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Many-electron systems confined at substantial finite temperatures and densities present a major
challenge to density functional theory. In particular, there is comparatively little systematic knowl-
edge about the behavior of free-energy density functionals for temperatures and pressures of interest,
for example, in the study of warm dense matter. As with ground-state functionals, development of
approximate free-energy functionals is faced with significant needs for reliable assessment and cali-
bration data. Here we address, in part, this need for detailed results on well-characterized systems.
We present results on a comparatively simple, well-defined, computationally feasible but previously
unexplored model, the thermal Hartree-Fock approximation. We discuss the main technical tasks
(defining a suitable basis and evaluation of the required matrix elements) and give an illustrative
initial application which probes both the content of the model and the solution techniques: a sys-
tem of eight one-electron atoms with nuclei at fixed, arbitrary positions in a hard-walled box. Even
this simple system produces physical behavior different from that produced by simple ground state
density functionals used at finite temperature (a common approximation in the study of WDM).

PACS numbers:

I. INTRODUCTION AND MOTIVATION

Warm dense matter (WDM) is encountered in systems
as diverse as the interiors of giant planets1,2 and in the
pathway to inertial confinement fusion3,4. WDM is chal-
lenging to theory and simulation because it occurs in-
conveniently, for theory, between the comparatively well-
studied plasma and condensed matter regimes. Both the
Coulomb coupling parameter Γ := Q2/(rskBT) and elec-
tron degeneracy parameter Θ := kBT/εF are approx-
imately unity for WDM. (Q = relevant charge, rs =
Wigner radius, εF = electron Fermi energy, T = temper-
ature, kB = Boltzmann constant.) A non-perturbative
treatment therefore is required.
Contemporary computations on WDM5–18 are dom-

inated by use of the Kohn-Sham (KS) realization of
thermal density functional theory (DFT)19–25 to gener-
ate a potential surface for ionic motion (treated classi-
cally). The majority of such calculations use approxi-
mate ground-state exchange-correlation (XC) function-
als, Exc, with the temperature dependence of the XC
free energy picked up implicitly from the T-dependence
of the density n(r,T). Though fruitful, this approach is
not without potential difficulties, as is illustrated in Fig.
3 of Ref. 7. Three issues are germane here.
First, there is little systematic knowledge of the im-

plicit T-dependence of ground-state approximate Exc

functionals (especially beyond the local density approxi-
mation, LDA), whether they be constraint-based or em-
pirical. Compared to the ground-state situation, there
is only a small literature on explicitly T-dependent func-
tionals, that is, XC free energy functionals, and essen-
tially all of those studies are at the level of the LDA26–42.
Second, there is the computational burden of solving

for the Kohn-Sham orbitals and eigenvalues. Since the

computational load from the eigenvalue problem scales,
in general, as order N3

orbitals, the growth in the number of
non-negligibly occupied KS orbitals with increasing tem-
perature is a clear computational bottleneck. See the re-
marks, for example, in Sec. 4 of Ref. 18. For complicated
systems, the same bottleneck is encountered in ground-
state simulations which use the DFT Born-Oppenheimer
energy surface to drive the ionic dynamics. One result
has been the emergence of active research on orbital-free
DFT (OFDFT), that is, approximate functionals for the
ingredients of the KS free energy, namely the KS kinetic
energy (KE) Ts, entropy Ss, and XC free energy Fxc or
their ground-state counterparts. Almost all of this ef-
fort has been for ground-state OFKE functionals43–46.
(Note that most of the OFKE literature invokes the KS
separation of the KE in order to use existing Exc approx-
imations consistently.)

Third, the finite-temperature OFDFT work is domi-
nated by variants on Thomas-Fermi-von Weizsäcker the-
ory; see for example Ref. 41 and references therein. That
type of theory, however, is known (on both fundamental
and computational grounds) to be no more than qualita-
tively accurate in many circumstances relevant to WDM
(e.g., chemical binding). Compared to the data-rich
context for development of zero-temperature functionals,
there is little to guide development and assessment of
finite-T functionals beyond TFvW. Similarly, compared
to the T=0 K situation (or the very high T situation),
not much is known about the accuracy of approximate
finite-T OFDFT functionals beyond TFvW.

The primary aim of the present study is to provide ref-
erence data for both development and appraisal of free
energy density functionals. Such reference data must
come from a combination of a well-defined physical sys-
tem with a well-defined approximation and its imple-
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mentation. In the case of ground-state density func-
tionals, three classes of reference data have been par-
ticularly influential: high-precision Monte Carlo results
for the homogeneous electron gas47 and small systems48,
Hartree-Fock calculations on myriad molecules (the lit-
erature is too vast to cite in detail but see the textbooks
by Jensen49 and by Szabo and Ostlund50), and high-
precision (e.g. coupled cluster and configuration inter-
action) calculations on atoms and small molecules (again
the literature is too large to cite fairly but see, for one
example, Ref. 51). Though the Hartree-Fock approxima-
tion has accuracy limitations with respect to the preci-
sion of thermo-chemistry (e.g. atomization energies), it
has had at least two large influences on the development
of ground state DFT. First, it provides the framework for
all basic electronic structure concepts. Second, because
of the many rigorous results known about the HF approx-
imation (see, for only two examples, Refs. 52 and 53), un-
derstanding the distinction between HF and Kohn-Sham
DFT has sharpened the understanding of DFT itself.
There are multiple reasons, therefore, that finite-

temperature Hartree-Fock23,54–56 results will be valuable
in constructing and appraising free-energy functionals.
Note that we do not propose finite- temperature Hartree-
Fock studies as competitors or replacements for DFT-
based molecular dynamics simulations of WDM. Though
we intend, later, to undertake a small number of HF-
based MD simulations, the predominance of DFT-based
MD at zero temperature makes clear that HF-based ones
cannot be truly competitive. This, in itself, is another
way of focusing on finite-temperature HF for develop-
ment of better functionals.

