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Abstract 

The conductance of domain wall structures consisting of either stripes or cylindrical domains in multi-

axial ferroelectric-semiconductors is analyzed. The effects of the flexoelectric coupling, domain size, 

wall tilt and curvature, on charge accumulation, are analyzed using the Landau-Ginsburg Devonshire 

(LGD) theory for polarization vector combined with Poisson equation for charge distributions. The 

proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and 

cylindrical nanodomains are revealed. In contrast to thick domain stripes and thicker cylindrical 

domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the 

domain walls only, small nanodomains of radius less then 5-10 correlation length appeared conducting 

across entire cross-section. Implications of such conductive nanosized channels may be promising for 

nanoelectronics.  
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1. Introduction 

Ferroelectric domain walls were recently shown to act as conductive channels in ferroelectric-

dielectrics and ferroelectric-semiconductors even at room-temperature, providing experimental 

counterparts to decade-old theoretical predictions [1]. Experimental results in materials such as BiFeO3 

[2, 3]. Pb(Zr,Ti)O3 [4], SbSJ [5] and LiNbO3 doped with MgO [6], all enabled by the development of 

scanning probe microscopy techniques capable of probing the conductance on the nanoscale, suggest 

the universality of this behavior. These results present an obvious interest for fundamental studies of 

ferroics and low-dimensional systems, as well as offer new possibilities for oxide nanoelectronics due 

to nanoscale dimensions of conducting entities and the possibility to control their spatial location by 

external fields [4]. However, for a given ferroelectric material, the wall conductivity should depend on 

the wall tilt, local strains (due to electrostriction), and proximity effects. These factors in turn 

determine the possibility for multilevel storage, device size, and integration into solid-state devices. 

Thus the understanding of the role of these effects on wall conductivity is a required first step in 

analyzing the feasibility of controllable rewritable conductive nanosized channels design in otherwise 

insulating ferroelectrics. 

 

I. Historical overview 

Below we summarize the existing literature on the domain wall conductance in uniaxial 

ferroelectrics, wall structure in multiaxial ferroics, and mechanisms of coupling between order 

parameters and strain, which are relevant to the analysis of the wall conductance. 

I.1. Wall conductance in uniaxial ferroelectrics 

Recent reviews of up-to-date theoretical achievements in the field of domain structures in 

ferroics could be found in many textbooks (see e.g. [7, 8]). Briefly, the consistent studies of 

ferroelectric domain wall (DW) began with seminal papers of Zhirnov [9], Cao and Cross [10], who 

considered 180- and 90-degree DWs, taking into account electrostriction coupling between the 

spontaneous polarization and strain, but considering only electro-neutral DW. The case of 

rhombohedral symmetry is considered in Ref. [11]. Note, that orientation of 180 degree DW is 

determined by electrostatics, while orientation of 90-degree twin DW is mainly governed by the strain 

compatibility [9, 10, 12]. 

Earlier results on domains in uniaxial ferroelectric-semiconductors are summarized in Ref. 

[13], recent studies [14] and [15] are devoted to the perpendicular (or “counter”) and inclined DW 

respectively. The static conductivity of domain walls with different incline angle with respect to 

spontaneous polarization vector was calculated numerically in the uniaxial ferroelectrics-

semiconductors of n-type [15]. Unexpectedly, the static conductivity drastically increases at the 

inclined head-to-head wall by an order of magnitude for small incline angles and by 3 orders of 
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magnitude for the perpendicular domain wall due to strong accumulation of compensating free 

charges.  

At the same time the study of DW structure and conductance in multiaxial ferroelectrics is 

much more complicated, since there are several components of the order parameter, which should be 

mixed at the DW through strain, biquadratic coupling term and flexoelectric effect as discussed below. 

 

I.2. Wall structure in multiaxial ferroics 

For multiaxial ferroics with multicomponent order parameters, analysis of polarization 

structure at the domain wall necessitates taking into account the relevant coupling between order 

parameter components (e.g. for the boundary between 90-degree DWs or some type of 180-degree 

DWs in incipient ferroelectrics [16]), mediated by stress accommodation or gradients coupling. For 

instance, the bi-quadratic coupling term for two order parameters, also known as Houchmandzadeh-

Lajzerowicz-Salje coupling [17], was introduced to describe the coupling between polarization and a 

structural order parameter (see Ref.[18] for typical case of PZT). This coupling can lead to the 

appearance of polarization on structural domains (twins), however the conditions of such 

manifestations are usually very strict [16]. Situation is similar for ferromagnetics-ferroelectrics, where 

local magnetic moment is possible at the ferroelectric DW due to either biquadratic [19] or 

inhomogeneous coupling [20, 21].  

 Despite the very early attempts to describe polarization behavior in multicomponent ferroics [9, 

10, 22], the progress toward understanding of their DW structure appears to be very limited. Only 

recently Hlinka and Márton [23] calculated numerically the structure of twin boundaries in tetragonal 

perovskite crystal BaTiO3 in the framework of the phenomenological LGD model. They found that the 

polarization component normal to DW demonstrates a weak deviation from constant distribution, in 

contrast to the previous studies of Zhirnov [9], Cao and Cross [10]. This leads to the appearance of 

internal electric field and thus to a potential step at the DW, which is consistent with ab initio 

calculations [24]. Ferroelectric DWs resembling Neel walls in ferromagnetics were predicted in thin 

ferroelectric films [25] and incipient ferroelectrics [16, 26]. 

