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It has previously been pointed out that the coexistence of infinite-range and short-range interac-
tions causes a system to have a phase transition of the mean-field universality class, in which the
cluster size is finite even at the critical point. In the present paper, we study this property in a
model of bistable molecules, whose size changes depending on the bistable states. The molecules
can move in space, interacting via an elastic interaction. It is known that due to the different sizes,
an effective long-range interaction between the spins appears, and thus this model has a mean-field
type of phase transition. It is found that the scaling properties of the shift of the critical temperature
from the pure short-range limit in the model with infinite-range and short-range interactions hold
also in the present model, regarding the ratio of the size of the two states as a control parameter
for the strength of the long-range interaction. By studying the structure factor, it is shown that
the dependence of the cluster size at the critical temperature also shows the same scaling properties
as a previously studied model with both infinite-range and short-range interactions. We therefore
conclude that these scaling relations hold universally in hybrid models with both short-range and
weak long-range interactions.

PACS numbers:

I. INTRODUCTION

The divergence of the correlation length at the critical point is considered to be one of the most important properties
of second-order phase transitions. However, it is also known that in phase transitions of infinite-range interacting
systems that belong to the mean-field universality class, the correlation length does not diverge, and the spatial
configuration is uniform with no domain structures or clustering. In a previous work, we studied a hybrid model with
both short-range and weak long-range interactions.1 The Hamiltonian of that model is given by

H = (1 − α)HIS + αHMF, (0 ≤ α ≤ 1) (1)

with

HIS = −J
∑

〈i,j〉
σiσj , (2)

and

HMF = − 4J

2N

∑

i,j

σiσj = −2J

N

∑

i,j

σiσj . (3)

We defined the model on the square lattice with periodic boundary conditions. Here, the strength of the infinite-range
interaction is controlled by varying α. When α = 0, the system is equivalent to the pure short-range Ising model,
and the system with α = 1 is equivalent to the pure infinite-range interaction model. The critical temperature in the
previous hybrid model (1) shows a crossover from that of the pure short-range Ising model to that of the infinite-
range interaction model. It should be noted that even for infinitesimally small α, the phase transition belongs to the
mean-field universality class, and at the critical point, the spin configuration is uniform with no large-scale clustering.
A scaling formula for the α-dependence of the critical temperature Tc is found, such that

Tc(α)− T IS
c

TMF
c − T IS

c

≃ 1.773517α
1

γ = 1.773517α
4

7 . (4)
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The correlation length ξc at Tc is also found as a function of α,

ξc(α,L) = Lf(Lα
ν
γ ) = Lf(Lα

4

7 ) (5)

for small α and large L. The function f(x) is a scaling function which asymptotically approaches 1/x for large x.
Although the long-range interaction in this model is rather artificial, recently it has been pointed out that spin-

crossover materials and related materials show a similar kind of long-range correlation.2 Spin-crossover materials are
molecular crystals, in which the molecules can exist in two different states: the high-spin (HS) state and the low-spin
(LS) state. The HS state is preferable at high temperatures because of its high degeneracy, while the LS state is
preferable at low temperatures because of its low enthalpy. In addition to temperature, pressure changes and light
exposure also often induce a phase transition in spin-crossover materials. Spin-crossover and related materials are used
in many applications, because of their inherent bistability that leads to changes in optical and magnetic properties,
etc.3 Phase transitions in spin-crossover and related materials have been studied extensively in chemistry4–10 and
recently also in physics.11–16 For a wide variety of applications, it is of great interest to study the ordering process in
spin-crossover materials.
This type of materials are also regarded as fundamental models for inter-molecular short-range and elastic interac-

tions due to the lattice distortion, and an elastic interaction model has been proposed.2,11 An important characteristic
of this model is an effective long-range interaction due to the lattice distortion caused by the size difference between
the HS (large) and LS (small) molecules. Even at the critical point, there exists no large-scale domain structures.
However, in the elastic interaction model, there does not exist inter-molecular short-range interaction, so the model
does not show any crossover from an effective short-range interacting system to an effective long-range interacting
system. Therefore, developing quantitative hybrid models with both short-range and the elastic interactions for the
critical behavior of such materials is very important.
In this paper, we focus on a system with both elastic interactions and short-range Ising interactions. We perform

