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A microscopic explanation for temperature stabilization of the body-centered cubic (bcc) phase
in the actinide metals is proposed. We show that for a prototype actinide, uranium, phonon-phonon
interaction promotes bcc γ-U when heated even though at low temperatures it is mechanically a
strongly unstable phase. Utilizing the recently developed self-consistent ab initio lattice dynamics
(SCAILD) scheme in conjunction with highly accurate and fully relativistic density functional theory
we obtain phonon dispersion and density of states that compare well with data acquired from
inelastic neutron-scattering experiments. The investigation thus establishes that high-temperature
lattice dynamics can be modeled from ab initio theory even for complex materials with substantial
electron correlation including the actinides.

PACS numbers:

Density-functional theory (DFT)1 has proven to be remarkably successful in describing the T = 0 K ground-
state phases of most metals. Skriver2 showed that it predicts the correct ground-state crystal structure for many
transition elements when applied in a spherical linear muffin-tin orbital technique. Later3 it became evident that
DFT —implemented in more sophisticated methods appropriately treating complex crystal structures— also confirms
the ground-state phases of the actinides. Except for metals with strong electron-correlation effects, such as the
rare-earths, the DFT workhorse can nowadays be effectively used throughout the Periodic Table of Elements for
low-temperature condensed-matter applications.
There has been a long-standing difficulty, however, to model high-temperature phases with an accuracy analogous

to that of the ground state at room or lower temperatures. The reason is that treating electronic and vibrational
interactions simultaneously within a quantum-mechanical framework is a daunting task. It becomes particularly
problematic when the high-temperature phase is mechanically unstable at low temperatures thus ruling out the
typically applied perturbation theory of the zero-temperature electronic structure. An additional and potentially
serious pitfall, when studying f -electron systems such as the actinide or rare-earth metals, is the possibility of a
dramatic change in the f -electron behavior with temperature. For instance, cerium metal has a temperature-driven
(α → γ) phase transition that has been argued to be caused by localization (Mott transition)4 where the f states
are removed from the Fermi level (highest occupied energy). Similarly, uranium (or any other actinide metal) could
exhibit a localization of the 5f shell at elevated temperatures that cannot be addressed within conventional DFT.
Localization is consistent with the formation of a high-symmetry phase such as bcc in U (see below) but because
there is no significant volume expansion, often observed during this type of transition, we have reason to believe that
this difficult-to-model mechanism is not present in this case. It was also shown that localization did not play a role
in stabilizing bcc in Pu5, a metal with undisputedly more electron correlation than uranium6.
Quantum-mechanical molecular-dynamics methods provide, in principle, the solution to the high-temperature prob-

lem but are feasible only if an accurate electronic structure can be calculated expeditiously enough. Meanwhile,
an efficient methodology has been devised that couples DFT forces with temperature-driven atomic displacements
(phonons). This self-consistent ab initio lattice dynamics (SCAILD) technique7 has been used to investigate the high-
temperature bcc phase of several metals including Ti, Zr, Hf, and even iron8. The approach has been described in
detail9 and has heretofore utilized ab initio forces obtained from the projector augmented wave (PAW) method in con-
junction with the currently most robust PAW implementation, the Vienna ab initio simulation package (vasp)10. This
method allows for efficient evaluation of the forces required for the SCAILD scheme while being adequately accurate
for several transition metals. Here, however, we are concerned with a member of the actinides series, uranium. The
actinides are heavy metals that are more challenging for electronic-structure theory for several reasons. In particular,
the presence of narrow 5f -electron states in the vicinity of the Fermi level strongly destabilizes symmetrical crystal
structures, such as cubic or hexagonal, while giving rise to enhanced electron correlation and relativistic effects11,12.
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In this context, the appearance of a high-symmetry cubic (bcc) phase between 1050-1410 K in U is non intuitive
and hitherto not understood on a microscopic level. We mentioned it could be driven by electron localization that
eliminates the mechanism destabilizing high-symmetry structures11 but it may likewise arise from phonon-phonon
interaction in analogy to the behavior found for Ti, Zr, and Hf7 (or a combination of the two). It is the latter
explanation that we explore in this study.
PAW calculations13 are suitable for the lattice-dynamics scheme and appear to reproduce all-electron results14 for

the α-U ground state in spite of its complex electronic structure. However, for temperatures close to the melting
point where γ-U is stable, this approach13 demonstrates discrepancies of over 40% with all-electron results. The
PAW bulk modulus is 176 GPa13 whereas the present FPLMTO calculations give 123 GPa. For comparison, laser-
heated diamond anvil cell measurements show a bulk modulus of 113 GPa for γ-U15. Although a combination of a
plane-wave technique and spin-orbit (SO) coupling is in principle possible and for lead apparently reasonable16, in
practice it yields qualitatively wrong results for uranium. Specifically, inclusion of SO coupling lowers the equilibrium
volume of γ-U13, although physically and as confirmed by all-electron calculations17, it expands the volume. Our own
PAW (vasp, 14 valence electrons with PBE18 exchange and correlation) examination including SO coupling does not
reproduce the all-electron results for uranium (not shown) and we therefore omit them from the following discussion.
Considering the uncertainties regarding the PAW technique for U, we explore an electronic-structure method which

