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We report the implementation of a first-principles approach for calculating the screened Coulomb
and exchange energies for localized electrons in solids. Our method is based on the pseudopoten-
tial plane wave formalism. The localized orbitals are represented by maximally localized Wannier
functions (MLWF), and the screening effects are calculated within the constrained random phase
approximation (cRPA). As first applications of this new development, we investigate the on-site
Coulomb U and exchange J for the 3d electrons in ZnO, NiO, and CuGaS2. Both the bare (un-
screened) and the screened U and J matrices are presented. We find that it is very important for
these parameters to be calculated self-consistently. Intra-channel (i.e., d-d) and energy-dependent
screening effects are also discussed.
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I. INTRODUCTION

An accurate account of the screened Coulomb interac-
tion for localized electrons (e.g., d or f electrons) in solids
is very important for understanding the structural, elec-
tronic, and optical properties of strongly correlated mate-
rials. Density functional theory (DFT)1 based electronic
structure methods within the local density approxima-
tion (LDA)2 or the generalized gradient approximation
(GGA)3 have been rather successful in predicting proper-
ties of weakly to moderately correlated materials. How-
ever, it is well recognized that the LDA (or GGA) fails in
many aspects when applied to strongly correlated materi-
als such as transition metal oxides due to the insufficient
treatment of the correlation effect of localized d and/or
f electrons. Several schemes have been proposed to in-
corporate the strong correlation effects of localized elec-
trons in electronic structure calculations, among them
the LDA+U approach4,5 has been widely adopted be-
cause of its clear physical motivation, relatively simple
implementation, and low computational cost.

Although the LDA+U method has been applied to
the study of transition metal oxides with significant suc-
cesses, one major uncertainty is the use of adjustable
parameters, i.e., the on-site screened Coulomb energy U
(also known as the Hubbard U) and the exchange energy
J for localized electrons. This seriously compromises the
predictive power of the LDA+U method. Moreover, ac-
curate knowledge of the Hubbard U for localized elec-
trons is important not only for electronic structure meth-
ods such as the LDA+U method but also for constructing
material-specific, effective Hamiltonians that map corre-
lated electron systems to some low energy models for
subsequent many-body treatments. Therefore, there is
an urgent need that this important parameter be calcu-
lated from first-principles.

Several first-principles approaches have been proposed
to calculate the U and J parameters for correlated mate-

rials containing localized d or f electrons. These methods
can be broadly classified into two categories, the con-
strained LDA (cLDA)6–8 and the cRPA9–13 approaches.
Regardless of the details of the numerical implementa-
tion, there are two essential issues that need to be ad-
dressed: a) the definition (or construction) of localized
orbitals for which the Hubbard U is to be calculated,
and b) the treatment of the screening (renormalization)
effects. Atomic-like orbitals used in electronic structure
methods such as the linear muffin-tin orbital (LMTO)14

method may serve as a natural choice for defining local-
ized orbitals. Alternatively, one may use the MLWF15–17

associated with the localized electrons. The MLWF are
the solid-state equivalence of molecular orbitals which of-
ten reveal the nature of chemical bonding in solids. This
approach also has greater flexibility and can be gener-
alized to describe localized states (e.g., localized defect
states) that are not centered at atomic sites. The renor-
malization effects can then be treated using the cLDA or
the cRPA approach.

The essential idea behind the cRPA approach is the
removal of the intra-channel (e.g., d-d) electron polariz-
ability from the full polarizability calculated within the
random phase approximation (RPA). Aryasetiawan et al.

have discussed in great details the difference between
these two approaches (i.e., cLDA and cRPA) and the
advantages of the cRPA approach.12,13 For example, the
cRPA approach allows the evaluation of the full Hubbard
U and exchange J matrices and their energy dependence.
Inter-site interaction can be calculated easily within the
cRPA approach, especially when the MLWF are used,
without the need of using large unit cells. The cRPA
approach has been implemented predominantly in elec-
tronic structure methods that are based on localized or-
bitals. In this paper, we report a new implementation of
the combined MLWF and the cRPA approach within the
pseudopotential plane wave formalism and demonstrate
its applications to a broad range of systems.
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II. METHOD

In solids, the strength of the Coulomb interaction be-
tween two electrons is significantly reduced (screened).
The screened Coulomb interaction W is related to the
bare Coulomb interaction v as W = ǫ−1v, where ǫ−1 is
the inverse dielectric function. Within the RPA, the di-
electric function ǫ is related to the electron irreducible

polarizability P by ǫ = 1 − vP . For periodic solids, it
is convenient to express the polarizability and dielectric
function in the plane wave basis:

PGG′(q, ω) =
∑

k,n,n′

〈nk|e−i(q+G)·r|n′k+ q〉

· 〈n′k+ q|ei(q+G′)·r′ |nk〉 fn′k+q − fnk
ǫn′k+q − ǫnk + ω + iδ

, (1)

and

ǫGG′(q, ω) = δGG′ − v(q+G)PGG′(q, ω). (2)

In the above equations, |nk〉 are the Kohn-Sham eigen-
states, ǫnk and fnk are the corresponding eigenvalues and
electron occupation numbers, and v(q+G) is the Fourier
transform of the bare Coulomb potential. The screened
Coulomb potential is then

