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Abstract 

The antiferrodistortive (AFD) structural transitions of calcium titanate (CaTiO3) at ambient pressure have 

been extensively studied during the last few years.  It is found none of the AFD polymorphs is polar or 

ferroelectric. However, it was recently shown theoretically and later experimentally confirmed that a 

ferroelectric transition in CaTiO3 can be induced by tensile strains. The ferroelectric instability is believed 

to be strongly coupled to the AFD soft modes. In this article, we present a complete thermodynamic 

potential for describing the coupling between the AFD and ferroelectric phase transitions.  We analyzed 

the dependence of transition temperatures on stress and strain condition.  Based on this potential, a (001) 

CaTiO3 thin film diagram was constructed.  The results show good agreement with available experimental 

observations. The strong suppression of ferroelectric transition by the AFD transition is discussed. 
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I. INTRODUCTION 

The ideal perovskite structure, described as a simple cubic network of corner linked BO6 octahedra with 
A atoms occupying 12-fold oxygen coordinated sites, is inherently unstable and can exhibit a variety of 
distortions. These include polar distortions, dominated by off-centering of B cation in its oxygen 
octahedron, and tilts and rotations of the oxygen octahedron network. The polar distortions lead to the 
presence of dipoles and to ferroelectric and antiferroelectric behavior in several well-known perovskite 
compounds such as BaTiO3, PbTiO3, PbZrO3, and BiFeO3

1. Oxygen octahedron rotations produce a 
variety of nonpolar phases, the phase transitions of which are called antiferrodistortive (AFD) phase 
transitions. The same compound can show instabilities to both distortions in the cubic phase, in which 
case they usually compete. Strontium titanate (SrTiO3) is a good example of such compounds. Although 
SrTiO3 has a ferroelectric instability, it is paraelectric all the way down to 0 K. Its ferroelectric transition 
is weakened along the direction of AFD tilt2, 3. With a sufficiently large epitaxial strain, SrTiO3 becomes a 
ferroelectric even at room temperature4. 



At ambient temperature and pressure, calcium titanate (CaTiO3) has the orthorhombic distorted-
perovskite structure with space group Pbnm, a structure common to many perovskite oxides. Disregarding 
the distortion of TiO6 octahedra, the structure of CaTiO3 can be illustrated as a combination of two kinds 
of TiO6 octahedron tilts: two out-of-phase tilts along x1 and x2 directions, and one in-phase tilt along x3 
direction (Fig. 1). With the standard Glazer’s notation5, it can be expressed as a-a-c+. These two kinds of 
tilts can also be used to characterize the AFD transitions in CaTiO3. We will discuss it in more details 
later.  

 

Figure 1. Crystal structure of CaTiO3: (a) projection along [100] direction, the TiO6 octahedra in consequtive two 

layers exhibit out-of-phase tilt, (the projection along [010] direction is similar); (b) projection along [001] direction, 

the TiO6 octahedra show in-phase tilt. 

The AFD transition sequence of CaTiO3 is complicated. From high to low temperature, CaTiO3 
transforms from cubic ( 3Pm m ) to tetragonal (I4/mcm) at about 1600 K, and from tetragonal (I4/mcm) to 
orthorhombic at about 1500 K. 6-11 The later transition or transitions is quite controversial. Ali and 
Yashima10, 11 proposed a direction transition from I4/mcm to Pbnm by the Rietveld analysis of high 
temperature X-ray and neutron diffraction data. Also by the analysis of high temperature neutron 
diffraction data, Kennedy9 found there might be an intermediate phase with Cmcm structure between the 
transition from I4/mcm to Pbnm. And the transition temperature from Cmcm to Pbnm is around 1380 K, 
which agrees with both Guyot’s drop-calorimetry measurements7 and Gillet’s Raman spectroscopy 



observation 12. On the other hand, Carpenter theoretically investigated the structural transitions of CaTiO3 
using Landau theory, and he concluded that in order to get a stable Pbnm structure, there must be some 
intermediate structure between I4/mcm and Pbnm. However, he proposed an I4/mcm→ Imma → Pbnm 
transition sequence.  

