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Motivated by recent numerical studies of Ag on Pt(111), we derive an expression for the RKKY
interaction mediated by surface states, considering the effect of anisotropy in the Fermi edge. Our
analysis is based on a stationary phase approximation. The main contribution to the interaction
comes from electrons whose Fermi velocity vF is parallel to the vector R connecting the interacting
adatoms; we show that in general, the corresponding Fermi wave-vector kF is not parallel to R. The
interaction is oscillatory; the amplitude and wavelength of oscillations have angular dependence
arising from the anisotropy of the surface state band structure. The wavelength, in particular,
is determined by the projection of this kF (corresponding to vF) onto the direction of R. Our
analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate that the
RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account
for the anisotropy found in the studies motivating our work. However, for metals with surface
state dispersions similar to Be(101̄0), we show that the RKKY interaction should have considerable
anisotropy.

PACS numbers: 73.20.At,73.20.-r,68.35.Md,73.90.+f

I. INTRODUCTION

Surface reconstruction and self-assembly at interfaces
have attracted considerable interest due to the desire to
tailor electronic and other properties of semiconductor
devices. Understanding the dominant interactions be-
tween atoms on surfaces is crucial for describing these
larger-scale reconstruction processes. Classical models of
surface stress, such as the Frenkel-Kontorova model,1,2

have been successful in describing many experimental
systems.3–6 However, recent work suggests that classical
theories are unable to predict the formation of structures
on certain hetero-epitaxial systems. By comparing nu-
merical results to experimental data, Stepanyuk et al.

showed how quantum mechanical interactions could lead
to the self-assembly of one dimensional Co chains and Fe
superlattices on Cu(111).7,8 More recently, Refs. 9 and 10
used density functional theory (DFT) and kinetic Monte
Carlo simulations to show that anisotropy in the quan-
tum mechanical interactions between adsorbed atoms
(adatoms) is crucial for the formation of striped dislo-
cation patterns seen when Ag is deposited on Pt(111).11

Motivated by these works, our primary goal in
this paper is to derive an analytic expression for the
anisotropic surface state12,13 (SS) mediated Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction14–17 between
adatoms on a FCC surface. While perturbative calcula-
tions of the RKKY interaction have been performed in
2D by Lau and Kohn18 and others,19 we emphasize that,
to the best of our knowledge, these previous studies only
considered isotropic band structures.20–22 Our analysis,
however, specifically accounts for the anisotropy in the
interaction, which is induced by a more realistic SS band.
In this paper, we focus our analysis primarily on the the

(111) surface of an FCC crystal so that, as a secondary
goal, we may compare our results with Refs. 7–10. How-
ever, the techniques we employ are easily generalized to
other lattice geometries and systems; we will show, for
example, how our main result can be used to describe
the RKKY interaction on surfaces such as Be(101̄0) and
Cu(110), which both have a highly anisotropic surface
state band.23

In Ref. 24, one of us proposed that the main contri-
bution to the RKKY interaction comes from electrons
whose Fermi velocity (rather than Fermi wave vector) is
parallel to the vector separating the adatoms. A version
of this idea was in fact shown earlier by Roth et al.,25,26

whose analysis we extend to surfaces and 2D systems.
Our main analytical tool will be a stationary phase
approximation of the relevant, oscillatory integrals.
This technique has the benefit of revealing the essential
physics of the RKKY interaction, at the cost of limiting
our result to the far-field regime; we provide a criterion
that indicates when our result is valid. The generality of
our approach is closely related to the stationary phase
approximation and stems from the fact that, in the
far-field limit, the interaction is determined by the local
structure of the Fermi edge (i.e. a few electron states);
thus, one need not perform complicated integrals over
all surface states.

We find that the 2D RKKY interaction is oscillatory
and bounded by an envelope that decays as inverse dis-
tance squared, in agreement with experimental and nu-
merical studies.7,8,18–21 For a (111) FCC surface, our
analysis predicts a six-fold anisotropy in the interaction;
however, we find less variation in the interaction wave-
length than in Ref. 9. Below we indicate conceptual dif-
ferences between our approach and those of the afore-
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mentioned references.
The remainder of the paper is organized as follows.

In Section II, we evaluate an analytical formula for the
anisotropic, RKKY interaction in 2D. In Section IIIA we
discuss the essential physics of the interaction and give
a criterion that indicates when our main result is valid.
In Section III B we briefly review experimental evidence
of the 2D RKKY interaction, while in Section III C we
discuss our main result in the context of Ag on Pt(111)
(Refs. 9 and 10). In Section IIID 1 we highlight the key
quantities needed to determine the RKKY interaction for
different lattice geometries, and in Section III D 2 we con-
sider complications that arise in metals such as Be(101̄0),
i.e. when the SS band is centered at special points on
the boundary of the surface Brillouin zone. Section III E
compares our work with other analytical treatments of
the RKKY interaction, and Section III F discusses com-
plications beyond the scope of our work. Section IIIG
explores open questions and extensions of our analysis.
Section IV restates our main conclusions.