 

I.3. Flexoelectric effect on domain wall structure 

It should be noted that none of the previous theoretical studies predict normal component of 

polarization at the nominally neutral 180-degree domain walls in the bulk ferroelectrics. At the same 

time the flexoelectric coupling can break the wall symmetry and induce the normal component of 

polarization along 180-degree DW [4]. Flexoelectric effect describes the coupling of polarization with 

strain gradient and polarization gradient with the strain [27, 28, 29]. It was first predicted by 

Mashkevich and Tolpygo [30]. Subsequently, a number of theoretical studies of the flexoelectric effect 

in conventional [31, 32, 33, 34, 35, 36, 37, 38] and incipient [39] ferroelectrics have been performed. 
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Experimental measurements of the flexoelectric tensor components were recently carried out by Ma 

and Cross [40, 41, 42] and Zubko et al [43]. Recently a very high value of flexoelectric coupling 

coefficient was reported [44] for a polar phase of polyvinylidene fluoride films. 

 It is generally believed that the main consequence of the flexoelectric coupling is the 

renormalization of the polarization gradient energy (see e.g. [16, 31, 37]). In addition, some unusual 

coupling terms originated from the flexoelectric effect in nanosystems [37, 45]. Notably, the 

flexoelectric coupling could not be ignored in the presence of inhomogeneous strains/stress, and hence 

becomes relevant in the vicinity of the surfaces/interfaces and domain walls. 

Here we explore the polarization structure and transport behavior at the domain walls in the 

multiaxial ferroelectrics like BiFeO3 and Pb(Zr,Ti)O3 determined by the interplay of the strong 

flexoelectric coupling between polarization components and inhomogeneous elastic strains along the 

walls. The paper is organized as follows. Basic equations are listed and discussed in the Section 2. The 

impact of flexoelectric coupling and tilt angle on the polarization vector, potential, electric field and 

carrier redistribution across the stripe domains is analyzed in the Section 3.1. The impact of the 

flexoelectric coupling, proximity and finite size effect on the polarization vector, potential, electric 

field and carrier redistribution across the thin stripes and cylindrical nanodomains is analyzed in the 

Sections 3.2 and 3.3 correspondingly. Section 4 is a brief summary. 

 

2. Basic equations 

Here we analyze the space charge accumulation by various ferroelectric domain walls using 

LGD formalism. The free energy density is: 

l

k

j

iijkl
d
i

iflexostrictelastb x
P

x
PgE

PGGGGG
∂
∂

∂
∂

+−Δ+Δ+Δ+Δ=
22

             (1) 

Pi (i=1-3) is the ferroelectric polarization vector components. i
d
i xE ∂ϕ∂−=  are the components of 

depolarization field, that is caused by imperfect screening of the inhomogeneous polarization 

distribution with ( ) 0div ≠P . The fourth-rank symmetric tensor of gradient energy, gijkl, is positively 

defined for commensurate ferroelectrics considered hereinafter. Note, that the symmetrical part of the 

matrix ( )( )lkji xPxP ∂∂∂∂  contributes to the gradient energy of the bulk system [23].  

Below we consider the systems with parent high temperature phase of m3m symmetry (e.g. for 

tetragonal, orthorhombic, and rhombohedral low temperature ferroic phases). The Voigt notations will 

be used hereinafter for all those pairs of tensorial indexes, for which the tensor is symmetric with 

respect to their permutation. In Voigt notations 1=11, 2=22, 3=33, 4=23, 5=13, 6=12. In particular, 

only the components g11, g12 and g44 matter for the systems with m3m symmetry [23]. 
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The polarization-dependent density bGΔ  can be written as a Taylor series expansion of the 

polarization components Pi as [10]: 
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Here ia , ija  and ijka  are the dielectric stiffness and higher-order stiffness coefficients at constant stress 

written in the Voigt notations. The elastic energy in Eq.(1) is 
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Here iσ  are the stress tensor components; ijs  are the elastic compliances at constant polarization 

written in the Voigt notations. 

The coupling energy between polarization and strain strictGΔ  is proportional to electrostriction 

coefficients:  
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where ijQ  is the electrostriction strain tensor written in the Voigt notations.  

The short form of the flexoelectric coupling contribution for a bulk material is [16]: 
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Flexoelectric effect tensor is denoted as ikF . Full form of Eq.(5) valid for both finite systems and bulk 

materials is rather cumbersome (see Eq.(A.1) in the Appendix A of EPAPS [46]).  

 The electrostatic potential, ϕ, satisfies the Poisson equation 

( ) ( ) ( ) ( )( )−+ −ϕ−ϕ+ϕ−=ϕΔεε adb NnpNePdiv0                             (6) 

Here Δ is the Laplace operator, the charges are in the units of electron charge e=1.6×10−19 C, 

ε0=8.85×10−12 F/m is the universal dielectric constant, bε  is the background dielectric permittivity of 

the material (unrelated with the soft mode), that is typically much smaller than the ferroelectric 

permittivity f
ijε  related with the soft mode. Note that the ferroelectric permittivity is already included 

in Eq.(6) from the term ( )Pdiv , when ferroelectric polarization can be approximated as expansion 

...+ε+= j
f
ij

S
ii EPP .  
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Ionized deep acceptors with field-independent concentration −
aN  play the role of a background 

charge. The equilibrium concentrations of ionized shallow donors +
dN  (e.g. vacancies), free electrons n 

and holes p are: 

( ) ( )( )ϕ−−−=ϕ+ eEEfNN Fddd 10 ,                                                            (7a) 

( ) ( ) ( )∫
∞

ϕ++−εε⋅ε=ϕ
0

eEEfgdp FVp ,                                                     (7b) 

( ) ( ) ( )∫
∞

ϕ−−+εε⋅ε=ϕ
0

eEEfgdn FCn .                                                      (7c) 

Where 0dN  is the concentration of donors, ( ) ( ){ } 1exp1 −+= Tkxxf B  is the Fermi-Dirac distribution 

function, kB=1.3807×10−23 J/K, T is the absolute temperature. FE  is the Fermi level, dE  is the donor 

level, CE  is the bottom of conductive band, VE  is the top of the valence band (all energies are defined 

with respect to the vacuum level). The electron and hole density of states in the effective mass 

approximation are ( )
32

3

2
2
=π

ε
≈ε n

n

m
g  and ( ) 32

3

2

2

=π

ε
≈ε p

p

m
g , respectively. Typically the condition 

pn mm <<  is satisfied. 

