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We study thermodynamic properties of the clinoatacamite compound, Cu2(OH)3Cl, by consider-
ing several approximate models. They include, the Heisenberg model on (i) the uniform pyrochlore
lattice, (ii) a very anisotropic pyrochlore lattice, and (iii) a kagomé lattice weakly coupled to spins
that sit on a triangular lattice. We utilize exact diagonalization of small clusters with periodic
boundary conditions and implement a numerical linked-cluster expansion approach for quantum
lattice models with reduced symmetries, which allows us to solve model (iii) in the thermodynamic
limit. We find a very good agreement between the experimental uniform susceptibility and the
numerical results for models (ii) and (iii), which suggest a weak ferromagnetic coupling between the
kagomé and triangular layers in clinoatacamite. We also study these thermodynamic quantities in
a geometrical transition between a planar pyrochlore lattice and the kagomé lattice.

PACS numbers: 75.10.Jm, 05.50.+q, 75.40.Cx, 05.70.-a

I. INTRODUCTION

The kagomé and pyrochlore lattices are among the
archetype systems for highly frustrated magnetism, with
both lattices displaying corner-sharing frustrated plaque-
ttes (triangles for the two-dimensional kagomé lattice and
tetrahedra for the three-dimensional pyrochlore lattice).
There is also a geometric connection between the two
lattices, as the pyrochlore lattice is composed of alter-
nating kagomé and triangular lattice planes stacked on
top of each other (along the 〈1 1 1〉 body diagonal in typ-
ical cubic spinels that display a pyrochlore lattice). This
leads to the possibility of structural pyrochlore lattices
where magnetic interactions differ within kagomé planes
and between the kagomé and triangular planes.

Several three-dimensional (3D) pyrochlore lattice ma-
terials have been shown to decouple into kagomé planes
ordered antiferromagnetically1,2 or ferromagnetically3,4

that are fairly well isolated from the neighboring trian-
gular plane spins. The Zn-paratacamite mineral fam-
ily, ZnxCu4−x(OH)6Cl2 with x ≥ 0.3 features spin- 1

2

Cu2+ ions arranged on an antiferromagnetically coupled
kagomé lattice alternating with triangular lattice layers
occupied by either Cu or nonmagnetic Zn ions. The
x = 1 endmember of this family, herbertsmithite, has
attracted interest as a strong candidate to display a spin
liquid ground state on almost perfectly decoupled two-
dimensional (2D) kagomé layers.5–7 However, the best
available samples are likely not stoichiometric,8 with a
small fraction of Cu ions on the triangular lattice planes
weakly (of order 1 K) coupled to the kagomé planes.9

Materials such as YBaCo4O7
10 and Y0.5Ca0.5BaCo4O7

11

also feature alternating kagomé and triangular layers, but
with a stacking that is structurally distinct from the py-
rochlore lattice.

Here, we are interested in the properties of the
mineral clinoatacamite,12 a monoclinic polymorph of
Cu2(OH)3Cl, that crystallizes in the P21/n space group
and features spin- 1

2
Cu2+ ions decorated on a distorted

pyrochlore lattice. The mineral is the extension of the
Zn-paratacamite family to x = 0, with the monoclinic
distortion that occurs for x < 0.3. Clinoatacamite has
drawn attention in recent years13–18 in part due to its
unique pyrochlore structure and in part due to the still
unexplained nature of successive phase transitions. Some
studies15,18 have described the lattice as consisting of
distorted kagomé layers coupled weakly through trian-
gular layers of out-of-plane spins. Others have suggested
a pyrochlore structure with significant couplings of all
Cu spins.13,17 Susceptibility and specific heat measure-
ments display two transitions upon cooling, at Tc2 = 18 K
and Tc1 ≈ 6.4 K. Long range magnetic order16,19 and
a weak ferromagnetic moment are present below Tc1.
For temperatures Tc1 < T < Tc2 muon oscillations are
observed14 suggesting a static local moment, which was
originally attributed to Néel order, while neutron diffrac-
tion experiments find no sign of ordering in this tem-
perature range, and the specific heat anomaly at Tc2 is
too small for the entropy change expected at an order-
ing transition. Further analysis of this unusual phase
between 6.4 K and 18 K would be aided by a complete
knowledge of the local bond strengths in this distorted
lattice.