WGG′(q, ω) =
4π

Ω
ǫ−1
GG′(q, ω)

1

|q +G′|2 , (3)

where Ω is the crystal volume.
With properly constructed localized orbitals, the

screened Coulomb and exchange energies can be eval-
uated:

Uij = 〈ij|W |ij〉 =
∫
drdr′|φi(r)|2W (r, r′)|φj(r′)|2, (4)

and

Jij = 〈ij|W |ji〉 =
∫
drdr′φ∗i (r)φ

∗
j (r

′)W (r, r′)φi(r
′)φj(r),

(5)
where φi and φj are the localized orbitals of interest.
In this work, the localized orbitals are constructed

using the MLWF method15,16 as implemented in the
wannier90 package.17 The MLWF are constructed by
performing a unitary transformation of relevant Bloch
states:

φnR(r) =
1√
Nk

∑
k,m

U
(k)
nmψmk(r)e

ik·R

=
1√
Nk

∑
k

ψ̃nke
ik·R

=
1√
Nk

∑
k

ũnke
ik·(r+R), (6)

where φnR are the MLWF centralized at cell R, Nk is the
number of k-points used in the Brillouin zone summation,

ψmk are the Bloch wave functions, ψ̃nk are unitarily ro-
tated Bloch wave functions, and ũnk are the periodic part
of ψ̃nk. Within the plane wave basis, the matrix elements
Uij and Jij for a given pair of MLWF φi and φj can be
evaluated in the momentum space:

Uij =
∑

q,G,G′

F ∗
ii(G,q) ·WGG′(q) · Fjj(G

′,q), (7)

and

Jij =
∑

q,G,G′

F ∗
ij(G,q) ·WGG′(q) · Fji(G

′,q), (8)

where we have defined auxiliary functions Fij as follows:

Fij(G,q) =

∫
drφ∗i (r)e

−i(q+G)·rφj(r)

=
1

Nk

∑
k

∫
drũ∗ik(r)ũjk+q(r)e

−iG·r, (9)

which can be evaluated efficiently using the fast Fourier
transform technique. In evaluating Eq. (7) and Eq. (8),
additional care must be taken to handle the divergence
of the Coulomb potential as q+G′ → 0.18

In the approach described above, the dielectric func-
tion is calculated within the conventional RPA. It has
been pointed out that while constructing an effective
Hamiltonian for localized d (or f) electrons, the intra-
channel d-d (or f -f) screening effects shall be ex-
cluded.10,11 This is because these d-d screenings are an
inherent part of the physics of the subsystem, and they
will naturally come into play in the subsequent treatment
of the subsystem Hamiltonian. Therefore, the effective
Coulomb interaction between localized electrons shall be
normalized (screened) only by the rest of the system.
Defining a partial (or constrained) polarizability Pc,

Pc = P − Pd, (10)

where Pd is the polarizability arising from virtual tran-
sitions between localized d states (i.e., intra-channel po-
larizability), the effective Coulomb interactionWc for the
subsystem that does not include the intra-channel screen-
ing effects becomes Wc = (1 − vPc)

−1v. The screened
Coulomb and exchange matrix elements for localized elec-
trons are

Uij = 〈ij|Wc|ij〉 and Jij = 〈ij|Wc|ji〉. (11)

Although the theoretical framework of the cRPA
method is physically motivated and well defined, several
issues arise when it comes to practical implementations
of the method.13 One major issue is the calculation (or
elimination) of the intra-channel polarizability Pd. Ex-
cept for a few extreme cases, most correlated materials in-
volve entangled states of localized and delocalized (e.g., d
and sp) electrons, and the separation of the intra-channel
polarizability is not straightforward.11,13,19 In this work,
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FIG. 1: The structure and computational components of the
newly developed package for calculating screened Coulomb
U and exchange J using a combined MLWF and cRPA ap-
proach.

we use a wave function projection technique to calculate
the intra-channel polarizability:

Pd =
∑

k,n,n′,i,j

|Ci
nk|2|Cj

n′k+q|2〈nk|e−i(q+G)·r|n′k+ q〉

· 〈n′k+ q|ei(q+G′)·r′ |nk〉 · fn′k+q − fnk
ǫn′k+q − ǫnk + ω + iδ

, (12)

where Ci
nk = 〈φdi

|nk〉 is the projection of a Bloch wave
function |nk〉 onto a localized orbital φdi

.