Assuming that a single domain ferroelectric material is electroneutral at zero potential ϕ=0, the 

condition 000 npNN da −+= +−  should be valid. The equilibrium concentration of donors is 

( )( ) ( )dFdFddd EEfNEEfNN −≡−−=+
000 1 , equilibrium densities of holes 

( ) ( )∫
∞

−+εε⋅ε=
0

0 VFp FEfgdp  and electrons ( ) ( )∫
∞

−+εε⋅ε=
0

0 FCn FEfgdn  are defined for the case 

ϕ=0. 

Since the quasi-one dimensional distribution of polarization and stresses depend only on the 

distance from the wall plane in the vicinity of the domain walls, it is convenient to go to a new 

coordinate system, with 1
~x  axis normal to the domain wall plane { }32

~,~ xx  instead of the coordinate 

system {x1, x2, x3} with axes along the cubic symmetry axes [Figs.1a]. Rotations of crystallographic 

reference frame to the coordinate system, associated with the domain wall, are defined by the angles 

{ }φθ, . Components of any vector (e.g. polarization, field) and tensor (e.g. stress) in the new coordinate 

system could be written as PAP =~ , dd EAE =~  and TAXAX ˆ~̂ =  in the matrix form, where the 

transformation matrix  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

θφθ−φθ−
φφ−

θφθφθ
=

cossinsincossin
0cossin

sinsincoscoscos
A                                           (8) 



 7

Here the transposed matrix AT is inverse to the matrix A. Inverse transformations are PAP T ~= , 

dd EAE T ~=  and AXAX T ~̂ˆ = . Contribution of the inhomogeneous strains iu~  to the free energy can 

be evaluated as: 

iiuGG ~~~ σ+=                                                    (9) 

Corresponding equations of state are 0~
~

=
∂
∂

iP
G

 and 0~

~
=

σ∂
∂

i

G
. 

Additional constraints on the system are given by mechanical equilibrium conditions: 

0)~(~
11 =∂σ∂ ixx , 0)~(~

15 =∂σ∂ ixx , and 0)~(~
16 =∂σ∂ ixx  compatibility relations [47]. Elastic stresses 

should vanish far from the domain walls, where the system is mechanically free.  Other boundary 

conditions are determined by the configuration of the domain structure in a straightforward way. In 

particular, the potential ( )1
~xϕ  vanishes far from the domain walls and reaches maximum at the walls, 

so the depolarization field component 1
~E  normal to the domain wall plane is zero at the wall: 

( ) 00~~
11 ==xE . Polarization components iP~  are zero at the wall plane. 

In the next sections we analyze the cases of a tilted domain stripes [Figs.1b], parallel domain 

stripes [Figs.1c] and a single cylindrical domain [Figs.1d] assuming the one-dimensional distribution 

of polarization in the vicinity of the domain walls. 
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Fig. 1. (Color online) One dimensional distribution of polarization in the vicinity of a single domain 

wall (a), tilted (b) and parallel (c) domain stripes with half-period h; (d) cylindrical domain of radius R. 

Arrows in plots b-d indicate the polarization direction in the center of domains. 
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We note that zig-zag instabilities can appear at the charged wall plane in order to minimize its 

electrostatic energy [48]. However, here we consider only the cases for which the quasi-one 

dimensional distribution of polarization (periodic domain stripes, cylindrical domains, etc.) and leave 

the question of wall stability to further studies [49].  

 

3. Results and discussion 

3.1. Carriers accumulation on 180-degree domain stripes 

Here we consider the effect of the flexoelectric coupling on the carriers redistribution in a tilted stripe 

domain structure, consisting of thin 180-degree domains with half-period h that is much higher than a 

correlation length, 144 2agrc −= . The planes nh=ξ  ( ,...2,1,0 ±±=n ) correspond to the domain 

walls between two neighboring stripes (see Fig.1b). In the section we regard that crh 100= . The 

condition crh >>  allows us to focus on the impact of the wall tilt and flexoelectric coupling, while 

proximity effects, which are dominant for thin stripes, will be considered in the next section.  

Equations of state 0~
~

=
∂
∂

iP
G

, 0~

~
=

σ∂
∂

i

G
 and the Poisson equation (6) were rewritten in 

dimensionless variables (see Appendix A.2 in EPAPS [46]) and then analyzed numerically for 

PbZr0.2Ti0.8O3 (PZT) material parameters. Material parameters for PZT used in the calculations are 

listed in the Table 1.  

 

Table 1*). Free energy coefficients for bulk ferroelectric PbZr0.2Ti0.8O3 (from Refs.[50, 51]).  

a1 
(×107C-

2·m2N)  

aij 
(×108C-4·m6N) 

aijk 
(×108C-

6·m10N) 

Qij 
(C-2·m4) 

s11  
(×10-12 Pa-1) 

g11 
(×10-10C-2m4N) 

−14.84 at 
25°C 

a11= −0.305 
a12= 6.32 

a111=2.475 
a112=9.68 
a123= −49.01 

Q11=0.0814 
Q12= −0.0245 
Q44=0.0642 

s11=8.2 
s12= −2.6 
s44=14.4 

g11=2.0 
g44=1.0 

*) correlation length 144 2agrc −= ≈0.5 nm, en mm 05.0= , ep mm 5= , where em  is the mass of the 

free electron, εb = 5, band gap Eg = 3 eV, =0dN 1025 m-3, =dE 0.1eV. 