In this work, we study thermodynamic properties
of the clinoatacamite compound by considering as ap-
proximate descriptions; the antiferromagnetic Heisenberg
model on (i) a uniform pyrochlore lattice, (ii) a very
anisotropic pyrochlore lattice, which can be seen as a
quasi-two-dimensional model, and (iii) a kagomé lattice
with weak ferromagnetic coupling to (otherwise discon-
nected) spins sitting on a triangular lattice, i.e., a two-
dimensional model. We calculate the spin susceptibil-
ity, specific heat and entropy for these models using ex-
act diagonalization (ED) of small clusters with periodic
boundary conditions and, only for model (iii), by means
of a new implementation of the numerical linked-cluster
expansions (NLCEs)20,21 on an anisotropic checkerboard
lattice that displays the required geometry. NLCEs yield
exact results in the thermodynamic limit and, there-
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fore, enable more accurate comparisons with experiments
while also helping us gauge finite size effects in the exact
diagonalization calculations. Using this method, we com-
pare the experimental spin susceptibility from magneti-
zation measurements with the numerical results and find
very good agreement in a wide range of temperatures.
Using ED, we also examine models (i) and (ii) and find
that results from (i) are inconsistent with experimental
data for the susceptibility.
Furthermore, we apply the NLCE method to a

more general anisotropic checkerboard lattice Heisenberg
model, and tune the ratio of certain exchange constants
to capture the evolution of thermodynamic quantities in
a transition from the planar pyrochlore to the kagomé
lattice. These results provide further insights on the na-
ture of the spin interactions in the clinoatacamite mate-
rial and on the effect of frustration in the kagomé and
pyrochlore lattices.
The paper is organized as follows: In Sec. II, we intro-

duce the different models utilized to describe the clinoat-
acamite compound. Section IIA presents the pyrochlore
lattice and its very anisotropic quasi-two-dimensional
version, which we use to model clinoatacamite. Sec-
tion II B is devoted to the two-dimensional model used.
We show how it can be seen as a Heisenberg model on
an anisotropic checkerboard lattice, and discuss its re-
lationship to the uniform kagomé lattice and the pla-
nar pyrochlore lattice. We also describe how NLCEs can
be generalized to solve quantum lattice models with re-
duced symmetries, and in particular to solve our two-
dimensional model for clinoatacamite. In Sec. III, we
report the uniform susceptibility of clinoatacamite as
measured experimentally and our numerical results for
the uniform susceptibility, specific heat, and entropy ob-
tained within the different theoretical models by means
of ED and/or NLCE. Finally, our results are summarized
in Sec. IV.

II. APPROXIMATE MODELS FOR

CLINOATACAMITE

A. The isotropic and quasi-two-dimensional

pyrochlore lattices

Clinoatacamite contains three crystallographically dis-
tinct Cu sites, such that the crystal structure consists
of kagomé planes of Cu2 and Cu3 sites alternating with
triangular planes of Cu1 sites.13 These sites are distin-
guished primarily through the Cu-O-Cu bond angle, with
an average angle of about 96◦ for bonds involving a Cu1
site and an average angle of about 118◦ for bonds within
the Cu2-Cu3 distorted kagomé plane. (While the dis-
torted lattice structure leads to some further variation
within these averages, the differences are small com-
pared to the difference in average angles for the in-plane
and between plane cases.) On the basis of these differ-
ences, it has been suggested that clinoatacamite should

be thought of as a very anisotropic pyrochlore (quasi-2D)
lattice Heisenberg model with antiferromagnetic kagomé
planes weakly coupled to triangular planes .15 Within this
scenario, and based on bond angle considerations, the ex-
change interaction between layers is likely ferromagnetic
and about one order of magnitude smaller than the an-
tiferromagnetic in-plane one.
Other works have emphasized the µ3-OH bridging ge-

ometry of clinoatacamite, and suggested that the mate-
rial is best thought of as a distorted pyrochlore magnet
with exchange interactions that are comparable in the
kagomé planes as well as between the kagomé and trian-
gular planes.13,17 In Fig. 1, we show the 16-site periodic
cluster of the pyrochlore lattice that we will use in ED.