Monte Carlo (MC) simulations to study the properties of this model at the critical point. The rest of the paper is
organized as follows. In Sec. II, we introduce a new model with both elastic and short-range Ising interactions, and
we propose a relation between this model and the model studied previously.1 We find that the scaling formulae for the
critical temperature and correlation length obtained in the previous paper1 apply to this model, as well. In Sec. III,
we briefly review the MC algorithms and give the result of MC simulations for the critical temperature, confirming
the relation. In Sec. IV, we similarly confirm the scaling form of the correlation length at the critical point. In Sec.
V, we summarize our results, and in appendix A we discuss in detail how we calculate the correlation length at the
critical point.

II. MODEL

In this paper, we adopt the following model with both lattice distortion and inter-molecular short-range interactions
on the square lattice with periodic boundary conditions. From now on, L denotes the number of molecules along an
edge of the lattice, so the total number of sites is N = L2. The Hamiltonian is

H = HIS +Hnn +Hnnn +Heff , (6)

with


















HIS = −J
∑

〈i,j〉 σiσj

Hnn = k1

2

∑

〈i,j〉 [|ri − rj | − (Ri(σi) +Rj(σj))]
2
,

Hnnn = k2

2

∑

〈〈l,m〉〉
[

|rl − rm| −
√
2 (Rl(σl) +Rm(σm))

]2
,

Heff =
(

D − kBT
2

log g
)
∑N

i σi,

(7)

where ri represents the continuous coordinate of the molecule i, and Ri(σi) is the radius of the molecule i which
depends on the molecular state σi. Here σi = +1 and −1 represents HS and LS state, respectively. Hereafter, we
simply call σi the spin state. HIS is the short-range pure Ising model. Hnn and Hnnn denote the elastic interaction
Hamiltonians of nearest-neighbor 〈i, j〉 and next-nearest-neighbor 〈〈l,m〉〉 pairs, respectively, and k1 and k2 are the
corresponding spring constants. The next-nearest-neighbor interaction is introduced to maintain the shape of the
lattice, and the strength of k2 is not important as long as the global shape of the square lattice is kept. Here we take
k2 = k1/10. We define the pure elastic interaction model as

HElastic ≡ Hnn +Hnnn. (8)
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The molecular radius is determined by the local spin state : RH for the HS state (large, σi = +1) and RL for the LS
state (small, σi = −1). When |ri−rj | is equal to the sum of the radii Ri(σi)+Rj(σj), the corresponding contribution
to the elastic energy has its minimum. In Heff , which represents the ligand field, D denotes the energy difference
between the HS state and LS state, and g denotes the ratio of the degeneracies of the HS state and LS state. The
order parameter of these models (6) and (8) is defined as

m ≡
∑N

i σi

N
, (9)

which is related to the fraction of HS molecules, fHS, as m = 2fHS − 1.
In order to see the competition between the short-range interaction and the lattice distortion due to the molecular

size difference, we consider the model (6) along the coexistent line, 〈m〉 = 0, as we studied in the previous work for
the Ising model. Thus we set D − (kBT/2) log g = 0. For simplicity, this situation is described by the present model
(6) in which D = 0 and g = 1. In this model, a ferromagnetic second-order phase transition takes place at the critical
temperature Tc. Below Tc, there exist two different ordered states, the HS state and the LS state.
It has been found that in the pure elastic interaction model (8), the spin configuration is uniform at the critical

point, with no large-scale clustering.2 The phase transition belongs to the mean-field (MF) universality class, and the
spin correlation function approaches a non-zero constant in the long-distance limit.

FIG. 1: (Color online) Typical configuration of the mixed elastic and short-range interaction model at the critical point.
RH/RL = 1.1, for which Tc = 0.54575. Light gray (red online) filled circles denote HS state spins, and dark gray (blue online)
filled circles denote LS state spins.