Despite of the complicity and discrepancy, none of the above mentioned structures is polar or ferroelectric 
at ambient pressure. However, CaTiO3 has a ferroelectric soft mode as manifested by a high dielectric 
constant at low temperature 13 and later first principles calculations14. Experiments also show frequency 
independence of CaTiO3 dielectric constants, which makes it a high-quality microwave material. 
Therefore, similar to SrTiO3, CaTiO3 is also an incipient ferroelectric13, and the extrapolated ferroelectric 
transition temperature is about -111 K13, 15. It is natural to consider the ferroelectricity of CaTiO3 as an 
analog to that of SrTiO3, which is weakened by AFD, but can be induced by applied strain.2-4, 16 In 
addition, some other perovskites with Pbnm structures, including CaMnO3,17 SrZrO3,18 and etc19, are 
possible to exhibit strain-induced ferroelectricity. Recently, by first principles calculations Eklund et al20, 

21 predicted that 1.5% epitaxial tensile strain can indeed lead to ferroelectric transition. Experimentally, 
Vlahos et al22 found spontaneous polarization in the CaTiO3/NdGaO3 film system with a tensile constraint 
strain of 1.15%. Thus, ferroelectricity in CaTiO3 can be induced by a sufficiently large tensile strain. 

In addition to the strain-induced ferroelectric behavior of thin films, the twin walls of CaTiO3 have been 
extensively investigated, including trapping of oxygen vacancies23, 24, the activation energy for twin-wall 
motion25, and the intrinsic elasticity of the twin walls26. By theoretical simulations, Goncalves-Ferreira et 
al27 showed that the CaTiO3 ferroelastic twin walls exhibit sizeable spontaneous polarization due to the 
vanishing of octahedra tilt and the decrease of the material density. Further experiments show that the 
twins of CaTiO3 are ferroelectric themselves.22 Since the formation of twins is usually to lower the total 
strain energy, the twins themselves are usually strained. Therefore, the discovered ferroelectricity of 
CaTiO3 twin domains may also be due to strain effect.  

In order to control and manipulate its properties with an applied external strain, it is necessary to 
understand the thermodynamics of CaTiO3. Carpenter 28, 29 proposed a Landau expansion to describe the 
AFD transitions in (Ca, Sr)TiO3. Although he made a systematic analysis of the stability of all the 
possible structures, the ferroelectric transition is not considered, and coefficients were not determined. In 
this paper, we construct a phenomenological thermodynamic potential for a CaTiO3 single crystal, which 
incorporates both the AFD transitions and the ferroelectric transitions with different stress and strain 
conditions. This potential can therefore be employed to analyze all the important phase transitions and 
their dependence on stress and strain conditions. In the following part of this paper, we’ll introduce the 
phenomenological model, and convert all the parameters determined from first principles calculations to 
this model. In the third part, all the temperature dependent coefficients will be determined, and some of 
parameters from first principles calculations will be revised from fitting the experimental data. Finally, 
we’ll use dielectric constant to validate our model, and then investigate the competition mechanism of 
AFD and ferroelectric transitions in the CaTiO3 thin film phase diagram. 

