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We study aJ (1) x U(1) system with two species of loops with mutuaktatistics in (2+1) dimensions. We
are able to reformulate the model in a way that can be studieldnte Carlo and we determine the phase
diagram. In addition to a phase with no loops, we find two phagéh only one species of loop proliferated.
The model has a self-dual line, a segment of which separaése two phases. Everywhere on the segment,
we find the transition to be first-order, signifying that thetloop systems behave as immiscible fluids when
they are both trying to condense. Moving further along tHédel line, we find a phase where both loops
proliferate, but they are only of even strength, and theeséwoid the statistical interactions. We study another
model which does not have this phase, and also find first-treteavior on the self-dual segment.

I. INTRODUCTION range interactions amtl= 7 statistics,

i (r)? L(R)? R
Systems with statistical interactions between partictisga s=) 2, > 2y +i0y Ji(r) - dx(r) . (1)
in many contexts. For example, Laughlin quasi-particles " r "
in the fractional Quantum Hall Effect have mutual statsstic The indexr refers to sites on a cubic lattice (the “direct” lat-
which depends on the particular statds another example, tice), andR refers to sites on another, inter-penetrating cu-
spinon and vison excitations iff, fractionalized phases in bic lattice (the “dual” lattice}®. .J;,(r) is an integer-valued
guantum magnets have mutuastatistics™ current on a linkr, » + /i of the direct cubic lattice,»,, (R)

_ . is integer-valued current on a link, R + /i of the dual cu-

While gapped topological phases are well understood, th ic Iat?ice We use schematic v’ect;—r lﬁ]otation so tfiat

phase transitions between them are less explored. Onenreas > : : A
is that the character of the transitions is a dynamical duest %nd‘@ repre§en£these conserved integer-valued currents, and
while in cases with statistical interactions, the systethpa ¥ * /1 = 0,V - J> = 0. In the partition sum, a given current

tegral contains generally complex phases and hence has sigRnfiguration obtains a phas€ for each cross-linking of the
problem in direct Monte Carlo (MC) approaches. wo loop _systems. Thls |§ reallzeq m;he Ia§t term of Eq._ (1),
by including an auxiliary “gauge fieldd,, defined on the di-

References 5 and 6 considered the toric code model, whicfect lattice, whose flux encodes thgcurrents, /o = V x @o.

can be also viewed as an Ising gauge theory with Ising matteyust like in theZ, x Z, case, we can reformulate the model

fields/ In a formulation containing Ising matter aid fluxes a5 a special matter-gauge system amenable to MC studly.

(visons) as elementary particles, the two havetatistical in- Figure 1 is our main result and shows the phase diagram of

teraction, and one cannot simulate large systems in these dgis model. For smalt; andt,, there are only small loops

grees of_ freedom. On the other_hand, the matter-gauge fl_e@)hase 0 in the figure). If we fix, and increase;, the J,

formulation does not have the sign problem and was studiefoops remain small, while beyond some criti¢alcoupling,

in detail in MC? This system has two phasédeconflned and Ji |00ps condense via an XY transition (phase |)' we get

confined. The confined phase includes both the Higgs regimgnother phase (I1) if we keey small and increase,. For
(crudely viewed as condensation of matter out of the decony; — ¢, the model is symmetric undek, <« .J,, and so

fined phase) and confining regime (viewed as condensation @he model is self-dual on this line, similarly to the selfatiu
visons), and there is a path connecting the two regimes thahe in the Ising matter plus Ising gauge theory viewed as two
does not cross any phase transitions. Resembling somewhgecies of Ising particles with-statistics mentioned earlier.
liquid-gas system, there is also a finite segment of firseord ynlike the Ising case, the two phases | and Il are distinat, an
transitions separating the two regimes along the so-ca#ifd  the following question arises. Suppose we are increasing
dual line, where theZ; charges and, vortices have identical  and+, along the self-dual ling; = t, = t where the two
interactions. We can think of the two species as being imspecies have identical interactions, so both equally want t
miscible on the first-order segment. Reference 6 focused oproliferate at some point. One possibility is that they lveha
the transition near the tip of the deconfined phase along thgs immiscible fluids and phase separate. Another posgibilit
self-dual line and possible scenarios how the Higgs and cons a regime where both loops are present in some critical,soup
finement transition lines join. which would be an example of an unusual phase transition.
Such a question is of much recent interfe¥t.32

In the present study we find that in the above specific model,
the first scenario happens and we have first-order transition
between phases | and Il. Interestingly, if we continue iasre
ing t; andts, the two loops eventually condense simultane-
ously but only in even strength for both and.J2, while there
Specifically, we consider a system of two loops with short-are no large loops of odd strength for either species. By go-