III. COMPUTATIONAL DETAILS

The program structure and the calculation procedure
of our computational package is shown in Fig. 1. First,
DFT calculations within the LDA (or GGA) or LDA+U
are carried out using the paratec package.20,21 A post-
processing interface is developed to generate necessary
output for subsequent calculations. We use the wan-

nier90 package17 to construct the MLWF and the Berke-
leyGW package22 to calculate the dielectric function
within the RPA or cRPA. In the last step, the CoulombU
program calculates the screened Coulomb and exchange
matrix elements. The familiar U and J parameters used
in the LDA+U calculations are the average values of the
full Coulomb and exchange matrices:

U =
1

(2l + 1)2

∑
ij

Uij and J =
1

2l(2l+ 1)

∑
i6=j

Jij , (13)

where l = 2 for d electrons.
It is sometimes desirable to calculate the U and J pa-

rameters self-consistently. This is particularly important
for systems for which the LDA (or GGA) cannot provide
a faithful description of the electronic structure. A typ-
ical calculation starts with some initial guess for the U
and J parameters. The calculation is iterated until a self-
consistency is reached. Figure 2 shows the convergence
behavior for the calculated U and J for the semicore d
electrons in zinc-blende (zb) ZnO. With a reasonable ini-
tial guess, a self-consistent result can be achieved within
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FIG. 2: Convergence behavior of the calculated U and J pa-
rameters for the semicore d electrons in zb-ZnO. The self-
consistency is reached when Uout = Uin and Jout = Jin.

three or four iterations. We mention that a large input U
value will lead to slightly more localized Wannier func-
tions. We will discuss this in more details later.
We apply this new implementation to study the

screened on-site Coulomb and exchange energies of lo-
calized 3d electrons in a range of materials, includ-
ing ZnO, a technological important semiconductor that
contains shallow semicore d electrons, NiO, a classic
and intensively discussed Mott-Hubbard insulator, and
CuGaS2, the parent material for a large class of Cu
based semiconductors that are collectively known as
CIGS (CuInxGa1−xSySe2−y) which are among the most
promising materials for thin film solar cell applications.
We use the Troullier-Martins norm-conserving

pseudopotentials,23 and all semicore subshells (i.e., 3s,
3p, and 3d) of Zn, Cu, and Ni are included in our
calculation. The kinetic energy cutoff for the plane
wave expansion is 350 Ry for ZnO, 300 Ry for CuGaS2,
and 250 Ry for NiO. The k-point sampling is generated
using the Monkhorst-Pack scheme24 with a 6 × 6 × 6
density for zb-ZnO. We also investigate the wurtzite
(wz) structure of ZnO. However, the discussions will be
mostly focused on zb-ZnO for simplicity. Similar k-point
densities are used for other systems. The energy cutoff
of 40 Ry is used for truncating the dielectric matrix.

IV. RESULTS

A. ZnO

As a first application of our program, we investigate
the screened on-site Coulomb U and exchange J for the
semicore d electrons in ZnO. ZnO is a technologically im-
portant material that holds great promise for optoelec-
tronics and spintronics applications.25,26 Surprisingly, al-
though being a “simple” sp semiconductor, ZnO defies
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FIG. 3: (Color online) The LDA (left panels) and LDA+U

(right panels) band structures of zb-ZnO. Projections of the
band wave functions onto O 2p (top panels) and Zn 3d (bot-
tom panels) orbitals are shown as vertical bars superimposed
on the band structures.

several previous attempts to understand its electronic
structure. Much of the theoretical difficulty has been
attributed to the inadequate treatment of the semicore
d states within the LDA or GGA. Since all d states are
fully occupied in ZnO, the dielectric function is calcu-
lated within the conventional RPA approach without any
constraints.
We start our discussions by taking a closer look at the

electronic band structure of zb-ZnO calculated within the
LDA as shown in the left panels of Fig. 3. The electronic
structure of wz-ZnO shows similar characteristics.27 Su-
perimposed on the band structure are projections (in-
dicated by vertical bars) of band wave functions onto
the oxygen 2p (left top panel) and the zinc 3d (left bot-
tom panel) orbitals. The LDA significantly underesti-
mates the binding energy of d electrons and overesti-
mates the pd hybridization. This enhanced pd hybridiza-
tion pushes the valence p states up, resulting in a sur-
prisingly small band gap calculated within the LDA. In
addition, there is no gap between the d and p bands,
and the d derived t2 triplet entangles with the valence p

TABLE I: Average values of direct Coulomb and exchange
energies (in eV) for zinc 3d-electrons in zb- and wz-ZnO. We
show both the bare and the screened values calculated using
the LDA and LDA+U methods.

zb-ZnO wz-ZnO
(Ub, Jb) (Us, Js) (Ub, Jb) (Us, Js)

LDA (17.8, 0.61) (5.2, 0.55) (17.4, 0.61) (5.2, 0.54)
LDA+U (25.3, 0.94) (8.1, 0.87) (24.6, 0.91) (8.0, 0.84)

states. Upon applying an on-site U (U ∼ 8.1 eV, which
is calculated self-consistently as explained in the previ-
ous section) in the electronic structure calculation, the d
states are fully detached from the valence p states (right
panels of Fig. 3), and the width of the d bands is sub-
stantially narrower compared with the LDA result. In
addition, the pd hybridization is greatly reduced. These
differences in electronic structures calculated within the
LDA and the LDA+U methods will have significant ef-
fects on the construction of MLWF and the calculated U
value.
Table I compares the averaged U and J for zb- and

wz-ZnO. Both the screened (Us, Js) and the bare (U b,
Jb) values are shown. We first calculate the U and J pa-
rameters for zb-ZnO using the LDA Kohn-Sham eigen
solution. Although the O p- and Zn d-bands calcu-
lated within the LDA are entangled (see Fig. 3), it is
still possible to construct d-like Wannier functions us-
ing a disentanglement technique developed by Souza et

al.16 However, due to the strong pd hybridization (which
is largely unphysical), one would expect that the Wan-
nier orbitals so constructed might not faithfully repre-
sent the d states in this system. In fact, the average
on-site U is only 5.2 eV calculated with the LDA so-
lutions, whereas the U value calculated self-consistently
with the LDA+U method is about 8.1 eV (8.0 eV wz-
ZnO). The bare Coulomb U calculated with the LDA
method is 17.8 eV for zb-ZnO (17.4 eV for wz-ZnO), to
be compared with 25.3 eV (24.6 eV for wz-ZnO) calcu-
lated self-consistently with the LDA+U method. The
calculated exchange J shows a similar enhancement us-