The origin of the long-range interaction in the elastic model is lattice distortion due to the size difference between
the HS and LS states. We expect that the ratio of the radii RL/RH controls the strength of the effective long-range
interaction. Namely, RL/RH plays a role similar to α in the previous hybrid model (1). The strength of the long-range
interaction is given by the elastic energy, which is of the order of (k1/2)(RH−RL)

2 ∝ (1− RL

RH
)2. We therefore consider

that the parameter to indicate the strength of the long-range interaction is given by

α ∝
(

1− RL

RH

)2

. (10)

With this relation, we expect that the relations (4) and (5) take the following forms,

Tc

(

RL

RH

)

− T IS
c ∝

(

1− RL

RH

)
8

7

, (11)

and

ξc

(

RL

RH

, L

)

= Lf

(

L

(

1− RL

RH

)
8

7

)

, (12)
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respectively. As in our previous work,1 as long as the value of 1 − RL/RH is small, we expect these formulae to be
correct. In Fig. 1, we depict a typical configuration of the elastic and short-range interaction model at its critical
temperature. Unlike the pure short-range Ising model, the spin configuration is uniform with no large-scale clustering,
even at the critical temperature. A lattice distortion also occurs, and we observe an uneven system surface.

III. CRITICAL TEMPERATURE

In this section, we perform MC simulations to test the scaling relation for the critical temperature (11). For the
simulation, we adopt the NPT -MC method15 for the isothermal-isobaric ensemble with the number of molecules N ,
the pressure of the system P , and the temperature T . In this paper, in order to exclude other effects than those
due to the elastic interaction through distortion, we fix P = 0. We also fix the spring constants as k1 = 40 and
k2 = 4 as in our previous work.2 The critical temperature of the pure elastic interaction model (8) is TElastic

c ≃ 0.2 for
RH = 1.1,2 and we choose J = 0.1 in order to keep the two terms in the present model (6) of comparable magnitude
near the critical temperature. Therefore, T IS

c = 0.2269 · · · in these units on the square lattice. We use a standard
Metropolis method, adopting periodic boundary conditions. In most cases, we performed eight independent runs of
4,000,000 Monte Carlo steps per spin (MCSS) for the each data with 100,000 MCSS for the initial equilibration. We
confirm that the statistical errors are smaller than the marks in the following graphs. We fix RL = 1.0 and choose
RH = 1.005, 1.008, 1.010, 1.015, 1.02, 1.05, and 1.1.
We have previously pointed out that even infinitesimally weak long-range interactions become dominant in the ther-
modynamic limit.1 In the case of the previous hybrid model (1), this property is explained by the fact that in a well
coarse-grained Hamiltonian, the long-range interactions become stronger than the short-range ones. We need systems
sufficiently large that clusters caused by the short-range interactions can be regarded as block spins.1 Here we assume
that this size dependent crossover phenomenon also takes place in the present model (6).
Here, in order to estimate the critical temperature, we adopt a method we also used in our previous paper. We

use the crossing point of the forth-order Binder cumulant17 U4(L) for different system sizes to estimate the critical
temperature Tc(RL/RH) with high precision. The cumulant is defined as

U4(L) ≡ 1− 〈m4〉L
3〈m2〉2L

, (13)

where m = 1/L2
∑

i σi. In the case of the pure elastic interaction model (8) on the square lattice with periodic
boundary conditions, the fixed-point value of the cumulant2 is the same as the exact value for the infinite-range
interaction model (3), UMF

4 ≃ 0.27 · · ·.18,19 With the radii ratio RL/RH = 1, the present model (6) is equivalent to
the pure Ising model on the square lattice with periodic boundary conditions. For this case the fixed-point value of
the cumulant is the same as the value for the Ising model (2), U IS

4 ≃ 0.61 · · · on the square lattice.20 Other shapes of
the system, boundary conditions, and anisotropy may lead to different values of U4 at the crossing point.21,22
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FIG. 2: (Color online) Temperature dependence of the Binder cumulant U4(L) for (a) RH = 1.005, (b) RH = 1.01, (c)
RH = 1.02, and (d) RH = 1.05. Points denote Monte Carlo data, and the solid lines are polynomial fits. The upper and lower
horizontal lines denote the fixed-point values for the Ising model (U IS

4 ≃ 0.61) and the infinite-range model (UMF

4 ≃ 0.27),
respectively. The left vertical line in (a) represents the critical temperature of the pure Ising model. The linear system size L
is 10, 20, 40, 80, 160, and 320 for circles, squares, upward triangles, downward triangles, diamonds, and asterisks, respectively.