In this paper, we study & (1) x U(1) system withr statis-
tical interactions, which appears in effective field thesrof
frustrated quantum antiferromagrfet§ and other areas:'?
We consider concrete lattice realizations that can be mafor
lated in a sign-free manner and explore these using MC.



ing into this “paireds/;” and “paired-J5” phase (labelled Il 18

in Fig. 1), the loops avoid the destructive interference@t 16|

of the statistical interaction — intuitively, because teeand ' (1

term of Eq. (1) provides a contribution to the partition func 141

tion of exp[im x (even numbert = 1. 12 1
Returning to the transition line I-11, the first-order tratiem 1t (D) 1

is strongest near the two ends of the segment where respec- <

tively phase 0 or Il opens up. We also explore what happens 08
when we modify the model to eliminate phase 11, which we 06T |
realize by simply restricting/;| < 1, |Jo| < 1, thus prevent- 04 [ (1 1
ing pairing within each species. The strength of the firsteor 0.2 (0) 1
character indeed decreases as we increalset for all such e
accessible values the transition remains first order. 0 02040608 1 12141618
]
FIG. 1. The phase diagram for the unrestricted model. PHse (
Il. MODEL AND MONTE CARLO METHOD contains no loops. Phase (I) contains proliferated loops iand no

loops inJz2, while in phase (Il) the variables are interchanged. Phase

In order to reformulate Eq. (1) in a sign-free way, we pass‘(III) contains proliferated double-strength loops in be#riables.

from J; variables to conjugaten2periodic phase variables by

formally writing the constraint at each . 0w o
In this work, we monitor “internal energy per site?, =

L ™ L S/L3, and compute heat capacity, defined as
5wumm=m:/ dé, expl-ig, (V- F). (@)
o C = ({e) = (%) x Vol, )

;I_-O be prec:se in-our si/sttelm with tpenodlcdl}mindary_ Cr?nd"where Vol=L3 is the volume of the system. To determine the
ions, we also require total currents gf and J; to vanish. phase diagram, we monitor loop behavior by studying “super-

In this case we can writd, = V x dy and the action (1) is  fjyiq stiffness”, which is defined for loops of flavaras:
independent of the gauge choice for We enforce the zero

current inJ; with the help of fluctuating boundary conditions 1 2
for the ¢-s across a single cut for each directjor- z, v, z P (q) = Vi <‘Z Ja#(r)eiw > _ 8)
5(2 J1(r)0r, 0) = [ﬁ dyy exp[~i7u Z J1(r)0r,, 0]- Because of the vanishing total current, we define these at the
" " 3) smallest non-zerg; e.g., forp™ we used; = (0, 2{7 0) and
This gives the following partition function: qd = (0,0, %”). We focus on flavor 2 since it is more readily

accessible in the formulation of (5). We also monitor gauge-
x 3 invariant “magnetization”, defined ad7 = ", ¢+, which
[1d¢- / I dvue #7221 (4)  candetectflavor 1 condensates (care is needed interpfeting
™ =T =1 for different boundary conditions).

s

Z= z:d[

constrained Jo

where the action is given by:
I11. RESULTSFOR UNRESTRICTED CURRENTS

[V x @a(r)]2

519,17, azl= Z 2to ©) We determined the phases of this model by looking at the
! order parameters, and M. p- is non-zero in phases (1) and
+ > Witlain[brt 1 — ¢r — 0ag,u(r) = 70r,, 0] (1), and M is non-zero in phases (I) and (l11). We found the

T locations of the phase boundaries more accurately by study-

ing p» - L crossings. We took data in sweeps across the phase
diagram (see Fig. 1), and defined the intersection opthd.
curves to be the location of the phase transition. An example
g2 of such a sweep is shown in Fig. 3. The sweep is ‘vertical’
exp|—Wiltain (o, t1)] = Z exp [_—1 + Z‘Jla} (6) inthe phase diagram, i.e. fixeég. The symbols on the phase
2t diagram are the values of at which the sweeps were per-
formed. We studied the fine nature of the phases by looking
In the actual Monte Carlo, we usé,, ~,e(—m, ), at clusters formed by, loops. In phase (I1), the largest clus-
as,(r)eZ, and perform unrestricted Metropolis updates. Oneters ofJ, grow with system size, and have arbitraky, so we
can show that physical properties measured in such a simulaeduced that this phase contains condensed loops.ofn
tion are precisely as in the above finitely defined model. phase (lll), the loops that scale with system size have dygn

