPS pattern here looks much brighter than in other
existing data sets. We note that there are hints of weak features
corresponding to Q2,3, although these are close to the noise
level. The intensity variation in the equivalent Q points of the
same Brillouin zone might be related to orbital form factors
and other extrinsic effects, as observed, e.g., in ferroelectric
materials.29 Fig. 3 also compares a QPI map [only available
for Bi2212], in Fig. 3(c), with a neutron scattering map of the
odd channel in YBCO, in Fig. 3(d). Again, there are hints
of the three high-symmetry vectors Q1,2,3 (and two equiva-
lent vectors along the bond direction Q′1,2) in Fig. 3(d) which
correspond to the q3,6,7 vectors in the QPI map in Fig. 3(c)
[denoted by circles of the same colors], but these features re-
main close to the noise level.

45o rotation of the spectra in going from MQPS to spin-
wave dispersion:- With increasing energy, at the resonance
[Fig. 3(a2)] the intensity piles up at (π, π) with tails dispers-
ing towards q = (0, 0) similar to what was recently seen in
Hg-based compounds.28 Above the resonance, Fig. 3(a3), the
magnetic spectrum is purely spin-wave based and the profile
is rotated along the diagonal direction, as found experimen-
tally. In the above calculations, we have assumed that the
superconductivity couples to the SDW order. When, the spin-
wave spectrum of upward dispersion and the MQPS of down-
ward dispersion meet at the commensurate antiferromagnetic
vector Q = (π, π), a resonance peak in the intensity oc-
curs. The SDW coherence factors play an important role in
distributing the intensity over the entire magnetic spectrum,
Eq. 4. Furthermore, the QPI-MQPS correspondence is ob-
scured when the non-superconducting state becomes param-
agnetic. While the Qi-vectors still play a significant role, the
magnetic resonance peak is shifted to a lower energy at a pole
of the dynamic susceptibility5. In the magnetic superconduct-
ing ground state, the susceptibility peaks correspond to the
MQPSQi(ω), with ω given by Eq. 2, as shown in Figs. 2a, 2b.

V. DISCUSSIONS AND CONCLUSIONS

Thus, we provide a simple explanation for the hourglass-
shaped INS spectrum commonly seen in cuprates and other
correlated materials.

The upward-dispersing branch is a signature of the com-
peting order. Thus, models based on a pure superconduct-
ing phase with no competing order3–5,30,31 are unable to ex-
plain this feature. Furthermore, if the competing phase is as-
sumed to be a pure charge-density wave or d-density wave
phase32, the corresponding Goldstone modes are not time-
reversal symmetry breaking, and hence will not be able to
account for the experimental observations. Furthermore, the
time-reversal breaking orbital order phase will have a reso-
nance peak concentrated at q = 028,33 instead of the present
q = Q mode. On the other hand, if the competing order
is magnetic, as in our SDW model but also in many mod-
els of stripes34, then the Goldstone modes are spin waves,
and so can explain the upper-branch dispersion. We note that
since the dispersion starts at a finite frequency, it is not nec-
essary that the competing order be long-range, but only that
there are significant short-range correlations. A demonstra-
tion that the competing order is magnetic is very significant,
since a number of calculations have found that magnetic fluc-
tuations can play an important role as the glue for high-Tc
superconductivity.35,36 The hourglass shape has also been ob-
served in La2−xBaxCuO4, which has stripe order but only
fluctuating superconductivity13. This suggests that there may
be competing magnetic orders present.37

The resonance peak:- The MQPS and spin-wave both pre-
dict a gradual increase of intensity as one approaches the Q
point, see Fig. 1(d), but neither acting alone can generate a
true peak in the intensity, as has been demonstrated in earlier
calculations.3,4 In the present case of SDW+SC, we find that
when the upward and downward dispersion of different ori-
gin meet at Q, the intensity diverges and a true peak in the
intensity occurs, Fig. 4(c). In other words, the resonance peak
represents the mass gap of the Goldstone mode of the phase
competing with superconductivity within the present model.

The downward-dispersing branch can be used to recover
the angle-dependence of the superconducting gap and the un-
derlying Fermi surface of the material when superconductiv-
ity is turned off. In contrast to the upper branch, this behav-
ior is universal. Thus, if its resolution of can be increased,
INS stands poised to become a powerful tool for extracting
important fundamental bulk information on many correlated
systems of high current interest.