In Fig. 2, we see that the crossing points of the Binder cumulant decrease toward the mean-field fixed-point value,
UMF
4 ≃ 0.27 · · ·18,19 from the Ising fixed-point value, U IS

4 ≃ 0.61 · · ·20 as L increases. This indicates that a size
dependent crossover occurs, and that the critical point of this model belongs to the mean-field universality class.
We estimate the critical temperature as follows. Assuming that the critical behavior of the model belongs to the
mean-field universality class, we get a series of upper bounds on the critical temperature as the temperature at which
U4(L) crosses U

MF
4 . Lower bounds are given by the cumulant-crossing temperatures of U4(L) and U4(L/2). In Fig. 3,

bars denote those upper bounds and lower bounds of the critical temperature, and we plot the middle points of those
bounds by bullets. Increasing L, the temperature range between the upper bounds and the lower bounds becomes
narrow. For each value of RL/RH, we extrapolate those middle points for the two largest system sizes versus 1/L
to obtain the corresponding critical temperature in the thermodynamic limit. With this method, we expect that a
critical temperature of a hybrid system with both short-range and long-range interactions can be obtained accurately
in general. The data collapse well onto a straight line as shown in Fig. 4, confirming the scaling form (11) for RH

smaller than 1.02. The points fall above the line for large values of 1 − RL/RH. In this model, we fix the strength
of the Ising interactions, while in the previous hybrid model (1), the factor 1 − α multiplying the Ising Hamiltonian
causes a deviation of the critical temperature in the opposite direction (see Fig. 4 of Ref. 1).
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(a) (b)

FIG. 3: (Color online) Size dependence of the crossing point of the Binder cumulant (a) and an enlarged view of the same for
small RH (b). From above to below, we show simulation results with L = 20, 40, and 80 for RH = 1.10 and 1.05, L = 20, 40, 80,
and 160 for RH = 1.02, 1.015, 1.01 and 1.008, L = 20, 40, 80, 160 and 320 for RH = 1.005. The points at 1/L = 0 are linear
extrapolations from the two smallest nonzero values of 1/L. Filled squares, filled circles, diamonds, downward triangles, upward
triangles, open squares, and open circles represent Tc(L) for RH = 1.10, RH = 1.05, RH = 1.02, RH = 1.015, RH = 1.010,
RH = 1.008, and RL = 1.005, respectively.

FIG. 4: (Color online) The
(

1− RL

RH

)

dependence of the shift of the critical temperature in a log-log plot. The oblique dashed

line (blue online) represents a numerical fit of the 4 leftmost points to
(

1− RL

RH

) 8

7 .

IV. CORRELATION LENGTH

In this section, we perform MC simulations to test the scaling relation for the correlation length at the critical
point (12). We previously calculated the critical correlation length in the previous hybrid model (1) from MC
simulations.1 In that paper, we used the spin-correlation function c(r) = 〈σ(r′)σ(r′ + r)〉 to estimate the correlation
length, excluding the contribution of long-range correlations from the correlation function. In the present model (6),
because of strong anisotropy of the correlations,2 it is not practical to calculate the correlation length ξ (RL/RH) with
this method.
Here we instead obtain the correlation length from the structure factor,

S(k) =
1

N

∑

l,m

〈σlσm〉eik·rl,m , (14)

which is readily measured in scattering experiments. All the contributions of the long-range correlations are given
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by S(k = 0), so we can easily exclude them from the calculation. Here we note that there exist many experimental
studies on the structure factors of magnetic materials,29 obtained by neutron scattering. In the case of spin-crossover
materials, the structures have been studied by single-crystal x-ray diffraction experiments.30,31 The structure factor
for the HS/LS state domains discussed in the present paper can be obtained from diffuse x-ray scattering.
In the pure short-range Ising model at the critical temperature, the structure factor has its peak at k = 0 with

infinitesimally narrow width in the thermodynamic limit. However, in the hybrid model with both short-range and
long-range interactions, the system prefers a spatially uniform configuration and the cluster size is suppressed even at
the critical temperature, and the peak has a finite width in the thermodynamic limit. Here we obtain the correlation
length at the critical point, ξc by calculating the characteristic peak width of the structure factor.