 

Estimations based on Ma and Cross [52] results give the flexoelectric effect coefficient 

( )15.0 −≈ijF ×10-10m3/C and F12 is likely negative. Below we consider the flexoelectric tensor ijF  in 

the isotropic approximation ( 121144 FFF −= ). Using the elastic solution 0~~~
651 =σ=σ=σ  and 

isotropic approximation for ijF  one leads to the simple form of the flexoelectric energy (5): 
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FG flexo , which depends on the F12 component only. Correlation length 

cr ≈0.5 nm, coordinate 1
~x≡ξ , spontaneous polarization PS and thermodynamic coercive field coerE  are 

introduced. 

Dependences of the polarization component perpendicular ( ) ( )ξ≡ξ ⊥PP1
~  and parallel ( )ξ↑↑P~  to 

the wall plane, electric potential ( )ξϕ , ionized donors ( )ξ+
dN  and electrons ( )ξn  on the distance ξ  

from the domain wall plane between the neighboring stripes are shown in Figs. 2-3. The dependencies 

were calculated for the domain stripes with different tilt angles 0,30,2 ππ=θ  (red, blue and black 

curves respectively), negative, zero and positive flexoelectric coupling coefficient 12F  (solid, dashed 

and dotted curves respectively).  

Without flexoelectric coupling only electrostriction couples polarization and elastic strains. To 

the best of our knowledge, the effect of the flexoelectric coupling on the ferroelectric wall charge state 

was not studied theoretically before. Here we show that the flexoelectric coupling leads to the 

nontrivial physical responses, including appearance of ( )ξ⊥P  and its strong gradient across the 

“nominally uncharged” and weakly charged head-to-head (h-t-h) and tail-to-tail (t-t-t) domain walls 

(see curves calculated for 0=θ  and 30π=θ ). Actually, the flexoelectric coupling term 

( ) 13212
~~~~ xPF ∂σ+σ∂⊥  in the free energy causes the “flexoelectric” field ( ) 13212

~~~ xF ∂σ+σ∂ , that in 

turn induces the component ( )ξ⊥P . It is seen from the Figs.2b-c that ( ) 0=ξ⊥P  for 012 =F  and 0=θ . 

Polarization component ( )ξ↑↑P  is rather weakly affected by the presence of the flexoelectric coupling 

(curves calculated for 012 =F  and 012 ≠F  almost coincide in Figs.2d).  
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Fig. 2. (Color online) Dependencies of the polarization components ( ) SPP ξ⊥

~  (a, c, d) and ( ) SPP ξ↑↑
~  

(b) on the distance ξ  from the wall plane between the neighboring stripes with different tilt angle 

0,30,2 ππ=θ  (see figures near the curves). Flexoelectric coupling coefficient =12F (−0.5, 0, 

0.5)×10-10m3/C (solid, dotted and dashed curves respectively). Material parameters correspond to 

PbTi0.8Zr0.2O3 (listed in the Table 1), stripe half-period crh 100= .  

 

At zero or small tilt angle an additional features on the potential, electrons and ionized donor 

distributions appear in vicinity of domain walls due to the nonzero flexoelectric coupling (see 

Fig.3b,d,f). In particular the flexoelectric coupling leads to the appearance of additional electrostatic 

potential well/barrier depending on the sign of the flexoelectric coefficient 12F  (see Fig.3b). The depth 

of the potential barrier well/height appeared at the wall due to ( )ξ⊥P -effect, as derived in Appendix D 

of EPAPS [46], is proportional to the flexoelectric coupling coefficient 12F . Note that the flexoelectric 
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coupling and tilt influence on the wall charge state is not additive. In particular the spatial localization 

of the features induced by the flexoelectric coupling is independent on wall tilt angle, but the width 

increases with decreasing angle. 

The flexoelectric field leads to the carriers redistribution and thus to conductivity changes even 

across the nominally uncharged parallel domain walls [4]. It is seen from Figs.3e-f that head-to-head 

and tail-to-tail domain walls have different electronic properties: head-to-head walls appeared electron 

accumulating, while tail-to-tail walls appeared donor (e.g. vacancies) accumulating, similarly to the 

one-component polarization in uniaxial ferroelectrics considered in [15]. The potential barrier created 

by the bound charges and screening carriers are the highest for the perpendicular wall ( 2π=θ ) with 

the maximal bound charge SP2 . Since the angular dependence of the bound charge is θsin2 SP , the 

barrier decreases with decreasing θ. The compensating electron density is highest for the head-to-head 

perpendicular wall ( 2π=θ ) and decreases with decreasing bound charge (i.e. with decreasing θ). The 

electron accumulation leads to the strong increase of the static conductivity across the charged domain 

stripes up 3 orders of magnitude for the perpendicular domain walls in PZT. Hole density appears less 

than 10-40m-3, i.e. free holes are almost absent near the head-to-head domain walls between the 

neighboring stripes. 

Note, that the static electronic and ionic conductivity can be estimated as 

( ) ( ) ( )( )ξη+ξη=ξλ pne pee  and ( ) ( )ξη=ξλ +
ddi Ne , where dpe ,,η  are corresponding mobilities, which 

are regarded as constant. Since the strength of carrier accumulation/depletion at the wall plane is 

determined by the behavior of electric potential ( )0ϕ  at the wall, the conductivity should be controlled 

by the field effect. The profile of the latter across the wall in turn depends on the wall tilt, stripe 

domain size, etc. Figure 4a shows the dependence of potential ( )0ϕ  on the tilt angle θ calculated for 

head-to-head and tail-to-tail walls. The potential ( )0ϕ  increases with increasing θ. Dependences of the 

electronic and ionic conductivity on the wall tilt angle θ are shown in Fig. 4b,c for negative, zero, and 