II. SYSTEM AND METHODOLOGY

We treat a neutral system of Nion atoms with nu-
clei fixed at arbitrary positions in a hard-walled three-
dimensional rectangular box. The confined system allows
systematic treatment of pressure effects at stipulated fi-
nite temperature, hence is a small, treatable sample of
WDM. For specificity and comparative simplicity in this
first-stage study, we chose H atoms and Nion ≤ 8. Other
than commensurateness with cubic symmetry, there is
nothing special about this value. Note the corresponding
use of a small number of atoms in Ref. 18. Also note the
considerable literature on spherically confined systems at
T = 0 K57–62. Other than DFT calculations with ground
state functionals63 (which, though interesting, are not
relevant to our goal of providing calibration and assess-
ment data for development of better functionals), we have
not found any work on lower-symmetry confinement of
multi-atom systems at non-zero T. At non-zero T there
is a large literature on average-atom methods, for exam-
ple Refs. 18,64 and many others, but such methods also
do not provide the fiduciary data needed for functional
development.
Many-electron problems require clearly defined ap-

proximations. We choose the finite temperature Hartree-
Fock (FTHF) scheme23,54–56, with issues of electron cor-
relation to be addressed in the future. In addition to
being well-defined in the grand ensemble, FTHF pro-
vides the advantage that its T = 0 K limit is, as noted
above, the lingua franca of molecular electronic struc-
ture interpretation. Use of FTHF therefore also provides
a semi-quantitative (at least) framework for understand-
ing chemical processes in WDM.
The FTHF approximation is defined in the grand

canonical ensemble by restricting the relevant traces to
states which are single Slater determinants23,54,55. The
result is an upper bound to the free energy FFTHF ≥ F .
Standard thermodynamic relationships for the grand en-
semble follow. The FTHF Euler equations to be solved
(in unrestricted form) are55

εiϕi(r) =

(

−1

2
∇2 + Uion(r)

)

ϕi(r)

+
∑

j

fj

∫

dr′
|ϕj(r

′)|2
|r− r′| ϕi(r)

−
∑

j

δσiσj
fj

∫

dr′
ϕ∗

j (r
′)ϕi(r

′)

|r− r′| ϕj(r) , (1)

with Uion the ion-electron interaction potential and σi

the spin label; the sums are over all spin orbitals. Un-
less indicated otherwise we use hartree atomic units
(~ = me = e = 1; energy is then in hartrees, l hartree =
27.2116 eV, and lengths are in bohrs, 1 bohr = 0.52918
angstrom). The spin orbitals (eigenstates, ϕi) have
Fermi-Dirac thermal occupations

fi =
(

1 + eβ(εi−µ)
)

−1

, N =
∑

i

fi , (2)

where β = 1/kBT and µ is the electron chemical poten-
tial. For a specified value ofN , which is a grand ensemble
average, µ must be determined. These equations, along
with specification of the nuclear sites and imposition of
hard-wall boundary conditions, completely describe the
problem.
The FTHF free energy and entropy are given by

FFTHF =
∑

i

fiεi −
1

2

∑

i,j

fifj (Ji,j −Ki,j)− TSFTHF ,

(3)

SFTHF = −kB
∑

i

fi ln(fi) + (1− fi) ln(1− fi) , (4)

with conventional definitions of J and K:

Ji,j :=

∫

drdr′
|ϕi(r)|2 |ϕj(r

′)|2
|r− r′| , (5)

Ki,j :=δσiσj

∫

drdr′
ϕi(r)ϕj(r)ϕ

∗

i (r
′)ϕ∗

j (r
′)

|r− r′| . (6)

Equations (3) and (4) clearly reduce to conventional
ground-state Hartree-Fock expressions in the zero-
temperature limit.
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A. Basis Set Design

Solution of self-consistent field equations such as (1)
via Gaussian-type-orbital (GTO) basis methods is the
standard procedure in modern computational codes for
molecules. First introduced by Boys69–73, such basis sets
automatically satisfy the free-molecule boundary condi-
tion that the orbitals vanish at infinity. For a hard-wall
confined system, the basis functions must vanish at the
boundary, so standard molecular GTO matrix-element
expressions are inapplicable. This simple distinction un-
derlies the most critical implementation issue, namely, to
find a basis that satisfies the boundary conditions yet al-
lows for an efficient enough evaluation of the two-electron
integrals to be computationally tractable on reasonable
resources. A second, closely related technical issue is
that the high temperature also dictates what is “efficient
enough”, in that the basis must be large enough and flex-
ible enough to represent a sufficient number of thermally
occupied higher-energy orbitals of the system, hence to
represent the density and free energy accurately.

Those considerations eliminate several seemingly plau-
sible options for a basis. For example, a real-space finite-
difference/element scheme, while suitable for a DFT
calculation or a Hartree-Fock calculation on a free di-
atomic molecule (for which curvilinear coordinates can
be exploited65), is far too expensive for the present case
because of the number of matrix elements to be calcu-
lated. Another example is sine functions. They also sat-
isfy the hard-wall boundary condition, but an adequate
description of the rapidly varying electronic distribution
near the nuclei requires prohibitively many matrix el-
ements in our multi-center problems. So we chose an
adaptation of standard GTO methods which uses mod-
ified Gaussians that meet the boundary condition, yet
retain enough efficiency to complete the calculation.

The various ways to force a GTO to zero at the bound-
ing planes of a rectangular box can have great impact
upon the efficiency of the matrix element calculations.
Compared with familiar practice for free molecules, in
general the confined case requires more primitive GTOs
for each contracted one. More importantly, the finite
integration volume makes it impossible to achieve com-
pletely analytic calculation of the two-electron integrals,
which is, of course, precisely the category in which com-
putational efficiency is most needed. We have addressed
this issue by using truncated Gaussians as described next.