II. 2D ANISOTROPIC RKKY INTERACTION

It is well known that the {111} surfaces of each noble
metal possesses a partially-filled, “metallic” sp Shockley
surface state (with its minimum at the zone center Γ),27

which can mediate interactions between adatoms.28,29

The general form of the corresponding 2D RKKY inter-
action is25

∆= −P
∫

d2kd2k′ e
−i(k−k

′)·R|Jkk′ |2
Ek′ − Ek

f(Ek)[1−f(Ek′)],(1)

where P indicates that the integral should be interpreted
as a principal value. The vector R connects the posi-
tions of the interacting adatoms. The Fermi function is
denoted by f(Ek), and Ek is the energy of a SS with the
wave vector k. When multiplied by f(Ek)[1−f(Ek′)],
the exchange integral Jkk′ describes a coupling event
whereby a SS below the Fermi energy is upscattered to a
state above the Fermi energy via an interaction with an

adatom; the conjugate transpose J†
kk′ describes the op-

posite process in which the upscattered SS returns to its
original state. The presence of exp [−i(k− k′) ·R)] re-
veals that the interaction is mediated by a weighted sum
of symmetric and anti-symmetric surface states. Here we
refer specifically to the symmetry of cos[(k−k′) ·R)] un-
der the reflections about the midpoint of R (cf. Eq. (4)
for motivation). Integration runs over all k in the first
Brillouin zone of a single band; we neglect contributions
from other bands.
We assume that the coupling between a SS and an

adatom is the same at both adatom locations; conse-
quently, R is a Bravais lattice vector. This is a reason-
able assumption, since the adatoms typically adsorb at
energetically-favored high-symmetry sites (atop, bridge,
or center/hollow, depending on the adatom and sub-
strate). In such cases, adatom pairs will be separated

by 2D Bravais lattice vectors, regardless of their registry
with the substrate. The 2D SS wave vectors k and k′,
which mediate the interaction, can be regarded as free-
electron-like states for the case of the metallic Shockley
state, but in general must be treated as Bloch states (cf.
Section III D 2).

For simplicity, we assume that one s - orbital from
each substrate atom contributes to the SS conduction
band; we calculate the conduction band using a nearest-
neighbor, tight binding approximation, which provides a
semiquantitative approximation for the metallic surface
state on Cu(111).29,30 For the (111) face of an FCC crys-
tal,

E(k)=ǫ
[

3−cos
(

(2/
√
3)k·a‖

)

− cos(k+)− cos(k−)
]

(2)

where k = (kx, ky)/a; k± = (k · a⊥) ± (1/
√
3)(k · a‖);

a‖ = a(sin(θ), cos(θ)); and a⊥ = a(cos(θ),− sin(θ)). The
constant a is the inter-atomic spacing of the substrate
atoms (kx and ky are dimensionless), and ǫ is a parameter
having units of energy. When the crystal axes are held
fixed, −θ is the angular coordinate of R.

Concerning the rotation angle, however, we adopt the
alternate perspective that R is always fixed in the ŷ di-
rection, so that the crystal axes are rotated by θ (cf.
Fig. 1): R = R ŷ. We make this choice to clarify the anal-
ysis; specifically, we anticipate24 that the dominant con-
tribution to the interaction comes from electrons whose
Fermi velocity is parallel to R. By applying a stationary
phase approximation to Eq. (1), we will show that this
idea arises naturally in the rotated frame.

By inversion symmetry, we may replace 1− f(Ek′) by
1, as this does not change the principal value expressed
by Eq. (1).25 We may also simplify Eq. (1) by applying
the substitution k (k′) → −k (−k

′) to all k (k′) for
which ky (k′y) < 0.31 Changing variables from ky (k′y) to
E (E′) then yields,

∆ = P
∫ Emax

0

dE

∫ Emax

0

dE′

∫

dkx

∫

dk′x
f(E) |Jkk′ |2

E − E′

×V−1
y (E, kx)V−1

y (E′, k′x)P (ky , k
′
y), (3)

P (ky, k
′
y) =

[

e−i(ky−k′

y)R + e−i(ky+k′

y)R + CC

]

, (4)

where CC stands for “complex conjugate,” and
V−1
y (E, kx) = ∂ky/∂E. The product aVy(E)/~ is the

ky component of the group velocity of a wave packet
centered about ~k.32 Note that ky = ky(kx, E).

In the limit of large R (we specify this condition
more precisely below), the integrand in Eq. (3) oscil-
lates rapidly when ky(kx, E) changes as a function of
only kx, keeping E fixed. We expect cancellation of
the integrand due to destructive interference, except
when ∂ky/∂kx|E = 0, when ky is a maximum on each
constant energy curve (cf. Fig. 1).25,33,34 These extrema
correspond to a SS whose group velocity is parallel to R.