10
-3

10
-2

10
-1

S(
k)

3210-1-2

2πkx /L (ky=0)
(a) (b)

FIG. 5: (Color online) The structure factor of the pure short-range Ising model (circles) and the hybrid model with RH = 1.02
(squares), at each its critical point. (a) L = 160 and (b) L = 20.

In Fig. 5, we depict the structure factor of the pure Ising model at its critical temperature (circles) together with
that of the hybrid model at its critical temperature (squares). Figure 5 (a) shows the structure factor of the system
for L = 160, and Fig. 5 (b) is for L = 20. We find a qualitative difference between these figures. Namely, we find a
flat region in S(k) of the hybrid model around k = 0 in Fig. 5 (a), while S(k) for both the pure short-range Ising
model and the hybrid model show similar peaks in Fig. 5 (b).
The structure factor of the hybrid model consists of two parts: A δ-function at k = 0 and a broad peak reflecting

short-range order with the correlation length ξc. The two-parts are superimposed in Fig. 5 (a). The flat region belongs
to the diffuse peak, which is due to the finite cluster structure of the hybrid model. We find that for sufficiently large
systems, the diffuse peak and the δ-peak at k = 0 are well distinguished. In those systems, we define the characteristic
peak width |kpeak| as the spectral peak width of the diffuse peak as shown by the arrows in Fig. 5 (a).
In Fig. 5 (b), for small L, the resolution in k-space (2π/L) is rather coarse, so the data points do not reflect the

finite width of the peak in the hybrid model well. It is hard to distinguish between the structure factors of the Ising
model and the hybrid model in such small systems.
We note that the sum rule of the structure factor is

∑

k S(k) = N . In the hybrid model, S(k) for large |k| is larger
than that of the pure short-range Ising model because S(k) around k = 0 is suppressed in the hybrid model.
We can estimate the correlation length ξ from the structure factor by considering the first moment of k−1,

〈k−1〉 ≡
∑

k 6=0

1

|k|S(k), (15)

where k = |k|. In our present model, the correlation function of the spin configuration is given by2,23

〈σiσj〉 = c(ri,j) = cSR(|ri − rj |) + cLR. (16)
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Here, cSR(|ri − rj |) denotes the contributions from the short-range interactions, and cLR denotes those from the
long-range interactions. We note that the long-range correlation cLR does not depend on the distance |ri − rj |. In
Eq. (15), the contribution from the long-range correlations cLR (i.e., S(k = 0)) is excluded, so we use the asymptotic
formula for the pure short-range Ising model,24

c(r) ∝ 1

r2−d+η
e−r/ξ. (17)

In the thermodynamic limit, we replace the sum in (15) by an integral:

〈k−1〉 =

∫ ∞

k=2π/L

∫ 2π

φ=0

kdkdφ
1

k

∫ ∞

r=0

∫ 2π

θ=0

rdrdθeikrcosθc(r) (18)

∝
∫ ∞

k=0

dk

∫ ∞

r=0

drr1−ηe−r/ξJ0(kr) (19)

= ξ1−η

∫ ∞

K=0

∫ ∞

R=0

R−ηe−RJ0(K)dKdR (20)

∝ ξ1−η = ξ3/4. (21)

In the last line, we use the substitutions, K = kr, R = r/ξ, and J0(K) is the Bessel function. There is no singularity
in the integral, and 〈k−1〉 gives a power of the correlation length. Therefore we define the critical correlation length
ξc at the critical temperature Tc as follows,

ξc ∝ 〈k−1〉
4

3

c , (22)

where 〈k−1〉c represents the value at the critical point. The scaling relation for 〈k−1〉c is, by making use of (12),

〈k−1〉
4

3

c ∝ ξc = Lf

(

L

(

1− RL

RH

)
8

7

)

, (23)

where g(x) ∝ 1
x for x → ∞.