B. Truncated Gaussians

The rectangular box makes Cartesian GTOs a conve-
nient choice, because each primitive function then is sep-
arable into Cartesian factors which are simple 1D func-
tions. Consider the Cartesian factor

gn(x) = (x− xc)
ne−α(x−xc)

2

(7)

To force this function to zero at the box boundaries x = 0
and x = Lx, we subtract a constant equal to the function
value at each end. When xc is not at the box center, the
value to be subtracted differs for the two ends, so we split
the function into two pieces, make the two subtractions,
and scale the two pieces such that the resulting func-
tion is continuous. Each unnormalized Cartesian factor
becomes

gnbox(x) = a0 (g
n(x)−∆0) 0 ≤ x ≤ xc

= aL (gn(x) −∆Lx
) xc ≤ x ≤ Lx (8)

with ∆0 = gn(0), ∆Lx
= gn(Lx). We call this the trun-

cated GTO (tGTO) basis.
Two technical issues remain. The tGTO functions may

not have continuous derivatives, so proper evaluation of
the kinetic energy matrix elements requires attention.
Appendix A shows that nothing untoward happens and
that the kinetic energy is simply a sum of piecewise con-
tributions, except for p-type functions which have a sim-
ple correction term. Second is the matter of evaluating
two-electron matrix elements. In Appendix B, we show
that this task reduces to computing finite-range integrals
of products of Gaussians and error functions. At this
juncture, we are doing those via Gauss-Legendre quadra-
ture. We also note that the tGTO basis is simpler than
the smoothly cut-off floating spherical GTO basis of Ref.
61 in the sense that their cut-off introduces a mixing of
two symmetry types (e.g. s, d) in each basis function.
Note that, so far, we have implemented only

the restricted Hartree-Fock approximation (RHF; non-
spin-polarized in DFT language; closed-shell or spin-
compensated in quantum chemistry language).

III. RESULTS

A. Zero Temperature

Two simple ground-state test cases, the H atom and
the H2 molecule, illustrate the system behavior with in-
creasing confinement (decreasing volume) as well as the
correctness of our implementation. The confined-system
energies should be above the ground-state energies (in
the basis selected) of the corresponding free systems and
approach those free-system energies (and bond length for
the molecule) in the limit of large box volume.
For the hydrogen atom in the center of a cubical box,

Fig. 1 (a) shows the ground-state energy for confinements
L ≤ 10 bohr. (The basis exponents shown in Table I;
their selection is described in the next section.) The cal-
culations were carried out to L = 30 bohr. Beyond 10
bohr there was negligible difference in the energy with
respect to the free-atom energy in the same basis, pre-
cisely as expected. At L = 30 bohr the ground-state
energy is identical with the free-atom GTO calculation
using the same basis, namely −0.498476 hartree, vali-
dating our overlap, kinetic, and nuclear energy integral
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FIG. 1: (a) Ground-state energy of an H atom in the center
of a cube with edge length L. Fit is for function f(L) =
a/L2 + b/L + c. (b) Pressure calculated from the energy fit.

calculations. A fit to the energies as a function of cube
edge L

E(L) = a/L2 + b/L+ c , 0 ≤ L ≤ 10 bohr (9)

yields a = 14.5733 hartree bohr2, b = −3.82369, hartree
bohr, c = −0.238258 hartree. Though this fit does not
have the correct infinite-size limit, it is the best fit of
this simple form for 0 ≤ L ≤ 10 bohr. From this fit the
pressure, p = −dE/dV (V = L3) can be calculated; see
Fig. 1 (b).
The effects of spherical versus cubic confinement can

be assessed easily by comparison of the two confinement
types both for bounding volumes and equal volumes. For
bounding volumes, the circumscribed-sphere R =

√
3L/2

and inscribed-sphere R = L/2 results from Ref. 67 (also
see Ref. 66) can be compared to our cube results. Figure
2 shows that the energy of the cubically confined system
is bounded by that of the two spherical systems, as ex-
pected. Shape effects of confinement are shown in Fig.
3. Though the spherical system has a lower energy than
that of the equal volume cubical system, they are quite
close until the cube is smaller than L ≈ 4 bohr, where
a significant indication of shape dependence begins. At
L = 1 bohr the difference in energy is over 25%, as shown
in Fig. 3 (b). A simpler basis of six s-type tGTO with
exponents [0.15,0.3,0.6,1.2,2.4,4.8 bohr−2] reproduces the
ground-state energies for L ≥ 1.5 bohr.
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FIG. 2: Comparison of ground-state energy of an H atom in
a cube with its energy within two bounding spheres.
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FIG. 3: (a) Comparison of energy of an H atom in a cube
with that in a sphere of equal volume. (b) The difference of
the two ground-state energies.

Next consider the confined H2 molecule at zero tem-
perature. Here we used the simpler six-tGTO basis just
given. For a large cube, the new tGTO confined-box
computations again should conform to known results for
the integrals and produce essentially the energy vs. bond
length curve for the free molecule. With L = 30 bohr
and the molecule centered in the cube and aligned along
the body diagonal, we get energies shown as points in
Fig. 4. These agree completely with the values of the
free GTO calculation, which are shown in that figure as
the “Free” curve. The minimum is at 1.383 bohr, sat-
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isfactorily close to the free-molecule RHF value of 1.385
bohr from a 6-31G∗∗ basis calculation68. Conversely for
fixed R (at 1.4 bohr) and decreasing L (to 4 bohr), the
ground-state energy behavior is shown in Fig. 5. The on-
set of confinement effects becomes visible in the vicinity
of L ≈ 11 bohr. Optimization of the bond length R at
L = 5 bohr is shown in Fig. 6. The total energy is, of
course, higher than for the larger box, and the optimal
R is shifted down to 1.178 bohr from 1.383 bohr.
Following this method, we obtain the optimized R and

energy for decreasing L. A function fit to the energy
similar to that used earlier yields R as a function of the
pressure, as shown in Fig. 7.