FIG. 4: (Color online) Two representative Zn d-like MLWF
optimized using the wannier90 package. (a) and (b): d-like
MLWF with the e symmetry; (c) and (d): d-like MLWF with
the t2 symmetry. The MLWF on the left are constructed with
the LDA solution whereas those on the right are constructed
with the LDA+U solution.
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TABLE II: Screened (bare values in parentheses) Coulomb and exchange matrix elements for 3d electrons in zb-ZnO. All values
are in eV.

Us
ij (Ub

ij) Js
ij (Jb

ij)

e(1) e(2) t
(1)
2 t

(2)
2 t

(3)
2 e(1) e(2) t

(1)
2 t

(2)
2 t

(3)
2

e(1) 10.0 (27.9) 7.7 (25.4) 8.2 (25.5) 8.2 (25.5) 7.5 (24.6) 1.12 (1.22) 0.68 (0.71) 0.68 (0.71) 1.08 (1.18)

e(2) 7.7 (25.4) 10.0 (27.9) 7.7 (24.9) 7.7 (24.9) 8.5 (25.8) 1.12 (1.22) 0.95 (1.02) 0.95 (1.02) 0.55 (0.56)

t
(1)
2 8.2 (25.5) 7.7 (24.9) 9.3 (26.1) 7.4 (24.1) 7.4 (24.1) 0.68 (0.71) 0.95 (1.02) 0.91 (0.99) 0.91 (0.99)

t
(2)
2 8.2 (25.5) 7.7 (24.9) 7.4 (24.1) 9.3 (26.1) 7.4 (24.1) 0.68 (0.71) 0.95 (1.02) 0.91 (0.99) 0.91 (0.99)

t
(3)
2 7.5 (24.6) 8.5 (25.8) 7.4 (24.1) 7.4 (24.1) 9.3 (26.1) 1.08 (1.18) 0.55 (0.56) 0.91 (0.99) 0.91 (0.99)
Average 8.1 (25.3) 0.87 (0.94)

ing the LDA+U method.

The difference in the U values calculated using the
LDA and LDA+U methods comes largely from the dif-
ference in the localization of Wannier orbitals. The sep-
aration between the p and d bands calculated with the
LDA+U method results in more localized Wannier or-
bitals. Figure 4 compares the d-like MLWF constructed
using the LDA and the LDA+U solutions. We show
only two representative d Wannier orbitals, one with the
e symmetry and the other with the t2 symmetry. The
MLWF constructed using the LDA eigenstates (left pan-
els of Fig. 4) show substantial weights on oxygen sites,
indicating the involvement of p states in the MLWF. The
MLWF constructed with the LDA+U eigenstates (right
panels of Fig. 4 ) are more localized, and the involvement
of the oxygen p states is significantly reduced.

Table II shows the full U and J matrices for zb-ZnO
calculated self-consistently using the LDA+U method.
The bare values (U b and Jb) are shown in parentheses.
The bare Coulomb matrix elements range from 24.1 to
27.9 eV with an averaged value of 25.3 eV. The diag-
onal elements (27.9 eV and 26.1 eV) are very close to
the atomic value of 28.8 eV calculated using the Hartree-
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FIG. 5: (Color online) Comparison between the auxiliary
functions Fii(G,q = 0) (dotted line) and Fij(G,q = 0)
(dashed line) involved in the calculation of U and J param-
eters. The diagonal part of the polarization potential (solid
line) is also plotted to illustrate the effectiveness of the screen-
ing effects on the Coulomb U and exchange J .

Fock approximation.28 The screened Coulomb energy Us

ranges from 7.4 to 10.0 eV with an averaged value of
8.1 eV. This gives an effective screening ǭ for the on-site
Coulomb U of 25.3/8.1 = 3.1 for zb-ZnO. It is interest-
ing to note that the matrix elements for the e doublet
are slightly larger than those for the t2 triplet. This is
expected since the d-t2 states hybridize with oxygen p
states, resulting in a slightly larger Wannier spread than
that of the MLWF with the e symmetry.
The bare exchange matrix elements range from 0.56

to 1.22 eV with an average value of 0.94 eV. Interest-
ingly, the averaged screened exchange (Js = 0.87 eV)
is only slightly smaller than the bare value, indicat-
ing that the screening effects are less effective for the
exchange interaction. Similar observations have been
reported.19,28,29 However, to the best of our knowledge,
no detailed explanations have been given so far. The
effectiveness of the screening effects on the Coulomb U
and exchange J can be understood by taking a closer
look at Eqs. (7)−(9). Whereas the calculation of the
Coulomb U involves the Fourier transform of the charge
density of Wannier functions, i.e., Fii and Fjj in Eq. (7),
that for the exchange J involves Fij which is the Fourier
transform of the product of two different Wannier func-
tions. Figure 5 plots Fii(G,q = 0) and Fij(G,q = 0)
together with the diagonal elements of the polarization
potential W p

GG(q = 0) = (W − v)GG(q = 0). The func-
tion Fij(G,q) has appreciable magnitude only at sub-
stantially large G values. The function Fii(G,q), on the
other hand, has substantial weights at small G values.
Since the screening is less effective at large G (the polar-
ization potential is very small at large G), the screening
effects on the exchange J are unsubstantial for 3d states.