positive flexoelectric coupling coefficient. It is seen from the figure that the electronic conductivity 

increases and ionic conductivity decreases with θ increase for head-to-head domain walls. The 

electronic conductivity decreases and ionic conductivity increases and saturates with θ increase for 

tail-to-tail domain walls. 
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Fig. 3. (Color online) Dependencies of potential ( )ξϕ  (a,b), concentration of ionized donors ( )ξ+

dN  

(c,d) and density of electrons ( )ξn  (e, f) on the distance ξ  from the wall plane between the 

neighboring stripes with different tilt angle 0,30,2 ππ=θ  (see figures near the curves). 
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Flexoelectric coupling coefficient =12F (−0.5, 0, 0.5)×10-10m3/C (solid, dotted and dashed curves 

respectively). Panels (b, d, f) represent the region near the head-to head wall. Parameters are the same 

as in Figs.2. 
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Fig. 4. (Color online) Dependence of potential ( )0=ξϕ  (a), electronic (b) and ionic (c) conductivity 

on the domain wall tilt angle θ between the neighboring head-to-head (h-t-h) and tail-to-tail (t-t-t) 

stripes and calculated for negative, zero, and positive flexoelectric coupling coefficient =12F (−0.5, 0, 

0.5)×10-10m3/C (solid, dotted and dashed curves respectively). Material parameters are the same as in 

Figs.2. 
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To summarize the section, the free carriers accumulation leads to the strong increase of 

compensating charge density and thus the static conductivity across the tilted walls between stripe 

domains in multi-axial ferroelectrics-semiconductors of n-type: from 1 order for the parallel domain 

stripes due to the flexoelectric coupling up 3 orders of magnitude for perpendicular domain walls 

(even without flexoelectric coupling impact). Table 2 lists some peculiarities of the domain walls 

conductivity in the n-type ferroelectric-semiconductors with special attention to the flexoelectric 

coupling. Note, that the static electronic conductivity increase should exist in the p-type ferroelectric-

semiconductors across the tail-to-tail walls. 

Table 2. Wall conductivity peculiarities in the n-type ferroelectric-semiconductors 

flexoelectric 
coupling 
coefficient F12 

Conductivity of parallel 
and slightly tilted 180-
degree domain walls (tilt 
angle 0≤θ<<6o) 

Conductivity of tilted head-
to-head 180-degree walls  
(tilt angle θ>6o) 

Conductivity of tilted 
tail-to-tail 180-degree 
walls  
(tilt angle θ>6o) 

positive up to 50-100 times 
higher than the bulk one 
due to the electron 
accumulation 

gradually increases up to 102-
103 times with the tilt angle 
increase due to the strong 
accumulation of electrons 

~10 times higher than the 
bulk one due to the donor 
accumulation and 
saturation 

zero the same as in the bulk gradually increases up to 102-
103 times with the tilt angle 
increase due to the strong 
accumulation of electrons 

~10 times higher than the 
bulk one due to the donor 
accumulation and 
saturation 

negative increases up to 10 times 
due to the donors 
accumulation and 
saturation 

gradually increases up to 102-
103 times with the tilt angle 
increase due to the strong 
accumulation of electrons  

~10 times higher than the 
bulk one due the donor 
accumulation and 
saturation 

 

3.2. Proximity effects on carrier accumulation by 180-degree stripe domains 

In this section we consider thin 180-degree periodic domains of half-period h. The domain walls are 

parallel (θ=0) and located enough close to induce proximity effects on the system static conductivity. 

The domain walls are considered as “nominally neutral”, i.e. their polarization vector is parallel to the 

wall plane in the center of the domain stripe. The planes nh=ξ  ( ,...2,1,0 ±±=n ) correspond to the 

domain wall between two neighboring stripes (see Fig.1c). Our calculations show that the polarization 

component ( )ξ⊥P~  is induced by the flexoelectric coupling. The bound charge ( )ξ⊥P~  leads to the 

appearance of lateral depolarization electric field ( )ξ⊥E~  and carrier redistribution in the vicinity of 

domain walls.  

Distributions of polarization components ( )ξ↑↑P~  and ( )ξ⊥P~ , depolarization electric field 

( )ξ⊥E~ , electrostatic potential ( )ξϕ  and screening charges (electrons and donors) are shown in Figs. 5-

6 for two periods of domain stripes, assuming negative, zero and positive flexoelectric coefficient 12F  

(solid, dashed and dotted curves correspondingly). Note, that the stripe domains with a half-period 
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below minimal value ccr rh 2~  are thermodynamically unstable due to proximity effects, which make 

the domain wall energy too high. So the curves in Fig. 5-6 are plotted for crhh ≥ . 

( )ξ⊥P~  and ( )ξ⊥E~  are maximal in the vicinity of domain walls (i.e. at crnh 2±=ξ ), equal to 

zero at the walls and in the center of domain stripe (i.e. at nh=ξ  and 2hnh ±=ξ ). The maximal 

value of polarization component is 

( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛ −

+
+

εε±≈⊥ h
h

rss
PQQ

FP cr

c

S
b 1

2
~

1211

2
1211

012
max                                                    (10) 

The maximal value of electric field is 

( )
( )

⎟
⎠

⎞
⎜
⎝

⎛ −
+

+
εε≈⊥ h

h

rss

PQQ
FE cr

c

S
b 1

2
~

1211

2
1211

012
max ∓                                                       (11) 

The maximal values max~
⊥E  are reached in the points crnh 2±=ξ  ( ,...2,1,0 ±±=n ) corresponding to 

the distance cr2  from the domain wall plane.  

Here, crh  is the minimal half-period of the stable domain stripe (corresponding to the critical 

size originating from the proximity effect). The minimal half-period is related to correlation length rc 

as 2ccr rh π≈  for 012 =F  and θ=0.  