Wilain IS the ‘Villain potential’, which is obtained by sum-
ming over theJ; variables:

oo

J1:—OO
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FIG. 2. Plot of the energy differer}ce between the peaks ohihie
tograms, as a function @f = ¢ = t on the self-dual line. Higher FIG. 3. p2(qmi») - L as a function of, att; = 1.2. Based on this
values denote a stronger first-order nature. The inset stievsn-  data, we conclude that the phase transition occurs at ajppatady
ergy histogram fott; = to = 0.6. The dual-peaked shape of the ¢, = 1.168, and is second order in nature. Scans like this were used
histogram implies a first-order transition. The histogramese per-  to determine the phase diagram in Fig. 1. Here the transisibe-
formed atZ = 24 with 10° Monte Carlo sweeps. The heat capacity tween (1) and (lll). Each data point is the resultfof 10° Monte
intercepts were found using data frdin= 8, 10, 12, 14 and 16. Carlo sweeps. Error bars were determined by looking at tfierdi
ence between runs with different initial conditions.

so we judged that the condensed loops have even strength. d8ends in each state, apd andp_ are two normal distribu-

phases (0) and (I), we found no large clusters, and deduceghns centered at, ande_. Computing heat capacity based
that J; is gapped. The model with = 0 is a model con- o, this ansatz gives:

taining only one species of loéb Our value for the position

of the (0)-(11) XY transition (> =~ 0.333...) is in agreement c B B
(0)-(1n) (2 ) g —:C+07(€+_6*)2+ﬂ:‘4+ﬂ’ 9)

with prior work on this modéf. Fort; — oo, the Villain Vol

Welght£6) \ian|shes gxcept far= 27 (int), which enforces Wwheree , —e_ is the peak-to-peak distance, alids a volume-

Jo =V x ay = 2x(int). Therefore, atlargé, the (I)-(IIl)  jnqependent constant. We plotteg; vs. <&, and found the

transition is a transition from no loops df to loops of even y-intercepts of these plots, which should be equaldf we
assume that, = c_ = 0.5 as a rough estimate, then the

J>. One expects that this transition is XY-like, and similar to
glea zEO)\;z(allll)J etzrg)nusrlttlicr):e’sbmgiﬁ t\cl)v gc())%ti:ﬁ%’eg ?hheOl(Jll)q(ﬁT)CtlrJ;n- energy gap should be equal ZQ/Z The resulting estimate
sitior12t0 occur at, ~ 1.3 for Ia.rget in agreement with this fror_n heat capacity is lplotted In Fig. 2 It agrees ngl Wlt.h o
expectation 2 : b estimates from gaps in the energy histograms, yvhlch gives us
" S ) ~ confidence when we apply this phenomenological method to
To determine whether the loops are immiscible, or if a crit-the restricted model. Both of our measurements of the energy
ical state is possible, we consider whether the phase i@msi gap show that the transition is strongly first-ordet at 0.4.
()-(IN on the self-dual line is first- or second-order. Wed-  The strength of the transition initially decreases with éas-
ied this by looking at histograms ef In the continuous case, ing ¢, before increasing again aftera 0.6. Thus, in this
these histograms would be singly-peaked, while in the firstmodel the two condensates are immiscible.
order case we expect to see two distinct peaks. An example of |n addition to finding the position of the phase boundaries,
such a histogram is shown in the inset for Fig. 2. We observeg|ots of p, - L like the one in Fig. 3 can be used to study the
dual-peaked histograms for all points on the self-dual.linenature of the (I)-(I1) phase transition. We can argue that a
Therefore, we concluded that the transition is first-or@81e  high¢,, the phase transition is continuous. We are interested
way to quantify the strength of the transition is to look & th jn whether the nature of the transition changes to first order
distance between the two peaks in these histograms. We plddefore it meets up with the transition on the self-dual line.
ted this peak-to-peak distance in Fig. 2, which is clearly-no |n 3 first-order transition, we expect the values of the L
zero for allz. Though this estimate of peak-to-peak distancecrossings to increase with. We do not observe this in Fig. 3,
comes fromL = 24, we have produced similar histograms or piots at othet;. We therefore suspect that the transition is
for different sizes and found no noticeable dependenceeof thsecond-order, though our data is not precise enough to utile o
peak-to-peak distance on system size. a weak first-order transition. We also obtained histografns o
We can also determine the order of the transition by lookthe energy and magnetization at the phase transition ldcate
ing at the heat capacity, where the signature of first-orsler iby the p, - L plots. We found no evidence of two peaks at
C growing asL®. Phenomenologicaly, at a first-order tran- L = 16, 20. Since we do not know the critical point exactly,
sition the energy distribution is described by a sum of twoit is difficult to study such histograms at larger sizes, soeon
normal distributionsP(¢) = ¢;p+ + c—p—, wherec,. and  again the data indicates a second-order transition butotann
c_ are the weights representing how much time the systermule out a weak first-order one.