We note that our model of a combined SDW+d-wave SC
ground state for the cuprates captures all three of the above
key features of the spin excitation spectrum. The QP-GW
model was designed to be the simplest model which could
describe both intermediate-strength correlations and compet-
ing order in the cuprates. The INS results confirm that the
leading competing order is strongly magnetic in nature. The
most natural extension of the QP-GW model would thus seem
to be one with an incommensurate competing order37. While
the deeply underdoped regime could be the home of strikingly
new physics38, we note that the QP-GW model has been quite
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FIG. 3. (Color online) Comparison of MQPS maps with experimental QPI maps. (a1)-(a3) Computed spectra of χ′′(ω) are plotted in
logarithmic scale for three representative constant energy cuts, below the resonance, near the resonance, and above the resonance. (b1)-(b3)
The corresponding experimental data of YBCO6.95 from Ref.11 for the acoustic channel, obtained after subtracting the corresponding normal
state data, which can enhance weak features away from Q. The white arrows in the experimental curves were used in the discussion in Ref.11.
(c) A QPI map of the STM data2 for Bi2212 is compared with the MQPS map of INS in (d). The MQPS spectrum is chosen in (d) for the
optical channel to ease comparison with QPI maps as the magnetic profile is rotated here along the diagonal direction. We note that QPI are
usually plotted in the range [−π to π] while the neutron scattering is plotted in the range [0 to 2π]; the dashed box in (c), (d) represents the
range [0 to π] to be compared. In (a1), (b1) and (d), circles of various colors depict various MQPS vectors while the circles with same colors
in (c) are the corresponding QPI vectors.

successful in describing optical and ARPES spectra in this
regime.17,39.

Conclusions: In summary, we have shown that while a
spin-wave spectrum of collective mode origin persists at all
dopings both in electron (in Appendix C) and hole doped
cuprates including at half-filling, it becomes gapped in the
low-energy region ω < 2∆ where the spectrum is dominated
by the Bogoliubov scatterings of Cooper pairs. When the spin-
wave spectrum of upward dispersion and the magnetic scatter-
ing of downward dispersion meet at the commensurate antifer-
romagnetic vectorQ, a resonance peak in the intensity occurs.
INS spectroscopy is the only probe which can be utilized to re-
construct the Fermi surface and superconducting properties of
the actual bulk ground state. Our method of analysis is inde-
pendent of any particular model and can be performed entirely
from experimental inputs. Therefore, this inversion procedure
can also be used to extract the bulk Fermi surface topology
and pairing symmetry in newly discovered iron-selenide,40,41

pnictide, chalcogenide42,43 and heavy fermion44–46 supercon-
ductors in which this information is still not settled. We also
predict that the present formalism can be used to detect elec-
tron pockets on the cuprate Fermi surface, if they are present
in the bulk ground state.
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Appendix A: Susceptibility in SDW+d-wave SC state

Since the SDW state causes a unit cell doubling, the corre-
lation functions (Lindhard susceptibilities) are tensors in mo-
mentum space representation.21 We define the susceptibilities
as the standard linear response functions

χij(q, q′, τ) =
1

2N

〈
TτΠi

q(τ)Πj
−q′(0)

〉
(A1)
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where the response operators (Π) for the charge and spin den-
sity correlations respectively are

ρq(τ) =
∑
k,σ

c†k+q,σ(τ)ck,σ(τ), and

Siq(τ) =
∑
k,σ,γ

c†k+q,σ(τ)σiσ,γck,γ(τ). (A2)

The σi represent two dimensional Pauli matrices along ith

direction and ck,σ(c†k,σ) is the destruction (creation) opera-
tor of an electronic state at momentum k and spin σ. For
transverse spin response S± = Sx ± iSy whereas longi-
tudinal fluctuations are along the z−direction only. In the
present (π, π)-commensurate state, charge- and longitudinal
spin-fluctuations become coupled at finite doping. In common
practice the transverse, longitudinal spin and charge suscepti-
bilities are denoted as χ+−, χzz and χ00 respectively. We col-
lect all the terms into a single notation as χσσ̄ where σ̄ = σ
gives the charge and longitudinal components and σ̄ = −σ
stands for the transverse component. For the pure SDW state
Eq. A1 can be evaluated rigorously. Here we generalize ear-
lier calculations21 for realistic cuprate band structures. For the
combined SDW+dSC state

χσσ̄ij (q, ω) =
1

Nβ

∑
k,n,s

Gis(k, σ, iωn)Gsj(k + q, σ̄, iωn + ω)

(A3)

