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We study aU(1)× U(1) system with two species of loops with mutualπ-statistics in (2+1) dimensions. We
are able to reformulate the model in a way that can be studied by Monte Carlo and we determine the phase
diagram. In addition to a phase with no loops, we find two phases with only one species of loop proliferated.
The model has a self-dual line, a segment of which separates these two phases. Everywhere on the segment,
we find the transition to be first-order, signifying that the two loop systems behave as immiscible fluids when
they are both trying to condense. Moving further along the self-dual line, we find a phase where both loops
proliferate, but they are only of even strength, and therefore avoid the statistical interactions. We study another
model which does not have this phase, and also find first-orderbehavior on the self-dual segment.

I. INTRODUCTION

Systems with statistical interactions between particles arise
in many contexts. For example, Laughlin quasi-particles
in the fractional Quantum Hall Effect have mutual statistics
which depends on the particular state.1 As another example,
spinon and vison excitations inZ2 fractionalized phases in
quantum magnets have mutualπ statistics.2–4

While gapped topological phases are well understood, the
phase transitions between them are less explored. One reason
is that the character of the transitions is a dynamical question,
while in cases with statistical interactions, the system path in-
tegral contains generally complex phases and hence has sign
problem in direct Monte Carlo (MC) approaches.

References 5 and 6 considered the toric code model, which
can be also viewed as an Ising gauge theory with Ising matter
fields.7 In a formulation containing Ising matter andZ2 fluxes
(visons) as elementary particles, the two haveπ-statistical in-
teraction, and one cannot simulate large systems in these de-
grees of freedom. On the other hand, the matter-gauge field
formulation does not have the sign problem and was studied
in detail in MC.6 This system has two phases:7 deconfined and
confined. The confined phase includes both the Higgs regime
(crudely viewed as condensation of matter out of the decon-
fined phase) and confining regime (viewed as condensation of
visons), and there is a path connecting the two regimes that
does not cross any phase transitions. Resembling somewhat
liquid-gas system, there is also a finite segment of first-order
transitions separating the two regimes along the so-calledself-
dual line, where theZ2 charges andZ2 vortices have identical
interactions. We can think of the two species as being im-
miscible on the first-order segment. Reference 6 focused on
the transition near the tip of the deconfined phase along the
self-dual line and possible scenarios how the Higgs and con-
finement transition lines join.

In this paper, we study aU(1)×U(1) system withπ statis-
tical interactions, which appears in effective field theories of
frustrated quantum antiferromagnets8–10 and other areas.11,12

We consider concrete lattice realizations that can be reformu-
lated in a sign-free manner and explore these using MC.

Specifically, we consider a system of two loops with short-

range interactions andθ = π statistics,

S =
∑

r

~J1(r)
2

2t1
+
∑

R

~J2(R)2

2t2
+ iθ

∑

r

~J1(r) · ~a2(r) . (1)

The indexr refers to sites on a cubic lattice (the “direct” lat-
tice), andR refers to sites on another, inter-penetrating cu-
bic lattice (the “dual” lattice)13. J1µ(r) is an integer-valued
current on a linkr, r + µ̂ of the direct cubic lattice,J2µ(R)
is integer-valued current on a linkR,R + µ̂ of the dual cu-
bic lattice. We use schematic vector notation so that~J1
and ~J2 represent these conserved integer-valued currents, and
~∇ · ~J1 = 0, ~∇ · ~J2 = 0. In the partition sum, a given current
configuration obtains a phaseeiπ for each cross-linking of the
two loop systems. This is realized in the last term of Eq. (1),
by including an auxiliary “gauge field”~a2, defined on the di-
rect lattice, whose flux encodes the~J2 currents,~J2 = ~∇×~a2.
Just like in theZ2 × Z2 case, we can reformulate the model
as a special matter-gauge system amenable to MC study.

Figure 1 is our main result and shows the phase diagram of
this model. For smallt1 and t2, there are only small loops
(phase 0 in the figure). If we fixt2 and increaset1, theJ2
loops remain small, while beyond some criticalt1 coupling,
J1 loops condense via an XY transition (phase I); we get
another phase (II) if we keept1 small and increaset2. For
t1 = t2, the model is symmetric underJ1 ↔ J2, and so
the model is self-dual on this line, similarly to the self-dual
line in the Ising matter plus Ising gauge theory viewed as two
species of Ising particles withπ-statistics mentioned earlier.
Unlike the Ising case, the two phases I and II are distinct, and
the following question arises. Suppose we are increasingt1
and t2 along the self-dual linet1 = t2 = t where the two
species have identical interactions, so both equally want to
proliferate at some point. One possibility is that they behave
as immiscible fluids and phase separate. Another possibility
is a regime where both loops are present in some critical soup,
which would be an example of an unusual phase transition.
Such a question is of much recent interest.8,14–32