Electric potential reaches the maximal value  

( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛ −

+
+

≈ϕ
h

h
ss

PQQ
F crS 1

1211

2
1211

12max                                                  (12) 

at the wall planes nh=ξ . Note, that the expressions for max~
⊥P , max~

⊥E  and maxϕ  differ from the 

expressions listed in Ref.[4] by the factor ⎟
⎠

⎞
⎜
⎝

⎛ −
h

hcr1  originated from the proximity effect. As 

anticipated, ( )ξ↑↑P~  is maximal in the center of the domain stripes 2hnh ±=ξ  and zero at the wall 

planes nh=ξ . Electrons and donors distributions have sharp extremum (minimum or maximum 

depending on the sign of 12F ) at the wall planes nh=ξ . 

It is seen from the Fig. 5 and 6 that the decrease of the half-period h leads to the gradual 

suppression of the maximum values of the polarization components as well as to the decrease of the 

modulation depth of the potential and screening charges profiles. Polarization, potential, field and 

carrier density profiles have quasi-sinusoidal shape for thin stripes (Fig. 6). Anharmonicity appears 

and strongly increases with h increase (Fig.5).  

The sign of compensating carriers is determined by the sigh of the flexoelectric coefficient: 

negative 12F  leads to the accumulation of negative charges (electrons or acceptors), positive 12F  leads 

to the accumulation of positive charges (holes, donors or vacancies) at the walls (see Fig.5e,f and 6e,f). 
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The higher the 12F  value the stronger is the carrier accumulation effect. Note, that the experimental 

results [40, 41, 42] show that the coefficient 12F  is likely negative for PZT. 

The possibility of the electron and donor accumulation/depletion in the vicinity of the domain 

stripes is demonstrated in Figs. 7. Carrier accumulation in the domain wall region is caused by the 

potential barrier )(ξϕ , that is in turn caused by the uncompensated bound charge )(ξ⊥P . Dependence 

of the potential barrier on the stripes half-period h is shown in Fig. 7a for positive, zero and negative 

flexoelectric coupling coefficients. Potential barrier at the domain wall, ( )0ϕ , monotonically increases 

with the increasing of the stripe size h and then saturates. Potential in the middle of the stripe, 

( )2h±ϕ , firstly increases with h increase, reaches maximum at crh 5~  and then decreases with 

further h increase. For thick stripes with half-period crh 100>>  the potential vanishes in the central 

region of each stripe. 

To estimate the observable conductivity, local densities of electrons ( )ξn  and donors ( )ξ+
dN  

were averaged across over the domain wall apparent thickness, e.g. for distance { }cc rr ,−∈ξ  (solid 

curves) as well as entire the domain stripe { }hh,−∈ξ  (dashed curves). Note, that 

( ) ( ) ( ) ( )∞λξλ≈∞ξ eenn  and ( ) ( ) ( ) ( )∞λξλ≈∞ξ ++
iidd NN  in the framework of the model 

adopted here. For positive flexoelectric coupling the electronic conductivity of domain walls 

monotonically increases (up to 30 times in saturation in comparison with a bulk electronic conductivity 

( )∞λ e ) and then saturates with the domain stripe period increase (see Fig. 7b,c). For negative 

flexoelectric coupling the ionic conductivity of domain walls monotonically increases and then 

saturates (up to 15 times in saturation in comparison with a bulk ionic conductivity ( )∞λ i ) with the 

stripe period increase. Without flexoelectric coupling the conductivity is the same as for the 

homogeneous monodoman region ( )∞λ ie,  (see horizontal lines marked with “0”).  
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Fig. 5. (Color online) Dependencies of the polarization components ( ) SPP ξ⊥
~  (a) and  ( ) SPP ξ↑↑

~ (b), 

potential ( )ξϕ  (c), field ( ) coerEE ξ⊥
~  (d), electrons ( )ξn  (e) and ionized donors ( )ξ+

dN  (f) distributions 

on the distance ξ across the “nominally uncharged” 180-degree domain stripes (only one period is 

shown) calculated for the half period crh 3=  and flexoelectric coupling coefficients 12F =−1×10-

10m3/C (solid curves), 12F =0 (dotted curves) and 12F =+1×10-10m3/C (dashed curves). Other parameters 

are same as for Fig. 2. 
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Fig. 6. (Color online) Dependencies of polarization components ( ) SPP ξ⊥
~  (a) and ( ) SPP ξ↑↑

~ (b), 

potential ( )ξϕ  (c), field ( ) coerEE ξ⊥
~  (d), electrons ( )ξn  (e) and ionized donors ( )ξ+

dN  (f) distributions 

on the distance ξ across the “nominally uncharged” 180-degree domain stripes (only one period is 

shown) calculated for the half period crh 10=  and flexoelectric coupling coefficients 12F =−1×10-

10m3/C (solid curves), 12F =0 (dotted curves) and 12F =+1×10-10m3/C (dashed curves). Other parameters 

are same as for Fig. 2. 
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Fig. 7. (Color online) Dependence of the electric potential ( )0ϕ  and ( )2hϕ  (a), relative electron 

density ( ) ( )∞ξ nn  (b) and donor concentration ( ) ( )∞ξ ++
dd NN  (c) on the domain stripes half-

period h calculated for flexoelectric coupling coefficients 12F =−1×10-10m3/C (solid curves with labels 

“-1”), 12F =0 (dotted curves with labels “0”) and 12F =+1×10-10m3/C (dashed curves with labels “+1”). 