FIG. 1. The 16-site periodic cluster of the pyrochlore lattice.

B. The two-dimensional model

Studying thermodynamic properties of the 3D systems
in Sec. II in the thermodynamic limit is very demand-
ing using linked-cluster expansions. Hence, we will also
model this material using a two-dimensional geometry
consisting of a two layer system of kagomé and trian-
gular planes, as depicted in Fig. 2. For such a model,
we can straightforwardly implement a numerical linked
cluster expansion as explained below. We will show that
this simple approximation leads to a very good agreement
between the experimental uniform susceptibility and the
theoretical results.

FIG. 2. The 16-site periodic cluster of the kagomé lattice with
extra sites inside down triangles. Pink (thin) bonds represent
the coupling between the kagomé layer and the sites sitting
on a triangular layer in a 2D model for clinoatacamite.

In order to perform a NLCE study of such a two-
dimensional model, we start with the Heisenberg Hamil-
tonian on the checkerboard lattice,

H =
∑

i,j

Jij Ŝi · Ŝj , (1)
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FIG. 3. The anisotropic checkerboard lattice (left) and the
eight realizations of the building block used in the square
expansion NLCE (right). The shaded area represents the
kagomé lattice in the limit where the red bonds (sides of the
shaded triangles) have the same strength, J , and all other
bonds are zero. If the strength of the blue (thick) bonds, J ′,
is non-zero, and the interaction on the black (thin) bonds, J ′′,
is zero, the resulting structure can represent a kagomé lattice
coupled to sites sitting on a triangular lattice.

where Ŝi is the spin- 1
2
vector at site i, and Jij is the

strength of the exchange interaction on each bond that
connects sites i and j. Throughout the paper, the largest
exchange interaction in each case study sets the unit of
energy. We consider three different types of bonds on
the lattice as seen in Fig. 3. There, the red (shaded) ar-
eas make apparent the presence of an embedded kagomé
lattice in the checkerboard lattice. One can immediately
see that by tuning the strength of the blue (thick) bonds,
J ′, and black (thin) bonds, J ′′, to zero, one captures a
kagomé lattice plus extra decoupled sites. Moreover, if
we set J ′′ to zero and choose J ′ (6= J) to be non-zero,
the structure will be that of the kagomé lattice coupled to
sites sitting on a triangular lattice, as depicted in Fig. 2.
Finally, if J = J ′ = J ′′ one has the planar pyrochlore
lattice. Because of the anisotropies in the Hamiltonian
of Eq. (1), the usual NLCEs for the isotropic case cannot
be used here. Therefore, in the following, we implement a
NLCE that properly deals with the new model, in which
some of the symmetries of the lattice are broken.

The numerical linked cluster expansion

In linked-cluster expansions,22 an extensive property
of the model per lattice site in the thermodynamic limit
(P ) is expressed in terms of contributions from all the
clusters, up to a certain size, that can be embedded in
the lattice:

P =
∑

c

L(c)wp(c). (2)

The contribution from each cluster (c) in Eq. (2) is pro-
portional to the weight of the cluster for that property
(wp), and to its multiplicity (L). The weight is defined

recursively as the property for each cluster (P), minus
the weights of all its subclusters,

wp(c) = P(c)−
∑

s⊂c

wp(s), (3)

and the multiplicity is defined as the number of ways
that particular cluster can be embedded in the infinite
lattice, per site. Symmetries of the lattice are often used
in identifying topologically distinct clusters and in com-
puting their multiplicities. This results in major sim-
plifications of the algorithm and usually allows for ac-
cess to larger clusters in the series. Here, we implement
NLCEs, where P(c) is computed by means of full exact
diagonalization,20,21 for lattice models that break some
of the point group and/or translational symmetries of the
underlying lattice. In what follows, we discuss how es-
sentially the same expansion as for the symmetric case
can be used for the latter cases.
As an example, let us consider the uniform checker-

board lattice. In the first order of the square expan-
sion, a single crossed square has a multiplicity of 1/221,23