3

FIG. 1. (Color online) Constant energy curves (via Eq. (2))
for E/ǫ when θ = π/15. The vertical dotted line points in
the ky direction and is parallel to R. The slanted, dotted line
shows the angle through which the constant energy curves
have been rotated. The black, dashed contour is the boundary
of the first Brillouin zone. The solid black curve connecting
the origin to the E/ǫ = 4 contour intersects the point on each
constant energy contour for which ky is maximized, so that
dky/dkx = 0 (which is the stationary phase condition for the
dkx integration). The intersection of this curve and the Fermi
edge marks the location of the surface states that dominate
the RKKY interaction. The solid black curve was found by
numerically solving Eqs. (2) and (11) as a function of E/ǫ.

Thus, fix E and expand ky about its maximum; namely,

ky(E, kx) ≈ ky(E, k̆x,E)− (kx − k̆x,E)
2/n(E), (5)

1/n(E) = −1

2
∂2ky(E, kx)/∂k

2
x |kx=k̆x,E

, (6)

where k̆x,E maximizes ky(E, kx) for a given E. Equa-
tion (5) states that for each E, there is a group of k-states

centered around (k̆x, ky(E, k̆x)) mediating the interaction
in a coherent manner. The function n(E) measures the
approximate number of k-states that contribute to the in-
teraction for a given E. We will show later how Eqs. (3),
(5), and (6) provide a more precise definition of the far-
field limit.
We substitute Eq. (5) into Eq. (3) and extend the

integration in kx, k
′
x from −∞ to ∞. Approximating

Jkk′ ≈ Jkk′ |kx=k̆x,E , k′

x=k̆′

x,E
= JEE′ and Vy(E, kx) ≈

Vy(E, k̆x,E) yields

∆=
1

R

∫ Emax

0

dE

∫ Emax

0

dE′ |JEE′ |2[f(E)−f(E′)]
√

n(E)n(E′)

2[E − E′]Vy(E, k̆x,E)Vy(E′, k̆′x,E)

×{exp(i[k̆y− k̆′y)R]+ i exp[i(k̆y+ k̆′y)R]+CC}. (7)

The substitution f(E) → [f(E) − f(E′)]/2 is valid by

inversion symmetry;25 that is, switching E and E′ in
Eq. (3) is equivalent to multiplying the expression by
−1. This substitution eliminates the pole along the real
E axis, so that Eq. (7) is the principal value of Eq. (3).
In the spirit of Ref. 25, we assume that the major

contribution to Eq. (7) comes from the Fermi energy,
ǫF . We make the substitution E = E′ = ǫF and ap-

proximate ky|kx=k̆x,F
≈ k̆y,F + V−1

F (E − ǫF ), neglecting

terms O[(E − ǫF )
2].35 The vector k̆F = (k̆x,F , k̆y,F )

points to maximum of the Fermi edge in the rotated

reference frame, and VF = Vy(ǫF , k̆x,F ) is proportional
to the Fermi velocity vF via VF = ~vF /a. Hereafter, for

brevity, we refer to k̆y,F as ks; the subscript s is intended

to remind the reader that 2k̆F spans the Fermi edge.
When the limits of integration are extended to ±∞,33

Eq. (7) simplifies to,

∆ =
π|JǫF ,ǫF |2n(ǫF )

2V2
FR

∫ ∞

−∞

dE

∫ ∞

−∞

dE′ f(E)− f(E′)

E − E′

×
[

eiV
−1

F
[E−E′]R−i ei[2ks+V−1

F
(E+E′−2ǫF )]R+ CC

]

. (8)

Equation (8) can be evaluated by the residue the-
orem. By definition, f(E) = {exp[(E − µ)/τ ] +
1}−1 ≈ {exp[(E − ǫF )/τ ] + 1}−1 (µ is the chemi-
cal potential, and τ = kBT is Boltzmann’s constant
times the temperature); the Fermi function has poles at
E = ǫF±(2n+1)πiτ, n = 0, 1, 2, .... Carrying out the two
integrations yields an odd-power geometric series, which
reduces to

∆ = −2π3τ
|JǫF ,ǫF |2n(ǫF )

V2
F

sin(2ksR)

sinh [2πτR/VF ]R
(9a)

−−−→
τ→0

−π2 |JǫF ,ǫF |2n(ǫF )
VF

sin(2ksR)

R2
. (9b)

We emphasize that the wavelength of this oscillatory ex-

pression is π/ks, where ks = k̆y,F is the projection onto

the unit vector R̂ of the Fermi wavevector whose velocity

is parallel to R; i.e., it is πR/(k̆F ·R). We treat JǫF ,ǫF

as a free parameter; strictly speaking then, Eq. 9 is well
defined only for R a Bravais lattice vector. This becomes
important when the surface state does not have simple
2D free-electron behavior (cf. Section III D 2). The fac-
tor of τ appearing in the coefficient of (9) comes from
the ratio E/τ in the chemical potential.
To complete the analysis, we must compute Vy(E, kx),

ks, and n(E). Implicit differentiation of Eq. (2) with
respect to ky, keeping kx fixed, gives Vy(E, kx);