We obtained 〈k−1〉c and the corresponding values of ξc for various values of L and RL/RH. Those are plotted in
Fig. 6. In the enlarged view of Fig. 6 for small L, we find inflection points. For small L, ξc(RL/RH, L) grows faster
in the hybrid model than in the pure Ising model.
Here let us consider the reason for this behavior. This fast growth is due to the coarse resolution in k-space.

The characteristic peak width of the hybrid model does not represent well the structure factor in the small systems
(Fig. 5(b)), and the correlation length of the hybrid model is overestimated in Eq. (23). This extra size dependence
for small size comes from the discontinuous nature of k-space, and is not essential for the present purpose.
For large L, the growth of ξc(RL/RH, L) becomes much slower than in the pure Ising model. For RH = 1.02 and

L = 320, ξc(RL/RH, L) is almost saturated. For other values of RH, ξc(RL/RH, L) is expected to saturate for still
larger systems. It means that for sufficiently large systems, the difference of the structure factor of the hybrid model
and the pure short-range model is clear.
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(a) (b)

FIG. 6: (Color online) The size dependence of 〈k−1〉
4

3
c ∝ ξc at the critical point Tc(RL/RH) (a), and an enlarged view of the

same for small L (b). L = 2, 4, 6, 8, 10, 14, 20, 30, 40, 80, 160 and 320. Circles, squares, upward triangles, downward triangles,
diamonds and crosses represent T = 0.23107 for RH = 1.003, T = 0.23428 for RH = 1.005, T = 0.23965 for RH = 1.008,
T = 0.24345 for RH = 1.01, T = 0.2537 for RH = 1.015 and T = 0.2649 for RL = 1.02, respectively. The dashed line (blue
online) represents T = 0.2269 for RH = 1.00, the pure Ising-model limit.

The same behavior is found in the previous hybrid model (1). In both models, the previous hybrid model (1)
and the present model (6), the long-range interactions suppress the clustering of spins. Thus there appear tightly
correlated effective block spins. In the coarse-grained Hamiltonian with the block spins, the long-range interactions
become effectively stronger than the short-range interactions.1

According to this picture, for L smaller than the clusters caused by the short-range interaction, the long-range
interaction is irrelevant. Thus, for small L, the system is an effective short-range interacting system. On the other
hand, for sufficiently large L, the system is an effective long-range interacting system. We refer the crossover length
as Lcl, which we define as Lcl = 1/|kpeak|. The inflection points in Fig. 6 also indicate the crossover length of the
system size, Lcl. For L > Lcl, the correlation length at the critical point, ξc(RL/RH, L), tends to be saturated. For
L < Lcl, ξc(RL/RH, L) grows faster than linear.
We also found that the peak position of χ̃(L) ≡ 1

N (〈M2〉 − 〈|M |〉2) shows similar behavior. The peak position, the
effective ‘critical point’ for a system of size L , saturates at the critical temperature in the thermodynamic limit:

Tc

(

RL

RH

, L

)

→ Tc

(

RL

RH

,∞
)

. (24)

As in the previous work,1 we found a non-monotonic dependence of the peak position as a function of L. For small
L, the peak positions approach Tc from the high-temperature-side, while for large L, the peak position is on the
low-temperature-side and eventually approaches Tc from below. This non-monotonic behavior indicates the crossover
from the effective short-range system to the effective long-range system. It is an interesting problem to study the
relation between the crossover phenomena in χ̃(L) and the correlation length ξc in Fig. 6. We expect that this general
system size dependence occurs in any hybrid model where effective spins play an important role.
In appendix A, we discuss in detail how the correlation lengths are measured. In Fig 7, we plot the data for