B. NiO

Late transition metal (TM) monoxides (MnO, FeO,
CoO, NiO, and CuO) are prototypical examples of
strongly correlated materials and attempts to understand
their electronic, magnetic, and optical properties using
DFT based first-principles methods have been hindered
by the inadequate treatment of the correlation effects
among localized d electrons. The on-site Coulomb U is
recognized as one of the most important characteristic
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FIG. 6: (Color online) Band structure of antiferromagnetic
NiO calculated using the LDA+U method. The black dots
are the band structure reconstructed using the MLWF.

energy scales in these systems. Among all TM monox-
ides, NiO has probably received the most research at-
tention. There have been several previous calculations of
Coulomb U for NiO using both first-principles and empir-
ical approaches.4,8,30–35 Therefore, NiO serves as a very
good example for comparing results obtained by different
approaches. In addition, since the d states are partially
occupied in NiO, there will be substantial intra-channel
screening, and it is very important to study the effects of
intra-channel screening on the calculated Coulomb U .
Below the Neel temperature, NiO assumes a type-II an-

tiferromagnetic (AFM-II) structure, in which the AFM
ordering occurs along the 〈111〉 direction. As a result of
the AFM ordering, the otherwise cubic rock-salt lattice is
slightly compressed along the 〈111〉 direction. We use the
AFM-II phase NiO as an example to demonstrate the cal-
culation of spin-dependent Coulomb U and exchange J .
Similar to the spin-independent case, the spin-dependent
U and J matrices can be calculated by evaluating the
following integrals:

Uiσjσ′ = 〈iσjσ′|W |iσjσ′〉 and Jiσjσ = 〈iσjσ|W |jσiσ〉,
(14)

where σ is the spin index. The average values are

U =
1

4(2l + 1)2

∑
iσjσ′

Uiσjσ′ and J =
1

4l(2l+ 1)

∑
i6=j,σ

Jiσjσ .

(15)
Figure 6 shows the band structure of AFM-II NiO cal-

culated using the LDA+U method with U and J calcu-
lated self-consistently. Unlike ZnO in which the p and d
bands are fully separated, the occupied d states strongly
hybridize with oxygen p states in NiO. The unoccupied
d (minority spin e) states, on the other hand, are well
separated and only slightly entangled with an s like con-
duction band. In order to construct the MLWF, we use
an outer energy window that includes all p and d states

and an inner energy window that includes all occupied pd
states. The band structure reconstructed using the sub-
space spanned by the MLWF is shown in Fig. 6 with black
dots. Although we can calculate the U and J parameters
for both the p-like and d-like orbitals, for simplicity, we
only show the result for d orbitals.

Table III shows the spin-resolved bare Coulomb U
and exchange J for d orbitals on one Ni site. The ma-
jority spin (up-spin) orbitals are slightly more localized
than the minority spin (down-spin) ones as suggested by
slightly larger U values. However, the difference is not
significant. In addition, eg orbitals have greater U val-
ues than those of t2g orbitals, but again, the difference is
rather small. The averaged on-site bare Coulomb energy,
U b = (U b

↑↑ + U b
↓↓ + 2U b

↑↓)/4, is 24.7 eV and the averaged
bare exchange J is 0.96 eV.

Table IV shows the screened U and J matrices calcu-
lated using both the RPA and cRPA formalism. Within
the RPA, the spin-averaged on-site Us is about 5.8 eV.
Removal of the intra-channel screening enhances the av-
erage Us value by about 0.8 eV. Thus the effective
screening for the on-site Coulomb U is ǭ = U b/Us(cRPA)
= 3.7 in NiO. Table V compares our results with some of
the previous work. Except for the work by Anisimov and
coworkers4 which gives a fairly large U value of about
8.0 eV, most later calculations using different implemen-
tations of the cLDA approach give substantially smaller
values, ranging from 4.6 to 5.8 eV. These results (espe-
cially the most recent result of 5.8 eV33) are close to our
result calculated using the conventional RPA approach.
Our cRPA results (Us = 6.6 eV and Js = 0.86 eV) are
nearly identical to the recent work of Karlsson et al.30

(Us = 6.6 eV and Js = 0.9 eV) which is also based
on the cRPA approach. There are several factors that
may affect the calculated U and J values. However, the
choice of local orbitals and the treatment of the screen-
ing effects are the most important ones. It is likely that
the screening effects were underestimated in the work of
Anisimov et al.4 Interestingly, the U values determined
empirically34,35 are very close to our result calculated
with the cRPA approach.