Vy(E, kx) =
∂E

∂ky

∣

∣

∣

∣

kx

= aǫ[(2/
√
3) cos(θ) sin(k·a‖)

−(p·a‖) sin(k−)− (q·a‖) sin(k+)],(10)

where p = a−1(1, 1/
√
3), q = a−1(1,−1/

√
3). To find

k̆y(E), differentiate Eq. (2) with respect to kx for fixed
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E, which gives

0 =
∂ky
∂kx

= (2/
√
3) sin(θ) sin(k·a‖) + (p·a⊥) sin(k−)

+(q · a⊥) sin(k+). (11)

Solving Eqns. (2) and (11) simultaneously yields k̆y(E)

and k̆x(E). Equation (6) defines n(E); using Eq. (11)
and ∂ky/∂kx|kx=k̆x,E

= 0 one finds,

n(E)−1=
1

2
{(4/3) sin2(θ) cos(k̆·a‖)+(p·a⊥)2 cos(k̆−)

+(p·a‖)2 cos(k̆+)}/{(2/
√
3) sin(k̆ · a‖)

−(p·a‖) sin(k̆−)−(q·a‖) sin(k̆+)}, (12)

where k̆ = (k̆x, k̆y) and k̆± = k±(k̆x, k̆y).

III. DISCUSSION

A. Elements of the 2D RKKY interaction for a
(111) FCC surface

Equations (2) and (9)-(12) completely describe the
RKKY interaction for a (111) FCC surface. The essential
physics, however, is manifest in Eq. (9). Specifically: (i)
the interaction becomes stronger as more SS contribute
(n(ǫF ) increases) and/or the coupling between a SS and
an adatom becomes stronger (|JǫF ,ǫF |2 increases); (ii)
the interaction amplitude decreases as the SS Fermi
velocity increases (VF increases); and (iii) the interaction
oscillates with a periodicity determined by 2ks, twice the
ky component of the Fermi wave vector corresponding to
the Fermi velocity that is parallel to R. The oscillations
arise from the symmetry (with respect to R) of the SS
mediating the interaction.
When τ → 0, Eq. (9) decays as 1/R2. The

low temperature limit is defined by estimating VF =
O(~2kF /ameff), where kF and meff are the Fermi wave
vector and effective mass of the SS. For Ag (111), Table
1 of Ref. 20 gives experimental values of these quanti-
ties; one finds that 1 eV <∼ VF

<∼ 10 eV, so that Eq. (9)
decays as 1/R2 whenever Rτ ≪ 1. At room tempera-
ture (τ = 1/40 eV), for example, we estimate that such
an exponential decay in Eq. (9) only becomes apprecia-
ble when Ra > 10a for this system (recall that a is the
inter-atomic distance).
Equation (9) differs in several respects from its

3D counterpart. In the bulk of a crystal, the RKKY
interaction falls off as 1/R3 when τ = 0, due to the
increased dimensionality of the lattice.25 Also, in 3D the
number of electrons contributing to the interaction is
proportional to n(ǫF )

2, since the dominant electrons live
on a Fermi surface (as opposed to an edge).
Numerically solving the system of Eqs. (2) and (11)

for k̆ reveals that k̆y is a function of θ (cf. Figs. 1
and 2). This implies that anisotropy in the SS band
structure induces anisotropy in both the amplitude (via

FIG. 2. RKKY interaction −∆/
(

π2|JǫF ,ǫF |
2
)

(Eq. (9)) on
a (111) FCC surface as a function of R at zero temperature
when ǫF /ǫ = 3. Values of θ are approximately the angles an
adatom makes with its second, fourth, sixth, eighth, and first
nearest neighbors, from bottom to top. All curves oscillate
about zero, indicated for each curve by a dashed line; these
lines are separated by intervals of 1/2 along the vertical axis.

VF and n(ǫF )) and the periodicity of the interaction (cf.
Fig. 2). From the structure of the lattice, we find (i) that
the anisotropy is six-fold, and (ii) that the interaction
amplitude is strongest for θ = 0, π/3, 2π/3, ..., i.e.
when R is perpendicular to the flattest part of the Fermi
edge (cf. Figs. 1 - 3).
Inspection of Fig. 1, however, reveals that the SS band

structure is nearly isotropic when E/ǫ <∼ 3. This obser-
vation is confirmed by expanding Eq. (2) for small k;

E(k)

ǫ
≈(a|k|)2− (a|k|)4

12
+

(10 + cos(6θ))(a|k|)6
3240

. (13)