=
1

N

′∑
k,νν′

Aσσ̄νν′,ij

3∑
m=1

Cmνν′χmνν′(k, q, ω). (A4)

We obtain Eq. A4 from Eq. A3 after performing the Matsub-
ara summation over n. G is the 4 × 4 single-particle Green’s

function in the Nambu space, constructed from the Hamilto-
nian given in the main text. The summation indices ν(ν′) = ±
refer to the two split SDW bands. Here, the coherence factor
due to SDW order in the particle-hole channel is,

Aσσ̄νν′,11/22 =
1

2

(
1± νν′

ξ−k ξ
−
k+q + σσ̄(US)2

E0kE0k+q

)
,

Aσσ̄νν′,12/21 = −νG
2

(
σ

E0k
+ νν′

σ̄

E0k+q

)
. (A5)

The SC coherence factors are

C1
νν′ =

1

2

(
1 +

Es,νk Es,ν
′

k+q + ∆k∆k+q

EνkE
ν′
k+q

)
,

C
2/3
νν′ =

1

4

(
1±

Es,νk

Eνk
∓
Es,ν

′

k+q

Eν
′

k+q

−
Es,νk Es,ν

′

k+q + ∆k∆k+q

EνkE
ν′
k+q

)
.

(A6)

Lastly the indexm represents the summation over three polar-
ization bubbles related to the quasiparticle scattering (m = 1),
quasiparticle pair creation (m = 2) and pair annihilation
(m = 3), as defined by

χ1
ν,ν′(k, q, ω) = −

f(Eνk)− f(Eν
′

k+q)

ω + iδ + (Eνk − Eν
′

k+q)
, (A7)

χ2,3
ν,ν′(k, q, ω) = ∓

1− f(Eνk)− f(Eν
′

k+q)

ω + iδ ∓ (Eνk + Eν
′

k+q)
. (A8)

In the RPA model, the 2× 2 susceptibility is obtained from
the standard formula21

χσσ̄RPA,11(q, ω) =

[
1 + σσ̄Uχσσ̄22 (q, ω)

]
χσσ̄11 (q, ω) + U

[
χσσ̄12 (q, ω)

]2[
1− Uχσσ̄11 (q, ω)

][
1 + σσ̄Uχσσ̄22 (q, ω)

]
+ σσ̄

[
Uχσσ̄12 (q, ω)

]2 , (A9)

χσσ̄RPA,22(q, ω) =

[
1− Uχσσ̄11 (q, ω)

]
χσσ̄22 (q, ω) + U

[
χσσ̄12 (q, ω)

]2[
1− Uχσσ̄11 (q, ω)

][
1 + σσ̄Uχσσ̄22 (q, ω)] + σσ̄

[
Uχσσ̄12 (q, ω)

]2 , (A10)

χσσ̄RPA,12/21(q, ω) =
χσσ̄12 (q, ω)[

1− Uχσσ̄11 (q, ω)
][

1 + σσ̄Uχσσ̄22 (q, ω)] + σσ̄
[
Uχσσ̄12 (q, ω)

]2 . (A11)

In the longitudinal and charge channel (σ̄ = σ), the RPA cor-
rections do not introduce any pole and thus all the normal
structure lies above the charge gap in the particle-hole con-
tinuum. Along the transverse direction (σ̄ = −σ), a linear
spin-wave dispersion develops in the normal state which ex-
tends to zero energy atQ = (π, π).21 The necessary condition
to yield a gapless Goldstone mode is that Eqs. A9-A11 re-
duce to the self-consistent SDW order parameter, G at q = Q,
which is indeed the case in the normal state.

In the SC state, this zero energy spin-wave shifts to ω =
|∆kF

|+ |∆kF +q|, due to the particle-particle (and hole-hole)

scattering terms χ2,3 in Eq. A8. These terms have finite inten-
sity only if the SC gap changes sign at the ‘hot-spot’ q,3 see
Eq. A6. Above the SC gap, the spin-wave term coming from
Eq. A7 is turned on. The crossover between them creates the
‘hour-glass’ pattern presented in Fig. 2.