since the number of ways it can be embedded in the lat-
tice is half the number of sites. In the second order,
the only distinct cluster consists of two corner-sharing
crossed squares. This cluster has a multiplicity of 2×1/2,
where the extra factor of two comes from the two possi-
bilities for its orientation on the lattice (related by a 90◦

rotation), and so on.23 Now, consider the anisotropic lat-
tice of Fig. 3 where in general, J ′′ 6= J ′ 6= J . In this case,
the translational symmetries are reduced by a factor of
two, and the point group symmetries by a factor of four
from those of the isotropic checkerboard lattice. So, the
square expansion basis used for the isotropic case can-
not be used for this lattice anymore since the topological
clusters and the multiplicities have changed.
The goal is to re-arrange the terms in the series to be

able to use the square expansion basis of the isotropic
lattice without having to redefine the topological clus-
ters and their subclusters. Examining the problem more
carefully reveals that the new lattice can still be tiled by
considering two different building blocks, as opposed to
one crossed square for the uniform lattice, a direct con-
sequence of the factor of two reduction in translational
symmetries. These two blocks are numbered 2 and 5 in
Fig. 3. So, in the first order, one has two distinct clusters
in the sum, each with a multiplicity that is half of that
of the single block in the first order of the isotropic case.
This trend continues in higher orders as for example, in
the second order, there will be four distinct clusters, as
opposed to one in the isotropic case, with subclusters that
are the two blocks in the first order. But, just like in the
first order, the multiplicities for each cluster is reduced
by a factor proportional to the increasing factor in the
number of clusters (4 for the second order). Moreover,
the pool of subclusters of these four clusters contains the
same number of clusters of each type in the first order,
namely, four from each of the two building blocks.
The above argument implies that in the expansion for
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the less symmetric checkerboard lattice, we will have dif-
ferent realizations of clusters that existed in the expan-
sion for the symmetric lattice, and that the latter expan-
sion is applicable to the anisotropic case if the weight of
each cluster is replaced by the average weight of those
realizations. It is easy to see that the maximum number
of realizations of clusters in the isotropic square expan-
sion for the lattice of Fig. 3 will be eight. This number
is the same factor by which the point group and transla-
tional symmetries are reduced from that of the isotropic
checkerboard lattice. In Fig. 3, we have generated the
eight realizations in the first order. Each of these building
blocks can serve as the starting block in the same algo-
rithm that generates all the clusters in the expansion for
the isotropic case. In fact, this guarantees generation of
the eight realizations for every cluster in the expansion.
The applications of this averaging scheme in NLCEs

are not limited to the example described here. In prin-
ciple, this method can be used in any other expansion
(e.g., site expansion, triangle expansion, etc.), and for
any other model with a Hamiltonian that breaks some
symmetries of the underlying lattice. In the following sec-
tion, we use this implementation of the NLCEs method
to calculate properties of the lattice in Fig. 3 for val-
ues of the exchange constant that transform its symme-
try from a uniform planar pyrochlore lattice to near a
kagomé lattice, believed to be the appropriate model for
the clinoatacamite compound.

III. RESULTS

A. Thermodynamics of Clinoatacamite

We calculate the thermodynamic properties, such as
the specific heat, entropy, and uniform spin susceptibility
for the Hamiltonian (1) on the lattice in Fig. 3, when J ′ =
−0.1J and J ′′ = 0, to represent clinoatacamite. A 16-
site periodic cluster of the resulting lattice is depicted in
Fig. 2 with thick (thin) bonds representing J (J ′). Note,
however, that NLCE computes these properties directly
for the infinite system and does not have any statistical
or systematic errors (such as finite-size effects) within its
region of convergence in temperature. We carry out the
calculations to the sixth order (six building blocks with
maximum 19 sites) of the square expansion.
In Fig. 4, we show the spin susceptibility per site from

the last two orders of NLCE for this system. There, we
have also included the experimental data for this ma-
terial. The magnetic susceptibility of a polycrystalline
clinoatacamite sample was measured with a SQUID mag-
netometer under an applied field of 500 Oe. The suscep-
tibility was measured while warming from 2 K to 400 K
after field cooling. Consistent with previously published
susceptibility results,13 a weak ferromagnetic moment is
observed below Tc1 ≈ 6.4 K and a subtle kink is ob-
served in the susceptibility at Tc2 = 18 K. We will focus
on the susceptibility above 10 K, where the experimental
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FIG. 4. Uniform susceptibility per site for clinoatacamite.
The empty circles are the experimental results. The thick
solid line is the last order of the NLCE for the system of Fig. 3
with J