B. Finite Temperature

For finite-temperature calculations, at least a single p

orbital needs to be included, and as many orbitals as
feasible should be available to represent the fractionally
occupied levels which become increasingly important as
T is increased. For all the following calculations, except
where noted, the basis consists of seven s-type primi-
tive GTOs and one px, one py, and one pz GTO, with
the p-GTO exponents equal. An elementary exponent
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and 1.178 bohr respectively.
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optimization was done as follows. A set of five s-type
exponents was picked and held fixed: [0.1,0.2,0.4,0.8,1.6
bohr−2]. The sixth exponent was optimized to to mini-
mize ε1s for the single atom centered in a cube of specified
L. With those six exponents fixed, the seventh s-GTO
exponent was used to minimize ε2s. With those seven
fixed, the p exponent was used to minimize ε2p. Addi-
tionally, for small L the smallest exponents produce or-
bitals that are so similarly flat that an approximate linear
dependence exists and diagonalization fails. When this
happens the smallest exponent is replaced by extending
the even-tempered exponent series to larger values. For
example at L = 4 the 0.1 exponent is replaced with 3.2,
at L = 2 the 0.2 exponent is also replaced with 6.4.
This procedure keeps the ratio of the effective length

(1/
√
α) of the most diffuse function to the edge length L

at 0.75-0.79 for L ≤ 3, with smaller ratios for larger L.
The optimization was done for each L. Table I shows

the resulting exponents and energies for the orbitals that
were optimized.
With this volume-dependent optimized basis, calcula-

tions were done for a single atom at the center of a cube
with 1 ≤ L ≤ 15 bohr. The orbital energies of the five
lowest states (1s, 2px, 2py, 2pz, 2s) are plotted in Fig. 8.
Notice the inversion of ordering (2p below 2s) that is a re-
sult primarily of the confinement. To address finite tem-
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L fixed 1s 2s 2p ε1s ε2s ε2p
1.0 1.6, 3.2, 6.4, 12.8, 25.6 179.1 244 (NA) 4.01 10.518 50.5898 26.683
1.5 0.8, 1.6, 3.2, 6.4, 12.8 92.15 244 (NA) 1.88 3.6738 21.3545 11.154
2 0.4, 0.8, 1.6, 3.4, 6.8 48 250 1.115 1.48471 11.3649 5.8753
3 0.2, 0.4, 0.8, 1.6, 3.4 24.5 175 0.545 0.11385 4.47073 2.25356
4 0.2, 0.4, 0.8, 1.6, 3.4 21.2 7.0 0.34 −0.268848 2.18313 1.06314
5 0.1, 0.2, 0.4, 0.8, 1.6 11.2 3.7 0.235 −0.40474 1.18372 0.547955
6 ” 10.4 2.5 0.18 −0.458898 0.675591 0.288794
7 ” 17.7 2.25 0.15 −0.481704 0.389716 0.145105
8 ” 10.2 0.195 0.122 −0.491112 0.217062 0.0591604
9 ” 10.2 0.07 0.103 −0.495291 0.10651 0.00450443
10 ” 10.2 0.0365 0.088 −0.497104 0.0327616 −0.0321549
11 ” 10.1 0.023 0.076 −0.497889 −0.0179536 −0.0578267
12 ” 10.1 0.018 0.0665 −0.498227 −0.0535872 −0.0764093
13 ” 10.1 0.015 0.059 −0.498372 −0.0789901 −0.0901715
14 ” 10.05 0.014 0.053 −0.498435 −0.0972631 −0.100500
15 ” 10.1 0.014 0.048 −0.498461 −0.108291 −0.108291

TABLE I: Optimized exponents and orbital energies for an H atom at the center of a cube of edge length L. 2p refers to the
triply degenerate px, py, and pz states. For L < 2, the 2s level could not be optimized beyond the first 6 exponents.
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FIG. 8: Lowest five eigenstate energies of H as a function of
cube edge L. Energy values are from Table I.

perature for this single-electron system, the one-electron
levels were populated according to the Fermi-Dirac dis-
tribution. Observe that the one-electron Hamiltonian is
independent of density, so the one-electron orbitals and
eigen-energies are independent of occupancy, even though
the density and total electronic energy are not. The left-
hand panel in Fig. 9 shows the resulting total energy as
a function of L for four values of T, while the right-hand
panel shows the free energy. The weak minimum in total
energy in the vicinity of 6 bohr at T=50 kK appears to be
a confinement effect. We have found a similar minimum
at about the same volume by doing a Fermi-Dirac popu-
lation of the high-precision eigenvalues of the spherically
confined H atom given in Ref. 67.

Figure 10 shows the contributions to the free energy for
the single atom as a function of T for four cube volumes
(L = 2, 3, 7, 15 bohr). At L = 7 bohr, the KE is flat with
T at almost its T = 0 K value. The T = 50 kK nuclear-
electron attraction ENe, however, is much stronger for
L = 7 bohr than for L = 15 bohr. By L = 3 bohr, the
KE and ENe are roughly equal in magnitude.

Figure 10 also shows that the KE for the L = 15 bohr
system falls with increasing temperature. Though this
might seem odd, it is as it should be from virial theorem
arguments for the free atom. The 2s KE is one-fourth
the 1s value74. Finite temperature population of the 2s
and depopulation of the 1s therefore reduces the KE with
respect to its T = 0 K value.