L > Lcl(RL/RH) in a scaling plot of the form (23). We find that the data collapse onto a scaling function and thus
we conclude that (23) is justified.
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FIG. 7: (Color online) Scaling plot of the correlation length at the critical point. Circles, squares, upward triangles, downward
triangles, diamonds, and crosses represent T = 0.23107 for RH = 1.003, T = 0.23428 for RH = 1.005, T = 0.23965 for
RH = 1.008, T = 0.24345 for RH = 1.01, T = 0.2537 for RH = 1.015, and T = 0.2649 for RL = 1.02, respectively. Data are
included only for L > Lcl. The dashed line is proportional to y = x−1. The data are in good agreement with the scaling
relation, but they converge more gradually to the asymptotic formula than when the correlation length is calculated from the
correlation function.1

V. SUMMARY AND FURTHER DISCUSSION

In general, spin-crossover and related materials have both short-range and long-range interactions. If the elastic
potential is chosen spin-state dependent27,28, in which different potential functions (coupling constants) are given for
LS-LS, LS-HS, and HS-HS molecular pairs, it is considered that the interaction has intrinsically both short-range and
long-range components. In this paper, we have studied critical properties of the present model (6) with elastic and
short-range interactions. By Monte Carlo simulations we confirmed that the present model obeys a scaling relation
for the shift of the critical temperature as a function of the strength of the long-range interaction, which is determined
by the ratio of the radii of the molecules in both states. We similarly confirmed that the present model also obeys a
scaling relation for the correlation length at the critical point, which was found in our previous work for the hybrid
model with infinite-range and nearest-neighbor interactions.1 Although the origin of the long-range interaction is
very different in the previous model and the present model, we found several kinds of universality in their critical
properties.
In the present model, because of the anisotropy in the correlation function, we estimated the correlation length

from the structure factor. By this method, the correlation length can be measured in scattering experiments on
real materials. Because spin-crossover materials usually undergo first-order phase transitions, experiments on the
structure factors of these materials have been so far only done for HS/LS ordered phase.30,31 Our results show that
the structure factor of spin-crossover materials should exhibit a peak with finite width at the critical point due to
the elastic interaction. We hope such unique behavior will be observed by single crystal x-ray diffraction along the
coexistence line and at the critical point.
It was confirmed that the present model (6) possesses an effective long-range interaction. The details of the effective

long-range interactions introduced by the elastic degrees of freedom in the present model are not known. Only for
d = 1,25 it has been shown rigorously that the model can be mapped onto an short-range Ising model. There has
also been much previous research on three-dimensional elastic solids, and it is generally argued that the dominant
long-range interactions are of a dipole-dipole nature, ∼ 1/r3.26 Although the effects of distortions in the present
model are not identical to those in the classical elastic media for which these results were obtained, we assume that
the elastically mediated interactions in our model also are of such long-range type. However, in our present model the
spin correlation function shows infinite-range correlations above the critical temperature.2,23 Therefore, we assume
that there are similar but unknown infinite-range interactions in the present model. Understanding the mechanism
by which the infinite-range interactions arise remains an intriguing problem for future research.
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Appendix A: Calculating the correlation length ξ

In the previous work on the model defined in (1), there exist both short-range and infinite-range interactions, but no
anisotropy. Therefore we could exclude the contribution of the long-range correlations uniformly from the correlation
function, obtaining the correlation length from the following relation,

ξ =

∫ L/2

0
(c(r)− c(L/2)) rdr

∫ L/2

0
(c(r)− c(L/2)) dr

. (A1)

Here, c(L/2) which is proportional to 1√
N

is a good approximation for the large-r limit of c(r).

In the present paper, we adopt another method because of the strong anisotropy in the correlation function. In a
d−dimensional system, we can estimate ξ from

〈k1−d〉 ≡
∑

k 6=0

1

|k|d−1
S(k) ∝ ξ2d−3−η. (A2)

In the present model defined by (6) with very weak elastic interactions, there exist rather large, but finite clusters at
the critical point due to the short-range interactions. In (A2), we sum the structure factor with importance 1/|k|d−1 in
order to avoid divergences and to collect the contributions from length scales on the order of L, using the asymptotic
form of the correlation function (17).
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