—at the expense of computational burden— is highly accurate and suitable for actinide materials, the full-potential
linear muffin-tin orbitals (FPLMTO) method. The specific version19 has been applied successfully to T = 0 K prop-
erties of actinides in the past3. It does not constrain the shapes of the charge density nor the potential. Furthermore,
SO coupling is included in a first-order variational procedure for the valence d and f states20, while core states are
treated with the fully relativistic Dirac equation. Most computational parameters are the same as those used in
our calculation of uranium elastic constants14. The effects of orbital polarization (OP)21 are examined because of
their importance for the neighboring metals Np and Pu22. For the electron exchange and correlation we apply the
generalized gradient approximation and all calculations are conducted at the theoretical zero-temperature equilibrium
atomic volume, 20.85 Å3.
The SCAILD method can be viewed as a generalization of the frozen phonon method23 and we therefore begin

with evaluating the electronic-structure techniques for select zone-boundary (ZB) phonons applying the frozen-phonon
approach. In Table I we show results obtained for the H- and N-point (T2 branch) ZB phonons. At zero temperature
both are unstable resulting in imaginary frequencies (shown as negative). Notice that the FPLMTO results are
substantially different to those obtained from PAW and that in all cases the former suggest a lesser degree of instability.
For instance, for the H-point phonon at 300 K the PAW frequency is about twice that of the FPLMTO (both with
no SO coupling). Including SO and OP increases the difference to a consequential factor of 2.5. The same trend
holds true also for the T2 N-point phonon albeit less pronounced. Increasing the electronic temperature to 1200
K (Fermi-Dirac broadening and electronic entropy) diminishes the instability somewhat but does not remove the
discrepancy between the methods. Hence, we conclude that even the currently most robust PAW implementation is
not pertinent for uranium as it significantly overestimates the strength of the bcc instability. In fact, present SCAILD-
PAW calculations (details below) fail to correctly stabilize bcc uranium below the melting temperature presumably
because the electronic structure is too unstable to be properly counterbalanced by the phonon-phonon interactions
provided within SCAILD.
Next, we tackle the high-temperature description of γ-U with SCAILD and the FPLMTO electronic structure. We

are faced with two serious challenges: First, the forces in local-basis methods such as FPLMTO are numerically highly
difficult to evaluate using a linear-response ansatz (Hellmann-Feynman forces), as opposed to the case of plane-wave
techniques. Second, spin-orbit interaction and orbital polarization are practically incompatible with a linear-response
force calculation, as the corresponding methodology is currently not thoroughly developed. We are, however, able
to circumvent these issues by proceeding in analogy with the frozen-phonon approach. In particular, we choose to
extract forces from (electronic) free-energy shifts due to small atomic displacements. The SCAILD scheme requires
forces on all atoms in a supercell for which the atoms are thermally displaced from the perfect bcc lattice positions9.
We obtain these forces by independently moving each atom a small amount (± 0.2% of lattice constant) along the x,
y, and z Cartesian axis, least-square fitting a second order polynomial to the free energies and extracting the force
component along the considered axis. Because of the considerable computational effort by the all-electron method
and the aforementioned displacement procedure we limit ourselves to study a 3 x 3 x 3 bcc supercell (27 atoms). A
larger cell is of course preferred but our investigation for titanium (not shown) suggests that using a 27-atom supercell
in lieu of a larger cell is reasonable when focusing on the phonon dispersion and density of states.
In Fig. 1 we show the SCAILD phonon dispersions at 500 K (bcc is experimentally unstable) for the FPLMTO