Appendix B: Mechanism of MQPS

The result shown in Fig. 2 of the main text is obtained from
a coexisting state of SDW and d-wave SC order within the
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Material Doping (x) ∆pg (meV) U/t ∆sc (meV) Pairing Potential Tc K ωres

(Exp./Theory) (Theory) (Exp./Theory) V (meV) (Theory) Exp.(Theory) Exp. (Theory)
NCCO 0.15 60 [Ref. 47] 4.1 3.5 [Ref. 48] -26 24 (37) [Ref. 48] 4.5 (5) [Ref. 47]

YBCO6.85 0.21 50 [Ref. 49] 2.5 35 [Ref. 24] -98 92 (160) [Ref. 24] 41 (40) [Ref. 8]

TABLE I. Order parameters of the model. Experimental gap values and the resulting self-consistent values of the order parameters. Given
the order parameters, theoretical values of ωres are calculated and compared with experiment. The value of U/t (where t is nearest-neighbor
hopping parameter) is chosen to reproduce the experimental peudogap (∆pg) whose values are presented here along the ‘hot-spot’ direction
in the electron doped case and the antinodal direction for all hole doped cuprates. The value of U is in close aggrement with our previous
calculations.17,39 Similarly, the parameter value of pairing potential V is taken to reproduce the superconducting gap (∆), whose maximum
value along the antinodal direction is presented here.50 Our mean-field calculations overestimate the values of Tc, presumably due to the
neglect of phase fluctuations.35
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FIG. 4. (color online) The real and imaginary part of bare suscep-
tibility χ0 is shown in (a) and (b) respectively for YBCO. (c): Cor-
responding RPA result plotted in a logarithmic intensity scale as in
the case of Fig. 2 of the main text. (d): All three susceptibilities are
shown at the commensurate momentum cut.

RPA framework. To understand the origin of the observed
resonance behavior, we decompose the resonance spectra of
Fig. 2(b) into its bare components as shown in Fig. 4. Fig-
ure 4(a) and 4(b) show the real and imaginary parts of the bare
susceptibility, which are related to each other by the Kramers-
Kronig relation. Where the real part obtains a logarithmic
divergence (blue line in Fig. 4(c)) the corresponding imagi-
nary part possesses a discontinuous jump at the same location
(green dashed line in Fig. 4(c)). Within RPA, a resonance is
possible when the condition χ′0 = 1/U is satisfied. In the
region where χ′0 is greater than zero and also attains a diver-
gence, a resonance can occur for a large range of U . In this
spirit, a true resonance spectrum within RPA can simply be
identified by tracing the divergences in χ′0 or by tracking the
sudden peaks in χ′′0 . We emphasize that this argument holds
even for multiband pnictide superconductors.43

(a) (b) 

FIG. 5. (color online) INS calculations for electron-doped NCCO.
(a): The spin-wave dispersion in the normal state at x=0 in electron
doped NCCO along the diagonal direction compared with experi-
mental data for LCO. (b), The INS spectrum for optimally doped
NCCO. The theoretical spectrum is compared with the available ex-
perimental data of another electron doped compound PLCCO at the
latter’s optimal doping. Due to the small superconducting gap, the
resonance energy is much lower in the electron doped case [arrow
in the inset in Fig. (b)]. The incommensurate magnetic dispersion
branches extending to zero energy are MQPS scattering associated
with a hole pocket which develops near the magnetic quantum phase
transition.

Appendix C: Magnetic resonance spectra in electron doped
cuprate

Our analysis works equally well for other cuprates, but with
strong band-structure related modifications. Here we illus-
trate some issues in an electron-doped cuprate, NCCO, us-
ing the parameters from Table I. In Fig. 5(a), we show that
the model well reproduces the experimental spin wave spec-
trum of the undoped material, with a characteristic dispersion
ω(q) ∼ |Q − q|, as depicted by the black line in Fig. 6(a).
Since the SC gap is much smaller, the resonance peak falls at
a much lower energy, but this is still well captured by theory,
Fig. 6(b). Note that the resonance peak is gapped, but has a
spin wave branch dispersing to higher energies. MQPS disper-
sions play an interesting role in the incommensurate branches
of excitations which extend to ω = 0. They are associated
not with the main electron pockets, but with a subsidiary hole
pocket that opens close to the SDW quantum critical point.
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Something similar happens in hole doped cuprates, where
as doping increases toward the quantum critical point of the
SDW state (which occurs slightly above optimal doping),
electron pockets begin to form at the antinodal points. These
new pockets have their own QPI, with associated banana-
points at energies higher than the Q resonance. Neutron scat-
tering experiments should also be able to detect these electron

pockets, which may be observed in quantum oscillation ex-
periments. We also note that in a paramagnetic ground state,
the magnetic scattering of the superconducting pairs survives
above the resonance at all dopings and thus the model fails to
explain the hour-glass features, and predict other spurious res-
onance energy scales which are not observed in experiments.
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