′ = −0.1 and J
′′ = 0 after Wynn sum with two cycles

of improvement.21 Thick dashed line shows the NLCE results
for the triangular expansion of the kagomé lattice Heisenberg
model (from Ref. 20). Thin solid lines are the next-to-last
orders of the NLCE sums. In ED for the kagomé lattice,
we use a 12-site cluster. For the case with finite J

′, we use
the corresponding 16-site cluster shown in Fig. 2. For the
pyrochlore lattice, we use the 16-site cluster shown in Fig. 1.
The arrow marks approximately the point where results from
the last two orders of NLCE start deviating from each other.

data can be compared with the numerical values. The
experimental molar susceptibility in cgs units is related
to the numerical one by χexp = Cχ, where the con-

stant C = NAg
2µ2

B/kJ = 0.3752g2/J . We use J = 193
K from the Curie-Weiss formula, and take g = 2.14
so that the numerical and experimental susceptibilities
match at the highest temperature available experimen-
tally (T ∼ 2.1). There is a remarkable agreement be-
tween the experiment and this approximate model for all
the temperatures above the convergence temperature of
NLCE (∼ 0.2, indicated by the arrow in Fig. 4). To have
a better idea about the effect of the extra sites of the tri-
angular layer on the susceptibility of the kagomé lattice,
we also show results from a triangle-based NLCE on the
kagomé lattice with up to eight triangles.20,21

It is clear that the extra sites with weak ferromag-
netic couplings are responsible for the enhancement of
the uniform susceptibility at low temperatures. To un-
derstand this, we consider the limiting case where the
sites on the triangular layer are completely decoupled
from the ones on the kagomé layer (J ′ = 0). In the ther-
modynamic limit, since the kagomé layer contains only
3/4 of the sites, any property per site can be written as
P = 1

4
P0 +

3
4
Pkgm, where P0 is the property for a sin-

gle site and Pkgm is the property per site for the kagomé
lattice. Therefore, in case of the susceptibility, a zero-
temperature divergence will emerge from the susceptibil-
ity of an isolated spin, χ0 = 1

4T
. In fact, if we take χkgm
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FIG. 5. NLCE and ED results for (a) the specific heat and
(b) the entropy per site of the Heisenberg model for clinoata-
camite as well as on the kagomé and pyrochlore lattices. Lines
are the same as in Fig. 4. The inset of (a) shows the ED re-
sults on a logarithmic temperature grid. We have multiplied
the kagomé lattice results by 3

4
to establish a fair compari-

son with the results for the lattice of Fig. 2, and added those
for the 16-site pyrochlore lattice Heisenberg model where the
coupling between kagomé layers is set to J

′ = −0.1. The inset
in (b) is the same as the inset in (a) for the entropy, except
that the entropy of an isolated spin is also properly added to
that of the kagomé lattice (see text).

to be the NLCE results for the kagomé lattice and calcu-
late χ = 1

4
χ0+

3
4
χkgm, the resulting curve lies very close,

but slightly below, that of the NLCE with J ′ = −0.1 (see
Fig. 6), i.e., the divergence in the uniform susceptibility
of clinoatacamite is mostly due to the nearly isolated
inter-layer spins. However, a small negative J ′ presum-
ably produces a finite temperature ordering transition in
the three dimensional material, which is observed in the
experiments at ∼ 6 K.
Results from ED on finite clusters with periodic bound-

ary condition further support these findings. In Fig. 4,
we show the spin susceptibility for the 16-site cluster of
Fig. 2, and the quasi-2D model, with J ′ = −0.1. The two
of them agree with the experimental results extremely
well in the entire temperature range. We also show the
ED results for the corresponding 12-site cluster on the

kagomé lattice [same cluster as in Fig. 2, but without
the extra sites inside down triangles] and the uniform
pyrochlore lattice of Fig. 1. The latter largely disagrees
with the experimental results, invalidating the propos-
als that clinoatacamite has such uniformity in exchange
constants.13,17