treatment with (black line) and without (black line solid squares) spin-orbit interaction (including OP changes the
dispersion a small amount, not shown) together with PAW results (red line solid circles). Clearly, PAW gives the
strongest unstable dispersions, particularly the Γ-H branch is very negative as a result of too soft H-point phonons.
The FPLMTO with SO is still unstable at 500 K but the instability regions are much smaller. The scalar relativistic
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(noSO) all-electron result is also less unstable suggesting that an inaccurate PAW potential influences the phonon as
suggested also by our frozen-phonon analysis (Table I). Here we apply the library vasp PBE PAW, but it may be
possible to improve on it by including deeper lying core electrons in the potential. However, the problem with SO
still remains and no further optimization of the PAW are attempted.
Our principal result is the stable phonon dispersion at 1113 K (neutron-scattering data24 exist at this temperature)

obtained from FPLMTO free-energy computations coupled with SCAILD. In Fig. 2 we display our data that serve
as predictions since no experimental phonon dispersion exist for γ-U even though bcc is the stable phase at this
temperature. Armed with this outcome we are able to predict the equation-of-state for high-temperature γ-U by
constructing a free energy inclusive of the temperature-dependent lattice contributions. In practice the calculations
need to be undertaken on a grid of volumes and temperatures so that the phase space is sufficiently sampled25. We
note, however, that the phonon dispersion is rather insensitive to temperature in the 1100-1300 K range (not shown)
which is entirely consistent with the experimental work24. In the absence of a measured γ-U phonon dispersion, we
instead compare our calculated phonon density of states with that collected from inelastic neutron-scattering24 in
Fig. 3. The two-peak feature of the measured spectra is clearly reproduced while the intensity and location of the
high energy peak is identical (no scaling is being applied). At the lowest energies, the disagreement is due to the
non-linearity of some branches near zero and a too soft (T1) Γ-N phonon branch, in analogy with Ti, Zr, and Hf7.
The reason for this may be the application of a too small supercell, not sufficiently strong SCAILD phonon-phonon
interaction, or not accurate enough DFT electronic structure.
In conclusion, we have calculated high-temperature phonons for a prototype actinide metal from relativistic first-

principles theory. In spite of being strongly unstable at low temperatures, the vibrational entropy introduced through
SCAILD, coupled with forces extracted from FPLMTO free-energy calculations, produces a mechanically stable phase
with a phonon dispersion that is compatible with observations. The corresponding phonon density of states agrees
satisfactorily with inelastic neutron-scattering experiments, but also reveals that low-energy phonon modes may be
underestimated similarly to what was found in Ti, Zr, and Hf7 suggesting that the SCAILD approach does not include
all anharmonicity or that a larger computational supercell is required. Spin-orbit and orbital-polarization correlations
together with a robust all-electron potential predict a rather plausible behavior of γ-U at lower temperatures and
are essential for a realistic high-temperature description. Hence, the enigmatic stability of the high-symmetry bcc
structure of U, and likely the remaining actinides, finds its explanation as being due to phonon-phonon interactions.
We have applied a methodology that circumvents the numerical difficulties of calculating linear-response forces by

using free-energy changes due to small atomistic displacements. This is important because it now allows the use of
SCAILD for any complex material for which a realistic energy can be evaluated. One example is plutonium metal26

and we envision to apply the present methodology in the near future to study important anomalous temperature-
dependent properties for this metal.
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12 P. Söderlind, G. Kotliar, K. Haule, P. M. Oppeneer, and D. Guillaumont, MRS Bull. 35, 883 (2010).
13 C. D. Taylor, Phys. Rev. B 77, 094119 (2008).



4
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Figures

FIG. 1: (Color online). Phonon dispersions for γ-U at 500 K. SCAILD coupled with FPLMTO w/o spin-orbit interaction
(black line solid squares), with SO (black solid line), and with vasp-PAW (red line solid circles).

FIG. 2: Phonon dispersion for γ-U at 1113 K. SCAILD coupled with FPLMTO (SO+OP).

FIG. 3: Phonon density of states for γ-U at 1113 K, calculated (solid line) and inelastic neutron-scattering data taken from
Ref.24.

Tables

TABLE I: H- and N-point (T2) ZB phonons for bcc U obtained from the frozen-phonon method23 and electronic free energies
corresponding to 300 K and 1200 K. The results are gathered from the FPLMTO method w/o (noSO), with spin-orbit coupling
(SO), with orbital polarization (SO+OP), and from the PAW method (vasp-PAW). All frequencies (ν = ω/2π) are in units of
THz and we adopt the convention to display imaginary (unstable) frequencies as negative.

ZB phonon noSO SO SO+OP vasp-PAW

H (300 K) -1.14 -0.91 -0.86 -2.03

H (1200 K) -1.03 -0.68 -0.54 -1.94

N: T2 (300 K) -2.28 -2.16 -2.14 -2.64

N: T2 (1200 K) -2.17 -2.04 -2.01 -2.55
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