II. PHENOMENOLOGICAL DESCRIPTION 



The phase transitions in CaTiO3 can be described with a single Landau free energy expansion in terms of 

εi, Pi, and qi. εi (i = 1 – 6) are the strain components following Voigt’s convention. Pi (i=1, 2, 3) represent 

three components of the spontaneous polarization in the Cartesian coordinate system. qi (i=1, 2, 3) 

represent the linear oxygen displacement that corresponds to simultaneous out-of-phase tilt of TiO6 

octahedra. Similarly, qi (i=4, 5, 6) represent the oxygen displacement of simultaneous in-phase tilt of TiO6 

octahedra. The relationship between order parameter qi and octahedral tilt angles are explained in the 

Appendix. In terms of soft modes, Pi, qi (i=1, 2, 3), and qi (i=4, 5, 6) correspond to the Γ4
-, R4

+, M3
+ 

modes, respectively. The total free energy has following form, 

Polar OPT IPT Elastic CouplingF F F F F F= + + + +                                                      (1) 

The first three terms on the right-hand side of (1) describe contributions from spontaneous polarization, 

out-of-phase tilt, and in-phase tilt, 
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where α, β, and γ are constants. Only the coefficients of the second order terms are assumed to be 

temperature dependent, i.e.  
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where T1, T2, and T3 are Curie temperatures, ΘS1, ΘS2, and ΘS3 are saturation temperatures. The strain 

contribution to the total free energy can be written as 



2 2 2 2 2 2
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1 1( ) ( ) ( )
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                      (6) 

where C11, C12, and C44 are elastic stiffness constants; ε1- ε6 are strain components. The coupling energy 

among different order parameters and strains is written as 
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where tij, κij, gij, μij, λij, and ςij are coupling coefficients. The 33 parameters appearing in Table 1 were 
determined from a series of first-principles total-energy calculations on distorted perovskite structures 21. 
Detailed information of the first principles calculations and the approach to determining these coefficients 
can be found in references [20] and [21]. The parameters (in SI unit) converted from first principles 
calculations are listed in the Table 1. 

Table 1. The parameters converted from first principles calculations*.21 (energy density unit: J/m3) 

α1 -3.56×108 β111 -2.89×1067 C11 4.03×1011 g11 1.02×1010 

α11 3.70×108 β112 -2.31×1068 C12 1.07×1011 g12 -1.76×109 

α12 9.72×107 β122 -4.92×1068 C44 9.99×1010 g44 7.70×109 

α111 -1.18×107 γ1 -1.85×1029 t11 -1.53×1029 λ11 -2.10×1029 

α112 -5.94×107 γ11+ γ12 1.48×1049 t12 -7.79×1028 λ12 -9.85×1029 

α122 -2.68×108 γ111+ γ112 -2.31×1068 t44 2.34×1029 λ44 -1.24×1029 

β1 -2.05×1029 γ122 - κ11 -1.43×1029 ζ11 0 

β11 1.20×1049 μ11 -7.69×1049 κ12 -5.02×1028 ζ12 -9.65×1029 

β12 3.62×1048 μ12** 3.29×1048 κ44 - ζ44 - 

* R5
+ mode is neglected;  



** Normalized by eliminating X5
+ mode. 

III. RESULTS AND DISCUSSION 

A. AFD transitions 

For the AFD transition with only one in-phase TiO6 octahedron tilt and two out-of-phase TiO6 octahedron 

tilts, i.e. P1=P2=P3=q3=q4=q5=0, we have 
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where βij*, μij* and γij* are normalized coefficients with stress-free boundary condition (see Appendix for 

detail). The order parameters and free energies of different structures are summarized in Table 2.  

Table 2. The order parameters and free energies of different structures of AFD transitions. 

Space Group Order Parameters Energy Expression 

Pm 3 m qi=0, (i=1, 2, 6) 0 
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Imma q1=q2≠0 2 * * 4 6
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According to experimental results as discussed in the introduction, we can conclude that there are at least 
two AFD transitions, i.e. Pm 3 m  to I4/mcm, and another transition to Pbnm. The latter can’t be a direct 
transition from I4/mcm to Pbnm, if the energy of Imma or Cmcm is higher than Pbnm. As compared in 
Table 2, appropriate selection of coefficients can generate different possibilities for the latter AFD 
transition sequence, such as I4/mcm→ Imma → Pbnm, I4/mcm→ Cmcm → Pbnm, and etc. Carpenter29 
analyzed the energy difference between these structures and proposed an I4/mcm→ Imma → Pbnm 
transition sequence.  It should be noted that the Imma structure was not observed experimentally. Here, 