In the present study we find that in the above specific model,
the first scenario happens and we have first-order transition
between phases I and II. Interestingly, if we continue increas-
ing t1 andt2, the two loops eventually condense simultane-
ously but only in even strength for bothJ1 andJ2, while there
are no large loops of odd strength for either species. By go-
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ing into this “paired-J1” and “paired-J2” phase (labelled III
in Fig. 1), the loops avoid the destructive interference effects
of the statistical interaction – intuitively, because the second
term of Eq. (1) provides a contribution to the partition func-
tion of exp[iπ × (even number)] = 1.

Returning to the transition line I-II, the first-order transition
is strongest near the two ends of the segment where respec-
tively phase 0 or III opens up. We also explore what happens
when we modify the model to eliminate phase III, which we
realize by simply restricting|J1| ≤ 1, |J2| ≤ 1, thus prevent-
ing pairing within each species. The strength of the first-order
character indeed decreases as we increaset, but for all such
accessible values the transition remains first order.

II. MODEL AND MONTE CARLO METHOD

In order to reformulate Eq. (1) in a sign-free way, we pass
fromJ1 variables to conjugate 2π-periodic phase variables by
formally writing the constraint at eachr:

δ[~∇ · ~J1(r) = 0] =

∫ π

−π

dφr exp[−iφr(~∇ · ~J1)]. (2)

To be precise in our system with periodic boundary condi-
tions, we also require total currents ofJ1 andJ2 to vanish.
In this case we can write~J2 = ~∇ × ~a2 and the action (1) is
independent of the gauge choice fora2. We enforce the zero
current inJ1 with the help of fluctuating boundary conditions
for theφ-s across a single cut for each directionµ = x, y, z

δ(
∑

r

J1µ(r)δrµ,0) =

∫ π

−π

dγµ exp[−iγµ
∑

r

J1µ(r)δrµ,0].

(3)
This gives the following partition function:

Z =
∑

constrained ~J2

∫ π

−π

∏

r

dφr

∫ π

−π

3
∏

µ=1

dγµe
−S[φ,γ,a2] (4)

where the action is given by:

S[φ, γ, a2]=
∑

r

[~∇× ~a2(r)]
2

2t2
(5)

+
∑

r,µ

VVillain[φr+µ − φr − θa2µ(r) − γµδrµ,0]

VVillain is the ‘Villain potential’, which is obtained by sum-
ming over theJ1 variables:

exp[−VVillain(α, t1)] =
∞
∑

J1=−∞

exp

[

− J2
1

2t1
+ iJ1α

]

(6)

In the actual Monte Carlo, we useφr, γµǫ(−π, π),
a2µ(r)ǫZ, and perform unrestricted Metropolis updates. One
can show that physical properties measured in such a simula-
tion are precisely as in the above finitely defined model.
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FIG. 1. The phase diagram for the unrestricted model. Phase (0)
contains no loops. Phase (I) contains proliferated loops inJ1 and no
loops inJ2, while in phase (II) the variables are interchanged. Phase
(III) contains proliferated double-strength loops in bothvariables.

In this work, we monitor “internal energy per site”,ǫ =
S/L3, and compute heat capacity, defined as

C = (〈ǫ2〉 − 〈ǫ〉2)×Vol, (7)

where Vol=L3 is the volume of the system. To determine the
phase diagram, we monitor loop behavior by studying “super-
fluid stiffness”, which is defined for loops of flavora as:

ρµµa (q) =
1

Vol

〈∣

∣

∣

∣

∣

∑

r

Jaµ(r)e
i~q·~r

∣

∣

∣

∣

∣

2〉

. (8)

Because of the vanishing total current, we define these at the
smallest non-zeroq; e.g., forρxx we used~q = (0, 2π

L
, 0) and

~q = (0, 0, 2π
L
). We focus on flavor 2 since it is more readily

accessible in the formulation of (5). We also monitor gauge-
invariant “magnetization”, defined as:M =

∑

r e
2iφr , which

can detect flavor 1 condensates (care is needed interpretingM
for different boundary conditions).