Next we turn to the system of eight H atoms. We
examined a symmetric configuration in which the eight
atoms were situated at the corners of a smaller cube,
edge-length L/2, centered within the hard-wall cube,
edge-length L. The basis used was ten s-type GTOs cen-
tered on each atom. Strict s-type symmetry is broken, of
course, by enforcement of the hard-wall boundary condi-
tions. An even-tempered set of exponents also was used
in this case: [0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.2,50.4,100.8
bohr−2]. As a test, the calculations were redone with two
fewer basis functions per atom; the exponents [50.4,100.8
bohr−2] were removed. The two calculations agreed to 2
millihartree in total and component energies up to 200
kK. Matrix elements are calculated only once and stored,
after which fully self-consistent calculations may be done
at many temperatures.

Figure 11 shows the total energy E = FFTHF +
TSFTHF as a function of L for various temperatures, as
well as the free energy FFTHF itself. The nuclear-nuclear
repulsion energy is included (constant with respect to
temperature, it varies with L). Figure 12 shows various
components of the free energy (electron-nuclear Coulomb
energy, electron-electron Coulomb energy including ex-
change, kinetic energy, and entropic energy). Also shown
are the total energy and free energy, with the difference of
these two being the entropic energy. Again, the nuclear-
nuclear repulsion energy is included in these two plots.
It has values of 9.118, 7.598, 5.699, 4.559 hartree for L =
5, 6, 8, 10 bohr, respectively. The energies are shown
as a function of temperature 0 ≤ T ≤ 250kK for four
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FIG. 9: (a) Single H atom total energy, E = FFTHF + TSFTHF , and (b) free energy, FFTHF as a function of cube edge L,
with the one-electron levels populated according to the Fermi distribution.
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cube sizes, L = 5, 6, 8, and 10 bohr. The compara-
tively flat plateau up to roughly T = 15 kK is a direct
consequence of Fermi-Dirac level filling. Up to about 25
kK, the interval between the highest occupied molecular
orbital (HOMO) at zero temperature and the lowest un-
occupied molecular orbital (LUMO) is roughly constant
at 0.5 hartree. Therefore the filling ratio of those two is
roughly exp(−13/1.3) ≈ 5× 10−5 or smaller up to about
T = 15kK. We return to this matter below.

C. Comparison with approximate functionals

Orbital-free treatment of WDM has been dominated,
not surprisingly, by local density approximations for both
the KE and exchange contributions to the free energy.
For the KE, the choice is physically motivated by the fact
that the high-pressure and/or high-temperature limit for
a WDM system is Thomas-Fermi. This leads to finite-
temperature Thomas-Fermi (FTTF)75 T0 =

∫

τ0 dr by
itself, or with some fraction of von Weizsäcker contribu-
tion (in its zero-temperature form) TW =

∫

τW dr, with

τ0 =

√
2

π2β5/2
I3/2(βµ) (10)

n =

√
2

π2β3/2
I1/2(βµ) (11)

τW =
|∇n|2
8n

(12)

where the I are Fermi integrals. Note a parametrized
form26 may be used to eliminate µ between τ0 and n.
In Fig. 13 we compare the FTHF KE as a function of

T with the FTTF KE alone and with it supplemented by
both the full TW and (1/9)TW for L = 6 bohr. The latter
three functionals were evaluated with the FTHF density,
hence are non-self-consistent. As is known at T = 0, pure
Thomas-Fermi underestimates the KE while addition of
the full TW overestimates it. None of the three is close to
quantitative agreement with TFTHF . Moreover, FTTF
and FTTF augmented with (1/9)TW can be ruled out
from the T = 0 K comparison, since the exact (fully cor-
related) KE must be above TFTHF (from a virial theorem
argument).
For the exchange contribution to the free energy, the

use of ground-state functionals is common (recall In-
troduction), with the LDA being dominant. Fig. 14
shows the FTHF exchange contribution to the free en-
ergy Fx,FTHF in comparison with the exchange free-
energy generated by ground-state LDA functional and
with the Perrot and Dharma-wardana parametrization
for the temperature-dependent LDA functional28. Again,
this is for the cubic symmetry, eight-H system at L = 6
bohr. The other functionals are evaluated with the
FTHF density. (Note that such “post-scf” evaluation is
fairly common in assessment of newly developed ground
state functionals. See, for example, Ref. 76.) Here one
sees a marked difference: the ground-state functional fails
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FIG. 13: FTHF kinetic energy compared with finite-
temperature Thomas-Fermi KE and two forms of von
Weizsäcker augmentation of FTTF for the 8-H cubic system
at L = 6 bohr. See text for details.
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(8-H cubic system, L = 6 bohr). See text for details.

completely while the temperature-dependent functional
has at least semi-quantitatively correct temperature de-
pendence.

We may also make some semi-quantitative compari-
son with a more widely used model for extended systems
at substantial T. In Fig. 15 we show the internal en-
ergy per atom of the eight hydrogen atoms in the cubic
symmetry arrangement at L = 7 bohr (corresponds to
average rs = 2.17), with that of the average atom DFT
calculation of Dharma-wardana and Perrot78 at rs = 2,
with (4π/3)r3s = L3/8. Their system includes DFT ex-
change and correlation whereas we have pure Hartree-
Fock exchange. Additional energy differnces are due to
the different boundary conditions. Decomposing the near
parallel temperature dependence into those components,
however, is a task outside the scope of the present work.
We can see one aspect immediately. Though the kinetic
energy is the major contributor to the change in total
energy as a function of temperature (recall Fig. 12), the
change due to electron-electron interaction, including ex-
change, is at least a third that of the kinetic energy.
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IV. DISCUSSION AND CONCLUSIONS

Comparison, evaluation, and betterment of function-
als for WDM simulations is the long-term motive of this
work. As just shown, even at this initial state of develop-
ment (Hartree-Fock, small particle number, no molecu-
lar dynamics), the approach gives insight regarding that
task. There are some specific issues worth discussion also.