As mentioned earlier, one of the important advan-
tages of the cRPA over the cLDA approach is that the
frequency-dependence of the Coulomb U can be calcu-
lated within the cRPA approach. The frequency depen-
dent behavior of the screened Coulomb U of NiO is shown
in Fig. 7. The bare Coulomb U (24.7 eV) is also shown
for comparison. The first dip of the screened Coulomb
interaction at around ω = 5.0 eV is due to strong inter-
band transitions near this energy. At the high frequency
limit, the screened value approaches the bare one as ex-
pected. As pointed out by Aryasetiawan et al.,11,12 since
the energy dependence of the U value is rather strong
and non-trivial even at relatively low energies, it might
be important to take this into account when one attempts
to construct effective low energy models for strongly cor-
related materials.
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TABLE III: Spin-dependent bare Coulomb U and exchange J matrices of NiO. All values are in eV.

e
(1)
g e

(2)
g t

(1)
2g t

(2)
2g t

(3)
2g e

(1)
g e

(2)
g t

(1)
2g t

(2)
2g t

(3)
2g

Ub
i↑j↑ Jb

i↑j↑

e
(1)
g 27.5 24.9 25.3 25.3 24.4 1.27 0.75 0.75 1.23

e
(2)
g 24.9 27.5 24.7 24.7 25.4 1.27 1.07 1.07 0.59

t
(1)
2g 25.3 24.7 26.2 24.2 24.2 0.75 1.07 1.03 1.03

t
(2)
2g 25.3 24.7 24.2 26.2 24.2 0.75 1.07 1.03 1.03

t
(3)
2g 24.4 25.7 24.2 24.2 26.2 1.23 0.59 1.03 1.03
Average 25.1 0.98

Ub
i↓j↓ Jb

i↓j↓

e
(1)
g 25.9 23.5 24.3 24.3 23.4 1.17 0.71 0.71 1.17

e
(2)
g 23.5 25.9 23.7 23.7 24.6 1.17 1.02 1.02 0.56

t
(1)
2g 24.3 23.7 25.7 23.7 23.7 0.71 1.02 1.01 1.01

t
(2)
2g 24.3 23.7 23.7 25.7 23.7 0.71 1.02 1.01 1.01

t
(3)
2g 23.4 24.6 23.7 23.7 25.7 1.17 0.56 1.01 1.01
Average 24.2 0.94

Ub
i↑j↓

e
(1)
g 26.6 24.2 24.8 24.8 23.9

e
(2)
g 24.2 26.6 24.2 24.2 25.1

t
(1)
2g 24.8 24.2 25.9 23.9 23.9

t
(2)
2g 24.8 24.2 23.9 25.9 23.9

t
(3)
2g 23.9 25.1 23.9 23.9 25.9
Average 24.7

TABLE IV: Spin-dependent screened Coulomb U and exchange J matrices of NiO calculated within the cRPA (RPA) method.
All values are in eV.

e
(1)
g e

(2)
g t

(1)
2g t

(2)
2g t

(3)
2g e

(1)
g e

(2)
g t

(1)
2g t

(2)
2g t

(3)
2g

Us
i↑j↑ Js

i↑j↑

e
(1)
g 8.4 (7.4) 6.1 (5.2) 6.8 (5.9) 6.8 (5.9) 6.0 (5.1) 1.15 (1.14) 0.70 (0.70) 0.70 (0.70) 1.06(1.04)

e
(2)
g 6.1 (5.2) 8.4 (7.5) 6.3 (5.4) 6.3 (5.4) 7.0 (6.2) 1.15 (1.14) 0.94 (0.92) 0.94 (0.92) 0.58(0.58)

t
(1)
2g 6.8 (5.9) 6.3 (5.4) 8.1 (7.2) 6.2 (5.3) 6.2 (5.3) 0.70 (0.70) 0.94 (0.92) 0.93 (0.91) 0.93(0.91)

t
(2)
2g 6.8 (5.9) 6.3 (5.4) 6.2 (5.3) 8.1 (7.2) 6.2 (5.3) 0.70 (0.70) 0.94 (0.92) 0.93 (0.91) 0.93(0.91)

t
(3)
2g 6.0 (5.1) 7.0 (6.2) 6.2 (5.3) 6.2 (5.3) 8.1 (7.2) 1.06 (1.04) 0.58 (0.58) 0.93 (0.91) 0.93 (0.91)
Average 6.7 (5.9) 0.89 (0.87)

Us
i↓j↓ Js

i↓j↓

e
(1)
g 7.9 (7.0) 5.8 (4.9) 6.5 (5.7) 6.5 (5.7) 5.8 (5.0) 1.05 (1.05) 0.66 (0.66) 0.66 (0.66) 1.01 (0.99)

e
(2)
g 5.8 (4.9) 7.9 (7.0) 6.0 (5.2) 6.0 (5.2) 6.8 (5.9) 1.05 (1.05) 0.90 (0.88) 0.90 (0.88) 0.55 (0.55)

t
(1)
2g 6.5 (5.8) 6.0 (5.2) 7.9 (7.1) 6.1 (5.2) 6.1 (5.2) 0.66 (0.66) 0.90 (0.88) 0.90 (0.89) 0.90 (0.89)

t
(2)
2g 6.5 (5.7) 6.0 (5.2) 6.1 (5.2) 7.9 (7.1) 6.1 (5.2) 0.66 (0.66) 0.90 (0.88) 0.90 (0.89) 0.90 (0.89)

t
(3)
2g 5.8 (5.0) 6.8 (5.9) 6.1 (5.2) 6.1 (5.2) 7.9 (7.1) 1.01 (0.99) 0.55 (0.55) 0.90 (0.89) 0.90 (0.89)
Average 6.5 (5.7) 0.84 (0.83)