The dispersion relation is isotropic up through O(|k|4).
When the Fermi energy ǫF /ǫ <∼ 3, the component k̆x,F ≈
0 and aks ≈ 61/2[1 +

√

1− (ǫF /3ǫ)]
1/2. In this limit,

the interaction given by Eq. (9) is approximately inde-
pendent of θ (cf. Fig. 2). Anisotropy in the interaction
becomes apparent only when ǫF /ǫ >∼ 3.
We identify the far-field regime by determining the

minimum values of R for which our model is valid. Re-
turning to Eqs. (3) and (7), when R/n(ǫF ) ≪ 1, extend-
ing the limits of integration of kx, k

′
x to infinity grossly

overestimates the number of k-states contributing to the
interaction. In particular, for E/ǫF = 4 and θ = 0,
the amplitude of the interaction diverges, which indi-
cates a total failure of the approximation for all R at
this angle. Hence, Eq. (9) is valid, provided that not
too many k-states contribute to the interaction; namely,
R/n(ǫF ) ≫ 1 (cf. Fig. 3). When the opposite limit holds
(R/n(ǫF ) ≪ 1), Eq. (9) can be corrected by not extend-
ing the limits of integration of kx, k′x to ±∞ in Eq. (3);
e.g. for θ = 0 and ǫF /ǫ = 4, a suitable range of integra-
tion in kx, k

′
x would be [−π/2, π/2], which corresponds

to the length of a side of the E/ǫ = 4 constant energy
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FIG. 3. The function n(ǫF /ǫ) of the constant energy contour
maxima for different angles (cf. Eqs. (5) and (12)). Note
that for θ = 0 the amplitude diverges when ǫF /ǫ → 4, so that
Eq. (5) overestimates the number of surface states contribut-
ing to the interaction. For all other values of θ, n(ǫF /ǫ) → 0
when ǫF /ǫ → 4, since the maximum of the constant energy
curves becomes infinitely sharp in this limit. The far-field
regime in which Eq. (9) is valid is given by R/n(ǫF /ǫ) ≫ 1.

curve in Fig. 1.

B. Experimental evidence of isotropic 2D RKKY
interactions

At low temperatures, STM measurements of Co
adatoms on Cu(111) are capable of directly imaging
standing waves in the electronic density of states (DOS).7

By comparing such experiments with DFT calculations
(based on the Korringa-Kohn-Rostoker (KKR) Green’s
function method) of the SS mediated interaction, Stepa-
nyuk et al.7 showed that the envelope bounding oscilla-
tions in the interaction energy falls off as 1/R2 for dis-
tances larger than roughly ten atomic spacings.36 In the
far-field limit, this implied that i) the interaction is dom-
inated by the SS, and ii) bulk electronic states do not
contribute to the R-dependence of the coupling between
adatoms. Stepanyuk et al. also found that the inter-
action wavelength is π/kF at large distances. At short
and intermediate distances (corresponding to R <∼ 10 in
our model), they found that screening by bulk electrons
affects the location of the first energy minimum.
These conclusions are in agreement with our main re-

sult, Eq. (9). In particular, we note that the Fermi energy
for Cu(111) is well within the quadratic regime;30 Eq. (9)
thus predicts that the interaction is isotropic, as seen in
Fig. 2 of Ref. 7. We estimate also that the corresponding
ratio ǫF /ǫ <∼ 1, which suggests n(ǫF /ǫ) <∼ 1 (cf. Fig. 3).
The far-field limit, defined as R/n(ǫF/ǫ) ≫ 1, should be
satisfied for Cu(111) at distances R >∼ 10 (at least ten
atomic spacings), in agreement with the results of Ref. 7;
corrections to Eq. (9) are O(R−1) — <∼ 10% as large as

the leading-order expression for the interaction.

C. The anisotropic interaction on Ag(111)

In Ref. 10, the SS-mediated adatom interaction is cal-
culated in the far-field regime for an Ag(111) surface us-
ing DFT. Our analysis agrees with their results, inso-
far as Eq. (9) predicts a six-fold anisotropy in the in-
teraction wavelength. However, Ref. 10 predicts that
the wavelength may change by almost 50% as a function
of θ. Comparing their numerics with our (one parame-
ter) band structure suggests that ǫF /ǫ < 0.5 for strained
Ag(111), so that Eq. (13) is a good approximation to
Eq. (2), and Eq. (9) is well within the isotropic regime.
Since the tight-binding ansatz might modestly underesti-
mate the actual leading-order anisotropy, we considered
the effect of enhancing this anisotropy by an order of
magnitude; to more emphatically rule out the role of
the leading-order anisotropy, we also examined the ef-
fect of enhancement by 2 and by 3 orders of magnitude.
Our conclusion remains valid even when the anisotropy
in Eq. (13) is increased by 103 (cf. Fig. 4). Thus, our
analysis predicts negligible anisotropy in the adatom in-
teraction on Ag.
Reference 10 also indicates that the amplitude of the

interaction can decrease by as little as a factor of two
over five or six atomic lengths; this does not agree with
the 1/R2 envelope bounding oscillations in Eq. (9). Our
analysis therefore implies that the SS-mediated RKKY
interaction alone cannot account for the results found in
Refs. 9 and 10.
Our model does not incorporate surface stress.37 In