A. One-particle spectrum effects

It is well known that zero-temperature HF calcula-
tions over-estimate both band gaps in solids and the
so-called HOMO-LUMO (highest occupied and lowest
unoccupied molecular orbital respectively) gaps of finite
systems. This occurs because the occupied HF orbitals
are free of self-interaction, but the unoccupied ones are
not. As temperature increases in the FTHF scheme, how-
ever, levels unoccupied at T = 0 K become increasingly
occupied and shifted. In the self-consistent solution of
the HF problem in a basis, those levels then contribute
to the Hamiltonian matrix (“Fock matrix” in quantum
chemistry terminology). Thus there are two questions
to address. What is the extent to which FTHF ex-
hibits HOMO-LUMO gap over-estimation similar to that
of ground-state HF? At what fractional occupancy is an
energy level changed from an overestimated virtual to a
more properly estimated partially occupied one?
For specificity, we consider the eigenspectrum of a sin-

gle, moderately compressed eight-atom cube with L = 6
bohr. Figure 16 shows the Fermi distribution of the
single-particle energies for four temperatures. The con-
tinuous curves in Fig. 16 show the Fermi function with
calculated chemical potential µ. The discrete points
mark the input energies to the calculation of µ. Note
that these distributions are for one spin. Also keep in
mind that the cubical symmetry causes the lowest four
one-electron orbitals to group as singly degenerate and
triply degenerate (a1g, t1u in crystal field notation). At
zero temperature therefore, only two points are shown
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FIG. 16: Fermi distribution for eight H atoms in a box, L = 6
bohr. Points may represent more than one state due to energy
degeneracies.

with unit occupancy, but the higher energy point corre-
sponds to three degenerate HOMO states (indexed as 2,
3, 4). The LUMO is the degenerate states 5, 6, and 7,
with the singly degenerate state 8 above them (again as
would be expected from a cubical crystal field). For sim-
plicity of discussion, the HOMO and LUMO (at T = 0)
are labeled ε4 and ε5 respectively. One can see that the
spacing between ε4 and ε5 decreases with temperature.
This difference is shown directly in Fig. 17 along with the
occupation number for the ε5 level. Then in Fig. 18, µ
is plotted as a function of T. Observe that the chemical
potential is nearly mid-way between ε4 and ε5 up to just
below 50 kK. This behavior is exact at zero temperature.
Those total energy and eigenspectrum results together

resolve the matter of the behavior of what would be vir-
tual states at zero temperature in FTHF. First, exami-
nation of the kinetic and total energy plots for all box
sizes shows that there is a change in the form of the tem-
perature dependence at roughly 20 kK. That change is
complemented by the change in the spacing between the
ε4 and ε5 levels. They are essentially static for lower
temperatures, then begin to change abruptly well below
50 kK, and then change more moderately at higher tem-
peratures. Thus, above 50 kK, states corresponding to
zero-temperature virtuals are sufficiently incorporated in
the interaction terms to make a material modification
of T = 0 behavior. However, as the temperature is de-
creased below roughly 50 kK, the FTHF Coulomb and
exchange terms increasingly are dominated by the T = 0
occupied levels, which therefore keeps the lightly occu-
pied higher energy levels artificially high. This is not
a basis issue, but an issue with discrete eigenstates. In
a solid such as jellium or a metal with a continuum of
states, this should not be an issue, but for a system with
energy gaps the issue remains.

B. Other findings and considerations

The preceding discussion about depopulation and re-
population of levels relative to the ground-state HF
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HOMO-LUMO gap illustrates a broader challenge for
the construction of approximate functionals for the vari-
ous contributions to the free energy. Whether explicit or
implicit, such approximate functionals correspond to re-
stricting the required traces to specific classes (or sub-sets
of classes) of state functions. The consequence of such a
restriction is to incorportate the spectral properties of
that class into the approximate functionals. For exam-
ple, in FTHF that class is single Slater determinants con-
structed with respect to ground-state HF minimization.
Although we have not attempted its construction here,
in principle there is an FTHF free-energy functional. It
would have exactly the same problem with a plateau in
its T-dependence as we have found here.

The small number of particles is another issue. For
sufficiently large numbers, all standard ensembles (grand
canonical, canonical, micro-canonical) give the same
thermodynamics. Fluctuations characteristic of small
particle counts can degrade that relationship. The main
issue regarding particle count is computational cost. The
problem is endemic to many computational studies, es-
pecially when a large temperature and pressure domain
such as characterizes WDM is involved; see, for only one
example, Ref. 77. At the least, we have an even-handed
comparison of different methods (e.g., the comparison of

functionals given above) for a given number of electrons
and of ions.

Clearly we have shown that the tGTO basis is feasi-
ble and effective. As is typical of GTO basis methods,
the computational cost is essentially entirely in the cpu
time for the calculation of the two-electron integrals. The
eight-atom systems described are calculated with 64 or
80 total basis functions, making diagonalization trivial.
A simple double array of all N4 two-electron integrals
only occupies 128 or 312.5 MB respectively, storable in
memory. In practice, we calculated N4/λ integrals, with
λ =7.60, 7.68 and not 8 due to the looping procedure we
used. While for the cubic system discussed here, this cal-
culation requirement could have been reduced further by
exploiting symmetry, we need the capability to explore
other, lower symmetry geometries. Note however that
if the box size or the atomic positions are changed, all
integrals affected by the change must be recalculated.

On a modern desktop processor (Intel Core i5 650 at
3.2 Ghz) one two-electron integral can be calculated in
about 29.1 ms. So the times to calculate all integrals
for a 64- or 80-orbital basis would be 17.84 hr and 43.13
hr. The integrals are calculated independently, so can
be parallelized effectively. Calculations reported in this
work were done on the University of Florida High Per-
formance Computing Center Linux clusters.