Us
i↑j↓

e
(1)
g 8.1 (7.2) 5.9 (5.0) 6.6 (5.8) 6.6 (5.8) 5.9 (5.0)

e
(2)
g 5.9 (5.0) 8.1 (7.2) 6.1 (5.3) 6.1 (5.3) 6.9 (6.0)

t
(1)
2g 6.6 (5.8) 6.1 (5.3) 8.0 (7.1) 6.1 (5.3) 6.1 (5.3)

t
(2)
2g 6.6 (5.8) 6.1 (5.3) 6.1 (5.3) 8.0 (7.1) 6.1 (5.3)

t
(3)
2g 5.9 (5.0) 6.9 (6.0) 6.1 (5.3) 6.1 (5.3) 8.0 (7.1)
Average 6.6 (5.8)
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TABLE V: Comparison between our results and previous
work for NiO. All values are in eV.

U J

This work (RPA) 5.8 0.85
This work (cRPA) 6.6 0.86
Karlsson et al. (cRPA)a 6.6 0.9
Anisimov et al. (cLDA)b 8.0 0.95
Cococcioni et al. (cLDA)c 4.6
Pickett et al. (cLDA)d 5.1
Jiang et al. (cLDA)e 5.2 0.9
Floris et al. (cLDA)f 5.8
Empirical methodg 6.2 0.95
Empirical methodh 6.7

aReference 30.
bReference 4.
cReference 8.
dReference 31.
eReference 32.
fReference 33.
gReference 34.
hReference 35.
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FIG. 7: Frequency-dependence of the screened Coulomb U

for d electrons in NiO calculated with the cRPA method. The
horizontal dashed line indicates the bare Coulomb energy.

C. CuGaS2

As a last example, and to demonstrate that our method
is capable of dealing with more complex materials, we
investigate the screened Coulomb interaction for Cu d
electrons in CuGaS2. CuGaS2 is a parent material for a
large group of Cu-based ternary semiconductors (Cu-III-
VI2, with III = Al, Ga, and In; and VI = S, Se, and Te).
These ternary compounds and their solid solutions are
among the most promising materials for thin film solar
cell absorbers due to their high efficiency and low cost.
However, attempts to understand some of the most ba-
sic structural and electronic properties of these materials
have been complicated by the presence of Cu 3d elec-
trons. On one hand, these d electrons are rather localized
and experience strong on-site Coulomb correlations. On

FIG. 8: The GGA+U band structure of CuGaS2. The inner
and outer energy windows used for generating MLWF are
indicated by the dashed and solid double arrows.

the other hand, they are relatively shallow in energy and
can hybridize with other valence (sp) electrons to form
strong covalent bonds. An accurate account of both these
aspects of Cu d electrons requires theoretical treatments
beyond the conventional DFT method within the LDA or
GGA. In a recent paper,36 we demonstrated that a com-
bined GGA+U and GW approach can reproduce the sys-
tematic variation of quasiparticle band gap of Cu-based
ternary compounds with chemical constituents. The on-
site Coulomb U for Cu d electrons plays an important
role in the calculations. Here we present additional de-
tails on the calculation of the U and J parameters for
CuGaS2.
Figure 8 shows the band structure of CuGaS2 calcu-

lated using the GGA+U method. To be consistent with
our previous work, we use the Perdew-Burke-Ernzerhof
GGA functional37 for this system. The electronic struc-
tures of Cu based multinary compounds have been in-
vestigated by several groups,36,38–41 so we will not elab-
orate on the details of the band structure. Because of

FIG. 9: (Color online) Two representative Cu 3d-like MLWF
in CuGaS2, (a) with the e symmetry and (b) with the t2
symmetry.
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TABLE VI: Screened (bare) Coulomb U and J matrices for Cu 3d electrons in CuGaS2 calculated within the cRPA. All values
are in eV.