Potential (a) is plotted at the domain wall ( ( )0ϕ ) and in the middle of the stripe ( ( )2hϕ ). Electron 

density ( )ξn  and donor concentration ( )ξ+
dN  were averaged across the range { },, cc rr−∈ξ  (solid and 

dashed curves with labels “±1”) as well as entire the domain cross-section { }hh,−∈ξ  (dash-dotted 

curves with labels “±1”). Material parameters are the same as in Figs.2. 
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Averaging over the entire domain stripe smears the impact of flexoelectric coupling sign: the 

dash-dotted curves are relatively close for positive 12F =+1×10-10m3/C and negative 12F =−1×10-10m3/C, 

in contrast to very different solid and dashed curves. Independent of the 12F  sign, the conductivity 

averaged entire the domain stripe firstly increase with the increasing of the stripes half-period h for 

very small half-periods ccr rhh 5<< , then reaches a diffuse maximum (~ 5 times in comparison with 

homogeneous ( )∞λ ie, ) and then decreases with further h increase. The principal difference in the 

behavior of solid, dashed and dash-dotted curves can be explained by the following considerations. For 

negative 12F  free electrons are accumulated in the immediate vicinity of the domain walls, the central 

regions of the stripes are depleted with electrons. For positive 12F  the immediate vicinity of the 

domain walls are depleted with electrons, the central regions of the stripes accumulate electrons (see 

Fig.5e and 6e). The situation with ionized donors is visa versa: their accumulation takes place in the 

vicinity of domain walls for positive 12F , while the central regions of the stripes are depleted with 

donors (see Fig.5f and 6f). The averaging entire the domain stripe { }hh,−∈ξ  contains information 

only about resulting depletion + accumulation effect. As anticipated, the total charge of 

“electrons + ionized donors” is exactly zero (i.e. the sum of the solid and dashed curves “+1” or “-1”) 

due to the total electroneutrality in the domain structure. Due to the flexoelectric coupling, the average 

static conductivity of domain stripes with period crh 5~  is significantly higher then the conductivity 

of monodomain region.  

 

3.3. Carrier accumulation at the cylindrical domain wall 

Cylindrical domain walls always appear at the initial stages of local polarization reversal 

caused by a charged SPM probe [53, 54] in ferroelectric films. In the section we consider the finite size 

effect of carrier accumulation and static conductivity of radially-symmetric cylindrical domain wall 

with a curvature radius R (see Fig.1d). Polar radius 22 yx +=ρ is introduced. We assume that the 

cylinder axis z is pointed along one of the possible directions of spontaneous polarization. Note that for 

other orientations of polarization the problem could not be considered as quasi-one dimensional. 

Furthermore, only the case of small radii crR 10≤  is of interest, since for larger radii the behavior is 

very similar to those obtained in the section 3.1 for the thick domain stripes. 

Our numerical analysis shows that the polarization component ( )ρ⊥P~  and depolarization 

electric field ( )ρ⊥E~  are induced due to the flexoelectric coupling. The bound charge ( )ρ⊥P~  leads to the 

( )ρ⊥E~  appearance, which causes carriers redistribution across the cylindrical domain wall. The 

distributions of polarization components ( )ρzP~  and ( )ρ⊥P~ , electric field ( )ρ⊥E~ , electrostatic potential 
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( )ρϕ  and screening charges are shown in Fig. 8 for two domain radii (R=1.5rc and R=5rc), positive, 

zero and negative flexoelectric coupling coefficient 12F . Note, that the cylindrical domain with radius 

below critical value ccr rR 2.1~  is thermodynamically unstable due to finite size effect, so the curves 

in Fig. 8 are plotted for the values crRR ≥ . 

( )ρ⊥P~  and ( )ρ⊥E~  are maximal in the vicinity of domain walls (i.e. at crR 2−=ρ ), zero at the 

walls and in the center of cylindrical domain. The maximal value of the component ( )ρ⊥P~  is 
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Electric potential reaches the maximal value  
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in the center of domain for small domains (e.g. nanodomains). Note, that the expressions for max~
⊥P , 

max~
⊥E  and maxϕ  differ from the expressions listed in Ref.[4] by the factor ⎟

⎠

⎞
⎜
⎝

⎛ −
R

Rcr1  originated from the 

finite size effect. As anticipated, zP~  is maximal in the center of cylindrical domain and zero at its 

boundary R=ρ .  

It is seen from the Figs.8a-b that the decrease of the domain radius R leads to the suppression 

of the polarization component maxima as well as to the decrease of the modulation depth of the 

potential and screening charges profiles along the domain cross-section. Polarization, potential, field 

and carries density profiles have sinusoidal shape for small domains with crR 5.1=  (see Figs.8a-f). 

Deviation from the sinusoidal shape appears at crR 2>  and strongly increases with increasing R. It is 

seen from Figs.8e,f that either electron or donor accumulation takes place in the nanodomain 

depending on the 12F  sign and spontaneous polarization direction. In contrast to thick domain stripes 

and thicker cylindrical domains, in which the carrier accumulation (and so the static conductivity) 

sharply increases at the domain walls only, thin nanodomains of radius crR 5≤  can be conducting 

entire their cross-section. 
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Fig. 8. (Color online) Distributions of the polarization components ( ) Sx PxP  (a) and ( ) Sz PxP  (b), 

potential ( )xϕ  (c), field ( ) coerx ExE  (d), electron density ( )xn  (e) and ionized donor concentration 

( )xNd
+  (f) along the cross-section of cylindrical domains with radii crR 5.1=  (magenta and green 

curves) and crR 5=  (red and blue curves) calculated for flexoelectric coupling coefficients 