Ag/Pt systems, lattice mismatch creates strain in the
Ag layers, which in principle affects the band structure
of the SS. References 9 and 10 included the effects of
strain in their DFT calculations, which could account
for discrepancies between Eq. (9) and their results. Fur-
thermore, Eq. (1) neglects certain quantum mechanical
effects17 (e.g. correlation energies) which are in principle
incorporated into DFT; such effects could be responsible
for the variation of the interaction found in Refs. 9 and
10.

D. Extensions to other systems

1. Key quantities determining the RKKY interaction

The steps leading to Eq. (9) can easily be generalized
to systems having different band structures or indirect
coupling modes. Our key approximation is that, in the
far-field limit, Eq. (1) is dominated by the local behav-
ior of the band structure at the points where the Fermi
velocity is parallel or anti-parallel to the adatom sepa-
ration vector. This local behavior is contained explicitly
in Eq. (6), and the implementation of our approximation
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FIG. 4. Equations (2) and (13) as functions of k for θ = 0
and θ = 30◦. For Eq. (13), we also magnify the leading order
anisotropy, [1 + cos(6θ)](a|k|)6/3240, by factors of 10, 100 ,
and 1000. For ǫF /ǫ < 0.5 (corresponding to Ag(111)), the
inset shows that even with a thousandfold enhancement, the
leading order anisotropy does not contribute significantly to
the band structure in the vicinity of the Fermi energy. Con-
sequently, our model predicts an isotropic RKKY interaction
between adatoms on Ag(111).

comes when Eq. (5) is substituted into Eq. (3), rendering
the subsequent integral (effectively) Gaussian.
To compute the anisotropic RKKY interaction for a

different band structure, it is therefore sufficient to know
only the second derivative (as a function of arc length)
and the critical points of the constant energy curves (in
the vicinity of the Fermi contour) in a rotated frame in
which R points in the ŷ direction (cf. Fig. 1). Numerical
calculations may be used to determine these quantities
when experimental measurements are the best available
representations of the SS band structure.
Our main result Eq. (9) can also be applied to mag-

netically coupled systems (without spin-orbit coupling),
since the exchange integral |Jkk′ |2 can accommodate in-
formation about spin states.

2. Surface states at special points on the SBZ edges

On the (110) faces of Cu, Ag, and Au, there is a metal-
lic surface state centered at Ȳ , the middle of the longer
edge of the rectangular surface Brillouin zone.38–40 There
is no reason to expect that these SSs are isotropic; indeed,
Simon et al.40 calculate the semi-minor and semi-major
axes of the elliptical Fermi edge on Cu to be 1.38 nm−1

FIG. 5. (Color online) The normalized interaction energies
VF∆/(π2|JǫF ,ǫF |2) for the elliptic Fermi edge of Be(101̄0)

(shown, to scale, in the inset) drawn by choosing k̆F = k̆Ā
F .

Stars are Bravais lattice positions. The vector kĀ ≡ 1

2
GΓ̄ĀΓ̄

points from Γ̄ to Ā. In the inset, we show two choices of the
spanning vector k̆F , viz. k̆Ā

F and k̆Γ̄

F , and the corresponding
separation vector R. Note that k̆Ā

F = k̆Γ̄

F − kĀ. In the main
figure, we omit a circular region whose radius is roughly 1 nm,
since i) the far-field approximation is not valid near the origin,
and ii) the interaction energy diverges as R → 0

and 1.64 nm−1, respectively, with a ratio 0.84. In their
computation of RKKY interactions in these principal di-
rections, they find what amounts to π/λF = 1.41 nm−1

and 1.72 nm−1, respectively.

For the unusual41 hcp metal beryllium, there are simi-
lar observations. On the close-packed, basal, (0001) face
there is a nearly isotropic metallic surface state42 cen-
tered at Γ. On Be(101̄0) there is a metallic surface state
with its minimum at Ā, the center of the longer edge of
the rectangular surface Brillouin zone, with anisotropic
(elliptical) constant-energy contours43,44 and consequent
anisotropy in the resulting RKKY interactions.43 The
Fermi ellipse is more eccentric than that of Cu(110), with
an aspect ratio about 0.71 (and semiaxes 2.2 nm−1 and
3.1 nm−1).23 The ratio of the wavelengths of charge-
density oscillations spawned by step edges in the two
principal directions have a similar, though slightly higher,
ratio around 0.74. However, we are not aware of any
data for the dependence of oscillations on steps with arbi-
trary azimuthal orientation that would allow comparison
with our analysis. Charge-density oscillations were also
observed around pointlike scatterers. The experiments
noted the asymmetry of these contours.
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Assuming an elliptical Fermi edge, we can apply
Eq. (9b) to predict the azimuthal dependence of the
RKKY interaction for Be(101̄0) as well as Cu(110). In
Fig. 5 we carry out this task for Be(101̄0) by numerically