we propose another scenario for the transformation sequence, I4/mcm→ Cmcm → Pbnm, although the 
existence of Cmcm structure is still controversial in this system 7, 9-11. However, only this transition 
sequence can account for both the transition temperature of about 1380 K, which was determined by 
Guyot7, and Gillet12 respectively, and Kennedy’s neutron diffraction results9. According to Guyot’s heat 
capacity measurement 7, both I4/mcm→ Cmcm and Cmcm → Pbnm transitions are of the first order. For 

the Pm 3 m → I4/mcm transition at about 1600 K, there is no or very small latent heat, which may be 
buried by the broad calorimetric peak of the previous transition 7. Therefore, this transition may be of the 
second order or weakly first-order. However, the tilt angles versus temperature diagram from the X-ray 
diffraction and neutron diffraction results9, 11 shows discontinuity near the transition temperature, a 
characteristic feature of a first-order transition.  

In this paper, we adopted Guyot’s 7 measured data of the transformation latent heat, and assumed that the 

Pm 3 m → I4/mcm transition is also of first order with a small latent heat of 1.0 kJ/mol. The saturation 
temperatures were estimated from the (Ca,Sr)TiO3 phase diagrams30. The calculated values of β10 and γ10 
by first principles show good agreement with the measured latent heat. So we simply adopted them to 
make the whole set of parameters consistent. The other parameters were determined by fitting Kennedy’s 
9and Yashima’s 11 neutron diffraction and X-ray diffraction data. A comparison between the fitted 
parameters and those from first principles is shown in Table 3. 

Table 3. Parameters from fitting and their counterparts from first-principles calculations. 
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×1026 

1.68 

×1026 
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×1068 

1.27 
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-2.31 
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As shown in Table 3, the fitted parameters deviate from those calculated by first principles. Both signs 

and magnitudes are different in almost every case.  However, this can be expected because the first-

principles is for 0 K and our fits are from the whole temperature range. The validity of the first-principles 

calculations can be tested by comparing the total free energy at 0 K from both sets of parameters. 

Actually, the difference is about 6.5% of the total free energy. Considering the possible errors and 

approximations made during the two calculations, this difference is small. In addition, the discrepancy is 

only confined to the parameters of the fourth and sixth order terms. The nice agreement between our fitted 

plot and the measured values (Fig. 2) indicates the accuracy of the parameters of the second order terms 

and coupling terms from first-principles. As shown in Fig. 2, the fitted plot not only reproduces three 



first-order transitions, but also shows the saturation of tilt angles at very low temperature. We also 

compared the free energy of these structures to study the phase stabilities, as plotted in Fig. 3. Although 

the differences between I4/mcm and Imma and between Cmcm and Pbnm are very small, the relative 

phase stability of different structures is just as we expected. And the small energy difference between 

Cmcm and Pbnm indicates the difficulty to get stable Cmcm phase during in situ X-ray diffraction and 

neutron diffraction experiments. 

 

Figure 2. Tilt angle as a function of temperature. There discontinuities in the plot clearly show that there are three 

first order transformations. 



 

Figure 3. Relative free energy density of different structures: I4/mcm, Imma, Cmcm, and Pbnm. Note that Pm 3 m is 

set to be the reference state with free energy equal to zero. So the relative free energies of other structures are 

basicly the energy difference from Pm 3 m structure.  

 B. Ferroelectric transition 

With the refined parameters, we can further investigate the AFD effect on ferroelectric transition in 
CaTiO3 single crystals. Firstly, we can extract the Curie temperature T1 from the extrapolated value (-111 
K)13 by eliminating the coupling effect from TiO6 octahedron tilts. From our model, it is easy to calculate 
the T1’s for all the combinations of polarization in the three directions. And the calculated highest T1 
corresponds to the extrapolated ferroelectric effective temperature (-111 K). 