12F =−1×10-10m3/C (solid curves), 12F =0 (dotted curves) and 12F =+1×10-10m3/C (dashed curves). Other 

parameters are same as for Fig. 2. 
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The carriers accumulation in the domain wall region is caused by the potential barrier ( )ρϕ  that 

is in turn caused by the uncompensated bound charge )(ρ⊥P . Corresponding potential barrier is plotted 

in Fig. 9a for positive, zero and negative flexoelectric coupling coefficient 12F .  
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Fig. 9. (Color online) Dependence of the potential ϕ  (a), relative electron density ( ) ( )∞ξ nn  (b) and 

donor concentration ( ) ( )∞ξ ++
dd NN  (c) on the radius R of the cylindrical domain calculated for 

flexoelectric coupling coefficients 12F =−1×10-10m3/C, 12F =0 and 12F =+1×10-10m3/C (numbers “−1”, 

“+1” and “0” near the curves). Potential ϕ  (c) was calculated at the cylindrical domain wall ( ( )Rϕ , 

solid curves) and in the middle of the domain ( ( )0ϕ , dotted curves). Electron density ( )ρn  and donor 

concentration ( )ρ+
dN  were averaged across the domain wall (solid and dashed curves) as well as entire 

the domain cross-section (dash-dotted curves). Material parameters are the same as in Figs.2. 
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The potential barrier at the curved domain wall monotonically increases with the domain radius 

R increase and then saturates (see ( )Rϕ -curves). The potential barrier in the centre of the domain firstly 

increases with R increase, reaches maximum at crR 3~  and then decreases with further increase of R 

(see ( )0ϕ -curves). For sub-micro and microdomains with radius crR 100>>  the potential vanishes in 

the central region of the domain as anticipated. 

The size effect of the electron and donor accumulation/depletion by cylindrical domain walls is 

demonstrated in Fig. 9b,c for positive, zero and negative flexoelectric coupling coefficient 12F . 

Similarly to the case of domain stripes, the electronic conductivity of cylindrical domain wall 

monotonically increases (up to 30 times in comparison with a bulk value) and then saturates with the 

nanodomain radius increase for positive flexoelectric coupling (see solid curves in Fig. 9b). The ionic 

conductivity of cylindrical domain wall monotonically increases (up to 20 times in comparison with a 

bulk value) and then saturates with nanodomain radius increase for negative flexoelectric coupling (see 

dashed curves in Fig. 9c).  

Similarly to the case of domain stripe, averaging entire the domain cross-section smears the 

impact of flexoelectric coupling sign (see dash-dotted curves in Figs.9b,c). Average densities firstly 

increase with radius R increase for radii ccr rRR 5<< , then reaches a maximum at crR 5~  and then 

decreases with further R increase. Electrons and ionized donors accumulation by cylindrical domain is 

similar to the one discussed in the previous subsection for the case of domain stripes. Average static 

conductivity of cylindrical nanodomains with radius cc rRr 10<≤  appeared essentially higher than 

the conductivity of the monodomain region due to the flexoelectric coupling. 

 

4. Discussion and summary 

Using LGD theory we performed analyses of the carriers’ accumulation by 180-degree domain wall in 

multiaxial ferroelectric-semiconductors with mobile donors. Along with coupled LGD equations for 

the polarization components, we solved the Poisson equation for the electrostatic potential. Spatial 

distributions of the ionized shallow donors (e.g. intrinsic oxygen vacancies), free electrons and holes 

were found self-consistently using the effective mass approximation for their energy density of states. 

Performed theoretical analyses shows that we meet with several scenarios of the domain wall 

conduction in stripe and cylindrical domains, depending on the wall geometry (tilt angle, domain shape 

and size), wall type (head-to-head or tail-to-tail) and the sign and value of the flexoelectric coupling 

coefficient.  

In contrast to uniaxial ferroelectrics, the polarization component perpendicular to the wall plane 

originates inside the wall region. Similarly to the case of uniaxial ferroelectric-semiconductors [15], 

the tilted wall is charged in the multi-axial ferroelectric-semiconductors and hence the electric field of 
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the bound charge attracts free carriers of definite sign and repels the carriers of the opposite sign from 

the wall region. The carriers’ accumulation is highest when the wall plane is perpendicular to the 

spontaneous polarization direction at the wall (perpendicular domain wall); it decreases with the bound 

charge decrease and reaches minimum for the parallel domain wall. Carrier accumulation leads to the 

strong increase of the static conductivity across the charged domain walls in multi-axial ferroelectric-

semiconductors, up 3 orders of magnitude for the perpendicular domain walls in Pb(Zr,Ti)O3.  

Flexoelectric coupling, which is rather high for ferroelectric perovskites [40-43], leads to the 

appearance of polarization components perpendicular to the wall plane and its strong gradient across 

the wall even for nominally uncharged walls. Note, that the perpendicular component appeared in the 

first principle calculations (see Fig.12 in Ref.[55]). At the same time, the polarization component 

parallel to the wall plane is indifferent to the presence of the flexoelectric coupling and electrostriction 

coupling induces the narrowing of the domain wall. The polarization component perpendicular to the 

wall plane is directly related to the bound charge, in turn leading to a strong electric field at the wall 

and then to accumulation of free screening carriers across the wall. The carrier accumulation effect by 

the nominally uncharged domain stripes and cylindrical walls appears to be significant, up to 10-30 

times increase for domain stripes and cylindrical nanodomains in Pb(Zr,Ti)O3 for the typical range of 

flexoelectric coefficients. The charge of accumulated carriers is determined by the sign of the 

flexoelectric coefficient: positive coefficient leads to the accumulation of negative carriers (electrons 

or acceptors), negative coefficient leads to the accumulation of positive carriers (holes, donors or 

vacancies). 

The size effect of the electron and donor accumulation by thin stripe domains and cylindrical 

nanodomains is revealed. In contrast to thick domain stripes and thicker cylindrical domains, in which 

the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, 

nanodomains of radius less then 5-10 correlation length appeared conducting entire their cross-section. 

Such conductive nanosized channels may be promising for nanoelectronic concepts due to the 

possibility to control their spatial location by external stimulus (e.g. by nanomanipulation with the 

charged probe). 
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