III. RESULTS FOR UNRESTRICTED CURRENTS

We determined the phases of this model by looking at the
order parametersρ2 andM . ρ2 is non-zero in phases (II) and
(III), andM is non-zero in phases (I) and (III). We found the
locations of the phase boundaries more accurately by study-
ing ρ2 · L crossings. We took data in sweeps across the phase
diagram (see Fig. 1), and defined the intersection of theρ2 ·L
curves to be the location of the phase transition. An example
of such a sweep is shown in Fig. 3. The sweep is ‘vertical’
in the phase diagram, i.e. fixedt1. The symbols on the phase
diagram are the values oft1 at which the sweeps were per-
formed. We studied the fine nature of the phases by looking
at clusters formed byJ2 loops. In phase (II), the largest clus-
ters ofJ2 grow with system size, and have arbitraryJ2, so we
deduced that this phase contains condensed loops ofJ2. In
phase (III), the loops that scale with system size have evenJ2,
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FIG. 2. Plot of the energy difference between the peaks of thehis-
tograms, as a function oft1 = t2 = t on the self-dual line. Higher
values denote a stronger first-order nature. The inset showsthe en-
ergy histogram fort1 = t2 = 0.6. The dual-peaked shape of the
histogram implies a first-order transition. The histogramswere per-
formed atL = 24 with 106 Monte Carlo sweeps. The heat capacity
intercepts were found using data fromL = 8, 10, 12, 14 and16.

so we judged that the condensed loops have even strength. In
phases (0) and (I), we found no large clusters, and deduced
that J2 is gapped. The model witht1 = 0 is a model con-
taining only one species of loop33. Our value for the position
of the (0)-(II) XY transition (t2 ≈ 0.333...) is in agreement
with prior work on this model34. For t1 → ∞, the Villain
weight (6) vanishes except forα = 2π× (int), which enforces
J2 = ~∇ × ~a2 = 2×(int). Therefore, at larget1 the (I)-(III)
transition is a transition from no loops ofJ2 to loops of even
J2. One expects that this transition is XY-like, and similar to
the (0)-(II) transition, but due to doubledJ2, it should occur
at at2 value four times higher. We observed the (I)-(III) tran-
sition to occur att2 ≈ 1.3 for larget1, in agreement with this
expectation.

To determine whether the loops are immiscible, or if a crit-
ical state is possible, we consider whether the phase transition
(I)-(II) on the self-dual line is first- or second-order. We stud-
ied this by looking at histograms ofǫ. In the continuous case,
these histograms would be singly-peaked, while in the first-
order case we expect to see two distinct peaks. An example of
such a histogram is shown in the inset for Fig. 2. We observed
dual-peaked histograms for all points on the self-dual line.
Therefore, we concluded that the transition is first-order.One
way to quantify the strength of the transition is to look at the
distance between the two peaks in these histograms. We plot-
ted this peak-to-peak distance in Fig. 2, which is clearly non-
zero for allt. Though this estimate of peak-to-peak distance
comes fromL = 24, we have produced similar histograms
for different sizes and found no noticeable dependence of the
peak-to-peak distance on system size.

We can also determine the order of the transition by look-
ing at the heat capacity, where the signature of first-order is
C growing asL3. Phenomenologically35, at a first-order tran-
sition the energy distribution is described by a sum of two
normal distributions,P (ǫ) = c+p+ + c−p−, wherec+ and
c− are the weights representing how much time the system
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FIG. 3. ρ2(qmin) · L as a function oft2 at t1 = 1.2. Based on this
data, we conclude that the phase transition occurs at approximately
t2 = 1.168, and is second order in nature. Scans like this were used
to determine the phase diagram in Fig. 1. Here the transitionis be-
tween (I) and (III). Each data point is the result of5 × 106 Monte
Carlo sweeps. Error bars were determined by looking at the differ-
ence between runs with different initial conditions.

spends in each state, andp+ andp− are two normal distribu-
tions centered atǫ+ andǫ−. Computing heat capacity based
on this ansatz gives:

C

Vol
= c+c−(ǫ+ − ǫ−)

2 +
B

Vol
= A+

B

Vol
, (9)

whereǫ+−ǫ− is the peak-to-peak distance, andB is a volume-
independent constant. We plottedCVol vs. 1

Vol and found the
y-intercepts of these plots, which should be equal toA. If we
assume thatc+ = c− = 0.5 as a rough estimate, then the
energy gap should be equal to2

√
A. The resulting estimate

from heat capacity is plotted in Fig. 2. It agrees well with our
estimates from gaps in the energy histograms, which gives us
confidence when we apply this phenomenological method to
the restricted model. Both of our measurements of the energy
gap show that the transition is strongly first-order att = 0.4.
The strength of the transition initially decreases with increas-
ing t, before increasing again aftert ≈ 0.6. Thus, in this
model the two condensates are immiscible.