 By minimizing the free energy of AFD part, we can calculate the in-phase tilt angle and out-of-phase 
angle as φ3=9.10° and θ1=θ2=8.64° respectively. Then, using the tilt angles and the saturation temperature 
ΘS1=55 K13, the T1’s of different polarization combinations are calculated. As listed in Table 4, the 
highest Curie temperature is 252.1 K for the case of P1=P2≠P3. This structure is therefore the most stable 
one, and this temperature is the Curie temperature T1. Correspondingly, the parameter α10 is calculated as 



1.77×106. So far, we have all the coefficients determined either from first principles calculations or fitting 
from experimental data as summarized in Table 5 (in SI unit). 

Table 4. The calculated Curie temperatures for different polarization symmetry 

Polarization P1≠P2≠P3 P1=P2≠P3 P1=-P2≠P3 P1=P2=P3 

Curie temperature (K) 139.4 252.1 132.0 187.4 

 

Table 5. The parameters for the phenomenological potential of CaTiO3 from either first principles 
calculations or experimental data (temperature unit: K, and energy density unit: J/m3) 

T1 252.1  α122 -2.68×108 μ11 -7.69×1049 g11 1.02×1010 

T2 1589.7  β10 1.54×1026 μ12 3.29×1048 g12 -1.76×109 

T3 1285.0  β11 -4.28×1047 C11 4.03×1011 g44 7.70×109 

ΘS1 55.0  β12 -2.61×1048 C12 1.07×1011 λ11 -2.10×1029 

ΘS2 274.0  β111 1.45×1069 C44 9.99×1010 λ12 -9.85×1029 

ΘS3 345.0  β112 1.15×1069 t11 -1.53×1029 λ44 -1.24×1029 

α10 1.77×106 β122 -4.92×1068 t12 -7.79×1028 ζ11 0 

α11 3.70×108 γ1 1.68×1026 t44 2.34×1029 ζ12 -9.65×1029 

α12 9.72×107 γ11+ γ12 -3.17×1049 κ11 -1.43×1029 ζ44 - 

α111 -1.18×107 γ111+ γ112 1.15×1070 κ12 -5.02×1028   

α112 -5.94×107 γ122 - κ44 -   

 

Because the tilt angles do not change much at low temperature, we can simply freeze them and calculate 

the dielectric constant as a function of temperature. Thus, we get the coefficients of P1
2 and P3
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Experiment shows that the intensity of the optical second harmonic generation (SHG) of CaTiO3 thin film 
changes continuously as a function of temperature22, which indicates the ferroelectric transition of CaTiO3 
may be of second order. However, the defects in the thin films including strain inhomogeneity, domain 
structures, and so on, may make a first-order transformation look like a second order one. Further studies 
are needed to understand the nature of ferroelectric transition in CaTiO3. In this paper, we assume the 



ferroelectric transformation of CaTiO3 is second order. According to Devonshire’s theory1, the dielectric 
constant of a second order transformation can be written as 

0

1         ( , 1,2,3)ij
ij

i jε
ε α

= =                                                         (10) 

where ε0 is the vacuum permittivity, and αij is the coefficient of PiPj (i,j=1,2,3). Since P1=P2, it’s easy to 
get 11 22ε ε= . The calculated dielectric constants are shown in Fig. 4. The total dielectric constant 

( 2 2
11 332ε ε+ ) is 300 at 0 K, and 144 at room temperature. They are quite close to the measured values, 

331 and 16813, which indicate good accuracy for both the α1 value from first principles calculations and 
the Curie temperature T1 from this calculation. 

 

Figure 4. The dielectric constant as a function of temperature. The saturation of dielecric constants occurs at very 

low temperature. 