At this time, the lack of a nonmagnetic isostructural
compound has made it impossible to accurately deter-
mine the lattice contribution to the specific heat over the
temperature range where NLCEs are valid. Therefore,
we cannot currently compare the magnetic specific heat
of clinoatacamite the way we have with the susceptibility.
However, in Fig. 5, we show the numerical results for the
entropy and the specific heat for the models of clinoat-
acamite and the other systems discusses above, which
could be of great value for future experiments. Since the
specific heat for an isolated spin is zero, the values for
the J ′ = −0.1 case in Fig. 5(a) are roughly 3

4
of those

for the kagomé lattice, at least for T & |J ′| [see also the
inset of Fig. 5(a)]. The position of one of the peaks, cap-
tured in the ED calculations both for the pure kagomé
and the model for clinoatacamite at T ∼ 0.1, approx-
imately coincides with the 18 K peak observed in the
experiments, considering J ∼ 193 K.13,14,18 The exis-
tence of such a peak in the specific heat of the kagome
lattice Heisenberg model has been a topic of discussion
for a long time,21,24–26 and the experiments with the cli-
noatacamite compound may have provided a proof of its
existence. On the other hand, the only peak of the spe-
cific heat for the finite-size pyrochlore lattice from ED
is at T ∼ 0.3. This is inconsistent with the experimen-
tal results for clinoatacamite and is yet another evidence
that this material is not well-described by the uniform
(or nearly uniform) pyrochlore Heisenberg model.

In the inset of Fig. 5(a), we show the specific heat
from ED on a logarithmic temperature scale and down
to T = 0.001. The specific heat of the kagomé or the py-
rochlore lattice vanishes below T ∼ 0.01, whereas a third
peak emerges at T < 0.001 for the 2D model of clinoata-
camite [the cluster of Fig. 2]. A similar feature also exists
in the corresponding quasi-2D model with J ′ = −0.1.
The peak moves to higher temperatures by increasing
|J ′|. Although finite-size effects often prevent ED to
predict, even qualitatively, the correct features of such
models with long-range order at low temperatures, the
appearance of this low-temperature peak due to the fi-
nite J ′ may signal a possible very low temperature phase
transition in the thermodynamic limit, perhaps associ-
ated with the one observed experimentally for clinoata-
camite at T ∼ 6 K.

The entropies per site for the 2D and quasi-2D models
of clinoatacamite, the kagomé lattice and the pyrochlore
lattice Heisenberg models are shown in Fig. 5(b). Just
like for the specific heat, we show in the inset of Fig. 5(b),
the low-temperature entropy of different models from
ED, which give us an idea of what may happen at lower
temperatures. There, we have multiplied the entropy of
the 12-site kagomé lattice by 3

4
and added the contribu-
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FIG. 6. NLCE results for the uniform susceptibility per site
of the Heisenberg model in the transition between the planar
pyrochlore lattice (J ′′ = J

′ = J in the lattice of Fig. 3) and
the kagomé lattice with extra decoupled sites (J ′′ = J

′ = 0).
The thin dashed (dotted-dashed) line is the ED result for the
2D model of clinoatacamite (uniform pyrochlore lattice). For
J
′ = 0 and 0.25, black (thin) solid lines and color (thick)

lines are the fifth and sixth orders of the bare sums in the
expansion, respectively. For all other values of J ′, we have
used Wynn extrapolation with one cycle of improvement21 for
which the thin solid and thick lines are the last two orders.
The inset compares the uniform susceptibility per site for the
planar pyrochlore and the kagomé lattice.

tion from the isolated spins ( ln 2
4
) to be able to properly

compare it to the entropy of the 16-site clusters. We
note that above T = 0.01 all entropies but the one for
the pyrochlore lattice agree with each other. Also, as in-
ferred from the specific heat plots, a finite J ′ seems to
bring about a phase transition at a very low temperature,
after which the entropy drops to zero.