In addition to finding the position of the phase boundaries,
plots ofρ2 · L like the one in Fig. 3 can be used to study the
nature of the (I)-(III) phase transition. We can argue that at
high t1, the phase transition is continuous. We are interested
in whether the nature of the transition changes to first order
before it meets up with the transition on the self-dual line.
In a first-order transition, we expect the values of theρ2 · L
crossings to increase withL. We do not observe this in Fig. 3,
or plots at othert1. We therefore suspect that the transition is
second-order, though our data is not precise enough to rule out
a weak first-order transition. We also obtained histograms of
the energy and magnetization at the phase transition located
by theρ2 · L plots. We found no evidence of two peaks at
L = 16, 20. Since we do not know the critical point exactly,
it is difficult to study such histograms at larger sizes, so once
again the data indicates a second-order transition but cannot
rule out a weak first-order one.
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FIG. 4. The phase diagram of the ‘restricted’ model. The region
with +45◦ lines is inaccessible in the formulation (5), and the cross-
hatched region is inaccessible in this work. The transitionis first
order everywhere on the accessible portion on the self-dualline, but
the strength decreases ast is increased.

IV. RESULTS FOR THE MODEL WITH RESTRICTED
CURRENTS

From Fig. 2, we have seen that the first-order character of
the phase transition on the self-dual line is strongest where
it meets phases (0) and (III). Therefore we might expect the
transition to be more weakly first-order if we could eliminate
phase (III). This is the reasoning behind the restricted model,
where we only allow loops with|J1| ≤ 1, |J2| ≤ 1. This
has been done in the Monte Carlo by only changinga2 if the
resulting curl satisfies the restrictions, and by restricting the
sum in Eq. (6) to run only over the values−1, 0, 1.

Figure 4 shows the phase diagram for this modified system,
which was determined using the same methods as Fig. 1. The
boundaries of phase (0) are very similar to the unrestricted
model, which is not surprising as at the (0)-(I) transition the
proliferating loops are mostly of strength 1. Referring to the
Villain potential (6), we see that if the sum on the right side
is negative, the potential is undefined. When the sum is re-
stricted to|J1| ≤ 1, this occurs fort1 & 0.72135, and this
limits the area of the phase diagram that we can study with
this formulation. Upon using interchange symmetry, Fig. 4
contains a region inaccessible in this work, indicated by cross-
hatching.

We now investigate whether removing phase (III) has
changed the nature of the transition on the self-dual line. We
used energy histograms and studies of the heat capacity to de-
termine the peak-to-peak distance. The heat capacity suggests
a first-order transition, as shown in Fig. 5. For completeness,
we have also shown the original data which this figure is based
on, in Fig. 6. Fort = 0.6, 0.7, the energy gaps were too small
to be accurately determined by studying the histograms. The
histogram fort = 0.7 is shown in the inset to Fig. 5. We can-
not resolve two separate peaks, but the distribution has a flat
top, which suggests that the transition is weakly first-order.
In order to acquire more clearly two-peaked histograms, we
studied the magnetization of the system. We found the peaks
in these to be more easily distinguished, and the results clearly
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FIG. 5. Same as figure 2, but for the restricted model. The estimates
from the heat capacity come from the y-intercepts in Fig. 6.
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indicate a first-order transition.

V. DISCUSSION

We studied a lattice realization of aU(1) × U(1) system
with π-statistical interactions. It was helpful to know the loca-
tion of the phase transition between I and II from self-duality
in this non-trivial 3D Statistical Mechanics problem. In two
somewhat different models, we found first-order transitions
on the self-dual line, which means that when both loops are
trying to condense, they tend to phase-separate. A continu-
ous transition would be an example of an NCCP1 U(1) self-
dual critical point8. We found in the restricted model that
the first-order transition became weaker ast was increased,
but we could not study the model fort higher than a certain
value. If one could find a way to study the model at hight, it
would be interesting to see if the first-order transition contin-
ues to weaken and perhaps becomes second-order. One could
also explore more models asking if some short-range modifi-
cations can produce a critical loop state. There is evidencefor
a continuous transition inSU(2) spin models,16,17,26,27but our
system has no analog to these.
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Our study is an example of a sign-free reformulation of a
model with statistical interactions and the power hence af-
forded by Monte Carlo to establish the phase diagrams and
study phase transitions.6,36Though we determined most of the
phase diagram in good detail, it may be useful to get a better
understanding of how the phase transitions join at the corners
of the (0) and (III) phases. It would also be interesting to ex-
plore more models with statistical interactions that can have
such reformulations. An accessible direction already in the
present setting is to examine the model Eq. (5) with general
statistical angleθ. Another interesting direction is to intro-
duce some attraction between the two loop species, to see if
we can achieve fermionic bound states ofJ1 andJ2 and what
phases can be accessed in this way.
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