Though these are quite acceptable costs for fixed ge-
ometries and small numbers of ions and electrons, the
burden becomes formidable for direct application in
Born-Oppenheimer molecular dynamics. We are cur-
rently working on ways to ameliorate that problem.
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Appendix A: Correction for Piecewise Integrals for

the Basis Functions

From the definition of the basis functions in Eqs. (7)
and (8), it follows that derivatives of the basis function
may not be continuous at xc, the center of the func-
tion. A discontinuity of the second derivative would, of
course, be significant for the kinetic energy. The issue is
whether the kinetic energy matrix elements can be eval-
uated piecewise, as is the case with the overlap, nuclear-
electron, and electron-electron integrals. We may exam-
ine this issue by writing the basis formally with Heaviside
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functions, as follows:

ϕ = [θ(x) − θ(x− x1)]ϕ0 + [θ(x − x1)− θ(x − L)]ϕL

(A1)
For the tGTO basis, the identification from Eq. 8 is

ϕ0 = a0 (g
n(x) − δ0)

ϕL = aL (gn(x)− δL)

gn(x) = (x − x1)
ne−α(x−x1)

2

, x1 = xc (A2)

The derivatives are

∂ϕ

∂x
= [δ(x) − δ(x− x1)]ϕ0 + [θ(x) − θ(x− x1)]ϕ

′

0

+ [δ(x− x1)− δ(x− L)]ϕL

+ [θ(x− x1)− θ(x− L)]ϕ′

L (A3)

and

∂2ϕ

∂x2
= [δ′(x) − δ′(x− x1)]ϕ0 + 2 [δ(x)− δ(x − x1)]ϕ

′

0

+ [θ(x)− θ(x − x1)]ϕ
′′

0

+ [δ′(x− x1)− δ′(x− L)]ϕL

+ 2 [δ(x− x1)− δ(x− L)]ϕ′

L

+ [θ(x− x1)− θ(x− L)]ϕ′′

L (A4)

Now consider a generic kinetic energy matrix element
involving the foregoing function and another, similar ba-
sis function χ with left and right constituents χ0, χL,
centered at x2. Without loss of generality, take x1 < x2.

Then

∫ L

0

χ
∂2ϕ

∂x2
dx := IA + IB (A5)

The terms of the second derivative with the Heaviside
functions contribute just the piecewise integration IA,
while the delta function and first derivative delta function
terms contribute IB. Of the terms in Eq. A4 only those
at x1 contribute, as the constituents χ0, χL, ϕ0, and ϕL

go to zero at x = 0 and x = L. Thus

IB =

∫

χ0 [δ
′(x− x1) (ϕL − ϕ0)

+2δ(x− x1) (ϕ
′

L − ϕ′

0)] dx . (A6)

From the definition of δ′ this expression becomes

IB =

∫

χ0 [−δ(x− x1) (ϕ
′

L − ϕ′

0)

+2δ(x− x1) (ϕ
′

L − ϕ′

0)]− χ′

0δ(x − x1) (ϕL − ϕ0) dx
(A7)

which reduces to

IB = [χ0 (ϕ
′

L − ϕ′

0)− χ′

0 (ϕL − ϕ0)]

∣

∣

∣

∣

x=x1

(A8)

For the case of x1 = x2, that is, for diagonal terms or
functions that have the same center, χ′

0 must be replaced
in Eq. (A7) by the analog of Eq. (A3), with the result

IB = χ0 (ϕ
′

L − ϕ′

0)

∣

∣

∣

∣

x=x1

−
∫

δ(x− x1) (ϕL − ϕ0) [[δ(x) − δ(x− x1)]χ0 + [θ(x) − θ(x− x1)]χ
′

0

+ [δ(x − x1)− δ(x− L)]χL + [θ(x − x1)− θ(x − L)]χ′

L] dx (A9)

Note χ0 in the first term follows because the func-
tions themselves are continuous,while the first and second
derivatives may not be. For the same reason, it follows
that the remaining integral in Eq. (A9) and the second
term of Eq. (A8) vanish. Thus so long as the functions
are continuous, the correction to the piecewise kinetic
energy integral is simply

IB = χ(ϕ′

L − ϕ′

0)

∣

∣

∣

∣

x=x1

(A10)

and so long as the first derivative is continuous, this re-
duces to zero.

With continuity of the basis functions enforced by con-
struction, only the first derivative needs to be examined
for a possible correction to simple piecewise integration.

For the basis defined in Eqs. (8), those corrections are

g0(x) = e−α(x−x1)
2

IB = 0

g1(x) = (x− x1)e
−α(x−x1)

2

IB = χ(aL − a0)

g2(x) = (x− x1)
2e−α(x−x1)

2

IB = 0 (A11)

Basis functions gn(x) with higher powers of the prefactor
(x − x1) all have continuous first and second derivatives
at x1. In fact, those derivatives are all zero. So only the
p-type basis functions, (n = 1), have a kinetic energy ma-
trix element contribution beyond that given by piecewise
integration.
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Appendix B: Finite-Range Gaussian Integrals

Following the methods of Boys69–73, we use the trans-
form of the Coulomb potential to separate the Coulomb
integrals into one-dimensional Cartesian pieces:

1

|r−RN| =
1√
π

∫

∞

−∞

e−s2(r−RN)2ds

=
1√
π

∫

∞

−∞

e−s2(x−XN )2e−s2(y−YN )2e−s2(z−ZN )2ds .