\ 0.25

\ 02 i

s

7

i, o I =07

77 G oI5| L=32

SN 700000 - ‘

77 S 0.8 0.7

Yo S

77 2 o1p .3 Eneroy

PP w

7 ]

o000 0.05 | i

I,

22227 from Histograms ~—e—

70000 0 from Heat Capacity -4
08 1 0.4 05 06 07

t
. 1 . . FIG. 5. Same as figure 2, but for the restricted model. Thenastis

FIG. 4. The phase diagram of the ‘restricted’ model. Theaegi : ! . S

with +45° lines is inaccessible in the formulation (5), and the cross-from the heat capacity come from the y-intercepts in Fig. 6.

hatched region is inaccessible in this work. The transit®ofirst
order everywhere on the accessible portion on the selfichelbut 0.04
the strength decreasestds increased. 0.035 |

i

t:
t:
t:
t:

0.03

0.025

IV. RESULTSFOR THE MODEL WITH RESTRICTED
CURRENTS

0.02

cH®

0.015

From Fig. 2, we have seen that the first-order character of oo
the phase transition on the self-dual line is strongest &her 0005
it meets phases (0) and (Ill). Therefore we might expect the . : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
transition to be more weakly first-order if we could elimi@at O 00002 00008 00005 00008 0001 0012 0OUL4 00016 00018 0002
phase (lll). This is the reasoning behind the restricted ehod

where we only allow loops withJ;| < 1, |Jo| < 1. This 3 3 .
has been done in the Monte Carlo by only changindf the FIG. 6. O/L vs. 1/L° for the res.trlcl,ted moqel. The data shows
non-zero y-intercepts for afl, confirming the first-order nature of

resul_tlng curl satisfies the restrictions, and by restiggtine the transition on the self-dual line. The black lines arsteauares
sumin Eq. (6) to run only over the valued., 0, 1. fits to the data, and uncertanties come from comparing rutis wi

Figure 4 shows the phase diagram for this modified systenyifferent initial conditions
which was determined using the same methods as Fig. 1. The
boundaries of phase (0) are very similar to the unrestricted
model, which is not surprising as at the (0)-(I) transitibe t  indicate a first-order transition.
proliferating loops are mostly of strength 1. Referringhe t
Villain potential (6), we see that if the sum on the right side
is negative, the potential is undefined. When the sum is re-
stricted to|.J;| < 1, this occurs fort; 2 0.72135, and this
limits the area of the phase diagram that we can study with We studied a lattice realization of@(1) x U(1) system
this formulation. Upon using interchange symmetry, Fig. 4with 7-statistical interactions. It was helpful to know the loca-
contains a region inaccessible in this work, indicated logst  tion of the phase transition between | and Il from self-dyali
hatching. in this non-trivial 3D Statistical Mechanics problem. Inaw

We now investigate whether removing phase (lll) hassomewnhat different models, we found first-order transgion
changed the nature of the transition on the self-dual line. Won the self-dual line, which means that when both loops are
used energy histograms and studies of the heat capacity to dgying to condense, they tend to phase-separate. A continu-
termine the peak-to-peak distance. The heat capacity stgyge ous transition would be an example of an NCAP(1) self-
a first-order transition, as shown in Fig. 5. For completenes dual critical point. We found in the restricted model that
we have also shown the original data which this figure is basethe first-order transition became weakertasas increased,
on, in Fig. 6. Forr = 0.6, 0.7, the energy gaps were too small but we could not study the model forthigher than a certain
to be accurately determined by studying the histograms. Thealue. If one could find a way to study the model at high
histogram fort = 0.7 is shown in the inset to Fig. 5. We can- would be interesting to see if the first-order transitiontaon
not resolve two separate peaks, but the distribution hag a flaies to weaken and perhaps becomes second-order. One could
top, which suggests that the transition is weakly first-arde also explore more models asking if some short-range modifi-
In order to acquire more clearly two-peaked histograms, weations can produce a critical loop state. There is evidéarce
studied the magnetization of the system. We found the peakscontinuous transition ifU (2) spin modelg®17"26:2%hut our
in these to be more easily distinguished, and the resulislgle system has no analog to these.

V. DISCUSSION



Our study is an example of a sign-free reformulation of a
model with statistical interactions and the power hence af-
forded by Monte Carlo to establish the phase diagrams and
study phase transitiorfs® Though we determined most of the
phase diagram in good detail, it may be useful to get a better
understanding of how the phase transitions join at the eerne
of the (0) and (Ill) phases. It would also be interesting te ex
plore more models with statistical interactions that caveha
such reformulations. An accessible direction already & th
present setting is to examine the model Eq. (5) with general
statistical angle). Another interesting direction is to intro-
duce some attraction between the two loop species, to see if
we can achieve fermionic bound states/gfand.J; and what
phases can be accessed in this way.
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