computing n(ǫF ) and k̆F . The plot shows interaction en-
ergy as a function of azimuthal orientation and distance
from a central atom. The inset shows the upper half of
the rectangular first surface Brillouin zone. Recalling the
discussion after Eq. (1), we re-emphasize that when com-
paring energies given by Eq. (9) and Fig. 5, care must be
taken to ensure that R is a Bravais lattice vector.
We note that as a consequence, the vector k̆F underly-

ing ks in Eq. (9) is only determined modulo the addition
of a reciprocal lattice vector. The crucial quantity in

Eq. (9) is sgn[VF ] 2 ks R = sgn[VF ] 2k̆F ·R, where sgn is
the sign function. The above product is invariant (mod-
ulo factors of 2π) under subtraction of a reciprocal lattice

vector G from 2k̆F , since any change of sign in k̆F · R
will be accompanied by a corresponding change of sign

in VF (see Fig. 5, for example). The two wavevectors k̆F

and k̆F − 1
2G then correspond to different choices of the

origin in k-space.

In Fig. 5 we show two possible choices k̆F having Γ̄
and Ā as their respective origins. When applying Eq. (9)
to Be(101̄0) we can view the Fermi contour as a single
contiguous ellipse with “inner” spanning vectors across
it and energy gradients pointing outward, rather than
(or as well as) a pair of semiellipses with “outer” span-
ning vectors across the SBZ and with inward pointing
(toward Γ) gradients. We note that when used in con-

junction with Eq. (9), different choices of k̆F will result
in different (and physically unmeaningful) interpolations
of the interaction between Bravais lattice points.

E. Comparison to other analytical approaches

In Ref. 20 Hyldgaard and Persson calculate the SS-
mediated adatom interaction using a technique based on
the Harris energy functional.45,46 Their approach yields
a non-perturbative, analytic estimate of the indirect in-
teraction that accounts for i) a phase shift, which occurs
when a SS scatters from an adatom, and ii) damping of
the interaction amplitude due to screening by bulk atoms.
While both of these effects are seen in some experimen-

tal systems,20 we emphasize that they arise from local-

ized aspects of adatom coupling to the SS and so do not
affect the characteristic wavelength or decay of the inter-
action. Since our main task is to account for anisotropy
in the adatom-pair interaction, we choose not to compli-
cate our calculation with these effects to avoid clouding
our discussion on the origin of anisotropy. Analytically,
this choice was made when we set the exchange integral
|Jkk′ |2 equal to a constant; as this term describes the
detailed coupling between an adatom and surface state,
its careful evaluation should yield information about the
phase shift and screening.

F. Systems with complications not considered in
the present analysis

For heavy metals, spin-orbit coupling plays a signifi-
cant role in determining the SS band structure; for the
present problem, it leads to splittings of SS bands, called
Bychkov-Rashba splitting.40,47 Perhaps the most widely
known example is the metallic surface state on Au (111)
at Γ, in the L-gap of the projected band states, for
which a splitting of 0.25 nm−1 — with no detectable
azimuthal dependence — is observed (viz., kF = 1.72,
1.97 nm−1).48,49 Excellent agreement is obtained with
fully relativistic DFT calculations,49 while a simple tight-
binding model50 yields a splitting several orders of mag-
nitude smaller than the relativistic calculations.49 In fits
of their calculations of the RKKY exchange interaction,
Simon et al.40 obtained good agreement with their calcu-
lated results by using the sum of two oscillatory curves
with kF = 1.04, 1.42 nm−1.51

The distinctive52 semi-metal Bi displays the strongest
reported spin-orbit splitting of surface bands, thrice that
in Au, and considerable anisotropy.53 Furthermore, the-
oretical analysis for Bi is more taxing: For Au(111)
one can adequately describe the electronic dispersion by
adding a Rashba term to the nonrelativistic Hamiltonian,
since the SS is free-electron-like and centered at Γ; con-
sequently, the splitting is linear in k.53 For Bi, the sur-
face states are not free-electron-like and are distributed
over the surface Brillouin zone; hence, first-principles rel-
ativistic band structure methods are needed to model the
complex behavior SS dispersion.53 For the (111) surface
there are six elongated hole pockets along ΓM surround-
ing a ring-shaped electron pocket centered at Γ, all with
2D character.53,54 Spin-orbit coupling not only decreases
the size of the Fermi surface hexagon by 30% but also
introduces hole lobes and turns the SS into a surface res-
onance. On the (110) surface there is a hole metallic
surface band centered at Γ, and only one branch of the
split state can be observed.53,55 On the (001) surface,
there is a hexagonal electron pocket around Γ and six
hole lobes along the Γ-M̄ directions, as well as indication
of an electron pocket around M̄ .52,53,56