(B1)

Hence all Coulomb integrals require integration over the
transform variable s, which is done by Gauss-Laguerre
quadrature.
For 1D primitive tGTOs, we note the required finite

range (a, b) integrals are of the form

In =

∫ b

a

xne−α(x−xc)
2

dx (B2)

This simply transforms to

In =

∫ b−xc

a−xc

(x′ + xc)
ne−αx′2

dx′ (B3)

This result leaves us needing to compute

Jn =

∫ b′

a′

xne−αx2

dx (B4)

Integrating by parts we find

Jn = −xn−1 e
−αx2

2α

∣

∣

∣

∣

b′

a′

+
n− 1

2α
Jn−2 (B5)

So with the initial two integrals, we may find the higher-
order integrals by recursion:

J0 =

∫ b′

a′

e−αx2

dx =

√
π

2
√
α
erf

(√
αx

)

∣

∣

∣

∣

b′

a′

(B6)

J1 =

∫ b′

a′

xe−αx2

dx = −e−αx2

2α

∣

∣

∣

∣

b′

a′

(B7)

All two-center (overlap, nuclear-electron, kinetic) inte-
grals reduce to expressions in terms of In. After two ap-
plications of the Gaussian product rule, four-center (two-
electron) integrals reduce to terms of the form

∫ b2

a2

∫ b1

a1

xn
1x

m
2 e−α1(x1−xi)

2

e−α2(x2−xj)
2

e−s2(x1−x2)
2

dx1dx2

(B8)
Two further applications of the product rule bring us to
the form

∫ b2

a2

∫ b1

a1

xn
1x

m
2 e−κ1(x1−R1(x2))

2

e−κ2(x2−R2)
2

dx1dx2

(B9)

Here the integral over x1 may be evaluated as In, so we
are left with

∫ b2

a2

In(x2)

∣

∣

∣

∣

x1=b1

x1=a1

xm
2 e−κ2(x2−R2)

2

dx2 (B10)

which we evaluate by Gauss-Legendre quadrature.
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A, W. Greiner and H. Stöcker eds., NATO ASI B216

(Plenum, NY, 1989) pp. 521ff.
25 H. Eschrig, Phys. Rev. B 82, 205120 (2010).
26 F. Perrot, Phys. Rev. A 20, 586 (1979).
27 U. Gupta and A.K. Rajagopal, Phys. Rev. A 21, 2064

(1980).
28 F. Perrot and M.W.C. Dharma-wardana, Phys. Rev. A 30,

2619 (1984).
29 Shigenori Tanaka, Shinichi Mitake, and Setsuo Ichimaru,

Phys. Rev. A 32, 1896 (1985).
30 D.G. Kanhere, P.V. Panat, A.K. Rajagopal, and J. Call-

away, Phys. Rev. A 33, 490 (1986).
31 R.G. Dandrea, N.W. Ashcroft, and A.E. Carlsson, Phys.

Rev. B 34, 2097 (1986).
32 W. Stolzmann and M. Rösler, Contrib. Plasma Phys. 27,

347 (1987).
33 K. Yonei, J. Ozaki, and Y. Tomashima, J. Phys. Soc. Jpn.

56, 2697 (1987).
34 J. Clérouin, E.L. Pollock, and G. Zerah, Phys. Rev. A 46,

5130 (1992).
35 D.J.W. Geldart, E. Dunlap, M.L. Glasser, and M.R.A.

Shegelski, Sol. State Commun. 88, 81 (1993).
36 F. Perrot, J. Phys. Cond. Matt.: 6 432 (1994).
37 J.I. Penman, J.G. Clérouin, and P.G. Zerah, Phys. Rev. E

51, R5224 (1995).
38 F. Perrot and M.W.C. Dharma-wardana, Phys. Rev. B 62

16536 (2000).
39 M.W.C. Dharma-wardana and F. Perrot, Phys. Rev. Lett.

90, 136601 (2003).
40 F. Lambert, J. Clérouin, and S. Mazevet, Europhys. Lett.

75, 681 (2006).
41 F. Lambert , J. Clérouin, S. Mazevet, and D. Gilles, Con-

trib. Plasma Phys. 47, 272 (2007).
42 B. Ritchie, Phys. Rev. B 75, 052101 (2007).
43 V.V. Karasiev, R.S. Jones, S.B. Trickey, and F.E. Harris,

Phys. Rev. B 80, 245120 (2009) and refs. therein.
44 L.M. Ghiringhelli, I.P. Hamilton, and L. Delle Site, J.

Chem. Phys. 132, 014106 (2010).
45 C. Huang and E.A. Carter, Phys. Rev. B 81, 045206 (2010)

and refs. therein.
46 L. Hung, C. Huang, I. Shin, G.S. Ho, V.L. Lignères, and

E.A. Carter, Comput. Phys. Commun. 181, 2208 (2010)
and refs. therein.

47 D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566
(1980).

48 C.J. Umrigar, A. Savin, and X. Gonze in Electronic Den-

sity Functional Theory: Recent Progress and New Direc-

tions, J.F. Dobson, G. Vignale, and M.P. Das (Plenum
NY, 1998) 167-176.

49 Introduction to Computational Chemistry, F. Jensen (Wi-
ley, NY, 2008).

50 Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory, A. Szabo and N.S. Ostlund
(McGraw-Hill, Toroynto, 1989).

51 R.J. Bartlett and M. Musia l, Rev. Mod. Phys. 79, 291
(2007).

52 T. Koopmans, Physica 1, 104 (1934).
53 A. Görling and M. Ernzerhof, Phys. Rev. A 51, 4501

(1995).
54 N.D. Mermin, Annals Phys. (NY) 21, 99 (1963).
55 J. Sokoloff, Annals Phys. (NY) 45, 186 (1967).
56 J. Dolbeault, P. Felmer, and M. Lewin, Math. Models

Meths. Appl. Sciences 19, 347 (2009).
57 R. LeSar and D.R. Herschbach, J. Phys. Chem. 85, 2798

(1981).
58 T. Pang, Phys. Rev. A 49, 1709 (1994).
59 S.A. Cruz, J. Soullard, and E.G. Gamaly, Phys. Rev. A

60, 2207 (1999).



15
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