With all the temperature-dependent coefficients, we can investigate the phase stability under different 

boundary conditions. Here we will calculate the temperature-constraint strain phase diagram of (001) 

CaTiO3 thin film as an example.  

For the stable structures of strained (001) CaTiO3 thin films, Eklund20, 21 reported two possible 
ferroelectric structures on the tensile strain side, Pmc21 and Pmn21, among which Pmn21 structure has 
slightly lower free energy. Also from first principles calculations, Bousquet31 showed that Pmc21 is stable. 
On the compressive side, Pna21 is the stable structure.21 In the following calculations, we will only 
consider these three structures. 

Firstly, we renormalized the free energy expression with thin film boundary condition (see Appendix for 

detail). By minimizing the total free energy with respect to q1 and q6 respectively, we get 

2 4 2
1 11 12 1 111 112 1 13 6( ) (2 ) 6(2 ) 0T q q qβ β β β β μ′ ′ ′ ′+ + + + − =                             (11a) 

2 4 2
3 33 6 111 112 6 13 1( ) 2 3( ) 2 0T q q qγ γ γ γ μ′ ′ ′+ + + − =                                       (11b) 

where βij’, μij’ and γij’ are normalized coefficients. Combining (11a) and (11b) with equation from the 

coefficient of P1
2, 

2 2
1 11 12 44 1 13 62 ( ) (2 2 ) 2 0T t t t q qα κ′ ′ ′ ′− + + − = ,                                          (12) 

we can get the phase boundary between Pbnm and Pmc21 structures. It should be mentioned here, from 

our potential, the stable structure on the tensile side is Pmc21, not Pmn21. Similarly, for the phase 

boundary of Pbnm→ Pna21 transition, we need to solve (11a), (11b), and the equation from the 

coefficient of P3
2, 

2 2
3 31 1 33 62 ( ) 2 2 0T t q qα κ′ ′ ′− − =                                                          (13) 

The calculated phase diagram is asymmetric as shown in Fig. 5(a). The minimum tensile strain to induce 

the ferroelectric transition is about 1.5%, which agrees well with the prediction from the first principles 

calculations. On the compressive side of the diagram, about 13% compressive strain is needed to induce 

Pbnm→ Pna21 transition. This value is so huge that it exceeds the limit of substrate constraint strain. In 

other words, it is impossible to have Pna21 structure in (001) CaTiO3 thin films. The temperature-

constraint strain phase diagram of (001) CaTiO3 thin film without AFD (Fig. 5(b)) was calculated by 

setting qi=0 (i=1-6) and solving 



1 2 3

2 2 2

2
1 1 2 1 3

2 2 2

2
2 1 2 2 3

2 2 2

2
3 1 3 2 3 0

0

P P P

F F F
P P P P P

F F F
P P P P P

F F F
P P P P P

= = =

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ =
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

                                      (14) 

 



 

Figure 5. The temperature-constraint strain phase diagram of (001) CaTiO3, (a) with AFD, and (b) 
without AFD. The transition point shown in (a) is measured by SHG experiment22. 

Comparing Fig. 5(a) and (b), we can easily find the asymmetry of the temperature-constraint strain phase 
diagram comes from the effect of AFD. Also the ferroelectric transition temperature of CaTiO3 is greatly 
suppressed by AFD. A similar but weaker effect was also found in SrTiO3

32. The substantial effect of 
AFD on ferroelectric in SrTiO3 is attributed to the competitive anharmonic couplings between AFD mode 
and ferroelectric mode, and their mutual coupling to the elasticity2, 16. In our phenomenological model of 
CaTiO3, the stability of different structures is strongly dependent on the coupling coefficients among Pi, qi 
and εi, which can be easily seen from equations (11a), (11b), (12) and (13). This indicates that the 
competition mechanism between AFD and ferroelectric is essentially the same as that of SrTiO3. 