When considering exchange coupling between mag-
netic adatoms, spin orbit coupling introduces another
complication: the exchange coupling can lead to canting
of the two spins in a coupled pair,57 which often must be
neglected to make calculations feasible.58

Another complication is that surface states can
produce surface relaxation.59 In particular, unusually
large inward relaxations were noted on Cu(110)60 and
Be(101̄0).61 Lateral relaxations due to perturbations are
known to complicate the description of lattice gases in
terms of adsorbate interactions.62

In graphene all one-electron states are ipso facto 2D
states. Not surprisingly, then, many theory groups have
recently devoted attention to the prospect of RKKY
interactions.63–74 They and others pointed out a vari-
ety of complicating issues and idiosyncrasies of mono-
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layer graphene, such as the bipartite nature of the lat-
tice (leading to ferromagnetic or repulsive coupling for
impurities on the same hexagonal, Bravais sublattice of
the honeycomb graphene lattice63,64 and antiferromag-
netic or attractive coupling when on opposite Bravais
sublattices,64,65,68,69), the vanishing density of states at
the Fermi level in undoped and ungated lattices, the
suppression of backscattering (leading to R−3 rather
than R−2 decay75),63,64 the role of electron-electron
interactions,70 etc. Usually the adsorbates are taken in
atop sites but sometimes in bridge sites above bonds or
hollow sites at the center of the hexagon.63,71 Since the
Dirac cones are circularly symmetric, our analysis sug-
gests that there should not be anisotropy in the RKKY
interaction, but this neglects the chiral nature of the elec-
trons: sizable three-fold anisotropy is observed, which is
typically attributed to intervalley scattering.67,71 Hence,
more detailed discussion of graphene is inappropriate
here and distracting from the theme of this paper. Fur-
thermore, actually observing the asymptotic oscillatory
behavior typifying RKKY will generally pose a great
challenge unless the graphene is heavily doped.

In topological insulators, a combination of spin-orbit
coupling and time-reversal symmetry leads to protected
metallic surface states.76 Thus, RKKY interactions can
be expected to play an important role. Examples of very
recent studies are Refs. 77, 78, and 79.

G. Open Directions

Our analysis could in principle be extended to treat
trio (three-adatom non-pairwise) interactions.24,80 Such
interactions typically decay asymptotically as d 5/2,
where d is the perimeter of the triangle made by the three
interacting adatoms.81 While any particular trio interac-
tion is expected to be weaker than the three associated
pair interactions, the difference in the decay envelope is
just a half power (5/2 vs. 2) for SS mediation. More
significantly, the multiplicity of trios is greater; hence,
trio interactions could still play a prominent role in the
ordering of surface structures. The resulting extension
of Eq. (9) would in general contain three different wave-
lengths and would be cumbersome to apply. This analysis
is beyond the scope of the present study. We also note
that multi-site non-pairwise interactions between four or
more adatoms could come into play, with even greater
multiplicities and modest increases in the decay envelope.
Checking how such a series converges to the energy of
an ordered fractional overlayer was challenge never fully
met for rapidly decaying (∝ R−5) interactions mediated
by bulk states.82 For an overlayer determined by surface-
state mediated interactions, with density so sparse that
asymptotic interactions determine the ground state, ver-
ifying convergence would present a truly daunting task!

IV. CONCLUSION

In this paper, we derive an analytic formula for the sur-
face state mediated RKKY interaction between adatoms.
The main contribution to the interaction comes from sur-
face states whose Fermi velocity is parallel to the vec-
tor connecting the adatoms. The interaction is oscil-
latory and has an envelope that falls off as 1/R2 (but
eventually transitioning, at finite temperature, to expo-
nential decay at distances larger than germane to this
problem), in agreement with experimental results for
Cu(111).7,8 The amplitude and frequency of the inter-
action are anisotropic; they depend on the surface state
dispersion relation. Comparison with Refs. 9 and 10 in-
dicate that the RKKY interaction alone, at least to the
extent that the SS dispersion is adequately described by
the tight-binding model, cannot be responsible for the
anisotropy in the interaction between Ag adatoms ad-
sorbed on Pt (111). Our work suggests that analytic
treatment of other quantum mechanical interactions (e.g.
arising from correlations) and/or strain-induced effects in
the SS band structure may be necessary to account for
this anisotropy. We also show how our analysis can be
applied to other systems such as Be(101̄0) and discuss
extensions of our work to multi-adatom interactions.
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Blügel, P. H. Dederichs, and R. Wiesendanger, Nat. Phys.
6, 187 (2010). In earlier work members of this group [J.
Wiebe, F. Meier, K. Hashimoto, G. Bihlmayer, S. Blügel,
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