B. Transition between planar pyrochlore and

kagomé lattice

To gain further insights about how thermodynamic
properties change in transitions between different frus-
trated models, and its implications for the research on
future materials, we study here the uniform susceptibil-
ity, and the specific heat in the transition between the
planar pyrochlore lattice and the kagomé lattice, using
the implementation of NLCE described in Sec. II B. We
start with the former lattice (J ′′ = J ′ = J). To approach
the kagomé lattice, we simultaneously decrease J ′ and J ′′

from 1 to 0. As discussed above, the latter limit repre-
sents the kagomé lattice Heisenberg model plus an extra
isolated spin for every three spins in the kagomé lattice,
which is closely related to the 2D model for clinoata-
camite.
As can be seen in Fig. 6, the spin susceptibility of the

planar pyrochlore lattice can even provide a good esti-
mate for that of the pyrochlore lattice (from ED), as the
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FIG. 7. NLCE results for the specific heat and entropy per
site of the Heisenberg model on the anisotropic checkerboard
lattice of Fig. 3 with 0 ≤ J

′′ = J
′
≤ J . The inset compares

the specific heat and the entropy per site of the planar py-
rochlore and the kagomé lattices. The lines are the same as
in Fig. 6

difference between the two remains relatively small for
temperatures accessible to NLCE (T > 0.3). To show
the proximity of the results on the other side of the tran-
sition to the model for clinoatacamite (J ′ = −0.1 and
J ′′ = 0), we plot in Fig. 6 the corresponding results from
ED. As the spins on the triangular layer decouple from
those on the kagomé layer by decreasing J ′, the 1

T
di-

vergent signature of the susceptibility of isolated spins,
similar to what has been seen in the experiments on cli-
noatacamite, becomes apparent.
It is now interesting to compare the uniform suscep-

tibility for the planar pyrochlore lattice and the pure
kagomé lattice. Within the present NLCE calculation,
the latter can be obtained by subtracting the contribu-
tion of isolated spins in the J ′′ = J ′ = 0 case. The results
are shown in the inset of Fig. 6. One can clearly see there
that the kagomé lattice has a higher uniform susceptibil-
ity than the planar pyrochlore lattice for all temperatures
accessible within our NLCE.
The planar pyrochlore lattice and the pure kagomé lat-

tice are two of the most frustrated lattices known. In
Fig. 7, we show how the specific heat evolves in the tran-
sition between them for the same parameters depicted
in Fig. 6. Unlike the spin susceptibilities, the specific
heat of the planar pyrochlore lattice is qualitatively dif-
ferent from the pyrochlore lattice. In the two-dimensional
model, as J ′ and J ′′ decrease, the high-temperature peak
is suppressed. However, this is largely due to the fact that
one fourth of the spins in the system are decoupled from
the lattice in the limit of J ′′ = J ′ = 0 and therefore,
have vanishing specific heat. Consequently, if one com-
pares the entropy and specific heat per site of the planar
pyrochlore and the kagomé lattice Heisenberg models (in-
set in Fig. 7), one sees that their values are in fact very
close for all the temperatures calculated here. Interest-
ingly, this shows that both lattices have a very similar
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degree of frustration.

IV. CONCLUSIONS

We have presented a comprehensive numerical study
of the thermodynamic properties for models of clinoata-
camite compound. In particular, we computed the spin
susceptibility, entropy, and specific heat, using ED of fi-
nite periodic clusters and an implementation of the NL-
CEs that properly deals with the breaking of lattice
symmetries introduced by the particular model Hamil-
tonian of interest. We find an excellent agreement be-
tween the experimental uniform susceptibility of clinoat-
acamite from magnetic measurements and our numerical
results for the Heisenberg model on a lattice that con-
sists of a kagomé layer, coupled weakly to a triangular
layer. Together with a study of the entropy and the spe-

cific heat of the kagomé and pyrochlore lattices, we pro-
vide strong evidence that clinoatacamite has a pyrochlore
structure with only weak ferromagnetic coupling between
its kagomé layers. Employing our generalized NLCE, we
also study the above thermodynamic quantities in a tran-
sition between the planar pyrochlore lattice, which has
a uniform susceptibility similar to that of the pyrochlore
lattice, and the kagomé lattice plus isolated spins, closely
related to the model for the clinoatacamite compound.
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