By minimizing the total free energy, we also calculated the polarization of (001) CaTiO3 thin film as a 
function of in-plane constraint tensile strain at different temperatures. As shown in Fig. 6, the ferroelectric 
transition temperature increases with in-plane tensile strain. At 0 K, the minimum tensile strain needed to 
induce the ferroelectric transition is about 1.5%. At 200 K the critical tensile strain increases to about 4% 
indicating the difficulty to obtain strain-induced ferroelectricity at elevated temperature. The calculated 
polarization of 4% tensile strain at 0 K is 0.61 C/m2, which is more than twice that of BaTiO3

1. The 



polarization also exhibits saturation near the transition point, and becomes linear dependent on tensile 
strain in large strain region. As compared in the figure, our result of 0 K is a little larger than the first-
principles calculations. The discrepancy may rise from different selection of stable structures. In the first-
principles calculation21, the stable structure used is Pmc21 whereas we computed the polarization of 
Pmn21. 

 

Figure 6. The polariztation of (001) CaTiO3 thin film as a function of in-plain constaint strain of different 
temperatures. The void markers represent our calculations for different temperatures. And the solid diamonds denote 

the data from first-principles calculations21 (solid diamond) for 0 K. 

IV. CONCLUTIONS 

A phenomenological thermodynamic potential is developed for CaTiO3 single crystals. The coefficients 

of the potential are determined from first principles calculations and neutron diffraction and X-ray 

diffraction data. This potential effectively coupled the AFD transitions and strain-induced ferroelectric 

transitions. Several experimental observations, including transition temperatures, transition latent heat, 

dielectric constant, and tilt angles of TiO6 octahedron, are successfully reproduced. Then the temperature-



constraint strain single-domain phase diagram of (001) CaTiO3 is constructed. The dependence of Curie 

temperature on constraint strain is quite asymmetric, i.e. only tensile strain can induce ferroelectric 

transition. Comparing the phase diagrams with and without AFD, we conclude that the asymmetry is not 

inherited from the ferroelectric transition itself but attributed from the AFD suppression.  
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APPENDIX 

1. Relationship between order parameter q and octahedral tilt angles 

For an infinitesimal angle, there is no octahedron distortion during tilting. In the 10-atom supercell, there 

are 4 atoms (all oxygen) that displace by equal amounts. The amplitude of q1=1 means each atom move 1 

Å along x1 direction. Then in a simplified diagram of TiO6 octahedron tilt, we have 

0 0

2 ( 0.5)
tan                  ( 1,2,3)i i

i
q q

i
a a

θ × ×
= = =                                    (A1) 

where θi is the in-phase tilt angle, a0 is the lattice parameter of the 5 atom cell. Similarly, we have the 

relationship for out-of-phase tilt 

1
0

tan        ( 4,5,6)iq
i

a
ϕ = =                                                             (A2) 

where φi is the in-phase tilt angle. 

2. Normalizing the total free energy with stress-free boundary condition 

With the stress-free boundary condition, we have 

0ij
ij

F σ
ε

∂ = =
∂

                                                                        (A3) 

Then we can rewrite the expression for the total free energy as 
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where the * sign designates the renormalized coefficients, i.e. 

α11
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3. Normalizing the total free energy with thin film boundary condition 

The thin film boundary condition is a mixed set of strain and stress boundary conditions. For (001) 

CaTiO3 thin film, there is a biaxial strain in the x1-x2 plane, and all the stress components associated with 

x3 direction are equal to zero, i.e. 

11 22 12 21

13 23 31 32 33

,    0,
and  0

Sε ε ε ε ε
σ σ σ σ σ

= = = =
= = = = =                                                    (A6) 

where εS is the constraint strain. To satisfy the above stress-free condition it requires that 

0    ( 13,23,31,32,33)ij
ij

F ijσ
ε

∂ = = =
∂

                                                (A7) 

So we have 
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where the ‘ sign represents the renormalized coefficients with thin film boundary condition, i.e. 
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