Us
ij(U

b
ij) Js

ij(J
b
ij)

e(1) e(2) t
(1)
2 t

(2)
2 t

(3)
2 e(1) e(2) t

(1)
2 t

(2)
2 t

(3)
2

e(1) 6.2 (25.6) 4.2 (23.3) 4.9 (24.1) 4.9 (24.1) 4.2 (23.2) 1.00 (1.12) 0.64 (0.67) 0.64 (0.67) 1.00 (1.11)

e(2) 4.2 (23.3) 6.2 (25.5) 4.4 (23.5) 4.4 (23.5) 5.1 (24.4) 1.00 (1.12) 0.88 (0.97) 0.88 (0.97) 0.52 (0.52)

t
(1)
2 4.9 (24.1) 4.4 (23.5) 6.1 (25.2) 4.4 (23.3) 4.4 (23.3) 0.64 (0.67) 0.88 (0.97) 0.87 (0.96) 0.88 (0.97)

t
(2)
2 4.9 (24.1) 4.4 (23.5) 4.4 (23.3) 6.1 (25.2) 4.4 (23.3) 0.64 (0.67) 0.88 (0.97) 0.87 (0.96) 0.88 (0.97)

t
(3)
2 4.2 (23.2) 5.1 (24.4) 4.4 (23.3) 4.4 (23.3) 6.1 (25.2) 1.00 (1.11) 0.52 (0.52) 0.88 (0.97) 0.88 (0.97)
Average 4.9 (23.9) 0.82 (0.89)

the strong spd hybridization, the construction of d-like
MLWF in CuGaS2 requires a more delicate treatment
than those in previous cases. We include all S 3p, Ga 4s
and Cu 3d states in the optimization of the MLWF. The
outer and inner energy windows used for the wannieriza-
tion procedure are shown in Fig. 8. Figure 9 shows two
representative MLWF (one with the e symmetry and the
other with the t2 symmetry) on a Cu site, indicating that
d-like MLWF can be constructed despite a strong entan-
glement of the d bands with other valence sp bands.
Table VI shows the calculated screened and bare on-

site U and J matrices for Cu 3d electrons in CuGaS2.
Due to a strong spd hybridization, the 3d-like MLWF
in CuGaS2 are slightly more delocalized than those in
ZnO and NiO. Therefore, although the atomic Cu 3d
electrons have a slightly larger Coulomb integral than Ni
3d electrons, the average bare Coulomb U for Cu 3d-like
MLWF in CuGaS2 is only 23.9 eV, which is about 0.9 eV
smaller than that for NiO. In addition, the screening ef-
fects in this system are substantially stronger than those
in NiO since CuGaS2 has a much smaller band gap. As
a result, the average screened Coulomb U is only 4.9 eV,
which is substantially smaller than that of Ni 3d electrons
in NiO. Similar to the case of zb-ZnO, the e states are
slightly more localized than the t2 states, thus they have
a slightly larger screened (or bare) Coulomb U . This is
because that the e states, in contrast to the t2 states
which form covalent bonds with valence sp states, are
nonbonding states and they do not hybridize strongly
with valence p states.

V. SUMMARY

In summary, we have developed a combined MLWF
and cRPA approach to calculate the screened Coulomb
U and exchange J parameters for localized electrons in
solid. Our implementation is based on the pseudopoten-

tial plane wave and makes use of well developed exist-
ing packages, including paratec,20 BerkeleyGW,22 and
wannier90.17 Our approach is capable of calculating
(1) the full direct Coulomb and exchange matrices, (2)
both the screened and the bare interactions, (3) energy-
dependent screening effects, and (4) spin-dependent U
and J parameters.
Using this new implementation, we investigate the

Coulomb interaction of 3d electrons in ZnO, NiO, and
CuGaS2. For ZnO, the calculated values of the U and
J parameters show little difference between zb- and wz-
phases. However, we find that it is important to calculate
these parameters self-consistently. This is true for all sys-
tems in which the LDA (or GGA) is not able to provide
a reasonable description for the ground state properties.
Our results for NiO (U = 6.6 eV, J = 0.86 eV) fall within
previously used/calculated values (U = 4.6 − 8.0 eV)
and agree well with recent results of Karlsson et al.

The strong screening in CuGaS2, in combination with
a strong spd hybridization, substantially reduces the on-
site Coulomb U in this system. Finally, we find that the
screening effects on the exchange J are less effective than
those on the direct Coulomb U .

Acknowledgments

We thank Takashi Miyake for helpful discussions. We
acknowledge the computational support provided by the
Center for Computational Research at the University
at Buffalo, SUNY. This work is supported by the Na-
tional Science Foundation under Grant No. DMR-
0946404 and by the Department of Energy under Grant
No. DE-SC0002623. W. Z. is supported by National
Basic Research Program (973-program) of China un-
der Project No. 2007CB607503 and NSFC Grants
(50825205, 50821004).

1 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
3 J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).

4 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev.
B 44, 943 (1991).

5 A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys.



10

Rev. B 52, R5467 (1995).
6 O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen,
Phys. Rev. B 39, 1708 (1989).

7 V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570
(1991).

8 M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71,
035105 (2005).

9 M. Springer and F. Aryasetiawan, Phys. Rev. B 57, 4364
(1998).

10 T. Kotani, J. Phys.: Condens. Matter 12, 2413 (2000).
11 F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar,

S. Biermann, and A. I. Lichtenstein, Phys. Rev. B 70,
195104 (2004).

12 F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schon-
berger, Phys. Rev. B 74, 125106 (2006).

13 T. Miyake, F. Aryasetiawan, and M. Imada, Phys. Rev. B
80, 155134 (2009).

14 O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
15 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847

(1997).
16 I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,

035109 (2001).
17 A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vander-

bilt, and N. Marzari, Comput. Phys. Commun. 178, 685
(2008).

18 M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390
(1986).
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