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One of the defining properties of the conventional three-dimensional (“Zz-”, or “spin-orbit”-)
topological insulator is its characteristic magnetoelectric effect, as described by axion electrody-
namics. In this paper, we discuss an analogue of such a magnetoelectric effect in the thermal (or
gravitational) and the magnetic dipole responses in all symmetry classes which admit topologically
non-trivial insulators or superconductors to exist in three dimensions. In particular, for topologi-
cal superconductors (or superfluids) with time-reversal symmetry which lack SU(2) spin rotation
symmetry (e.g. due to spin-orbit interactions), such as the B phase of 3He, the thermal response is
the only probe which can detect the non-trivial topological character through transport. We show
that, for such topological superconductors, applying a temperature gradient produces a thermal-
(or mass-) surface current perpendicular to the thermal gradient. Such charge, thermal, or mag-
netic dipole responses provide a definition of topological insulators and superconductors beyond the
single-particle picture. Moreover we find, for a significant part of the ‘ten-fold’ list of topological
insulators found in previous work in the absence of interactions, that in general dimensions the ef-
fective field theory describing the space-time responses is described by a field theory anomaly. Since
anomalies are known to be insensitive to whether the underlying fermions are interacting or not,
this shows that the classification of these topological insulators is robust to interparticle interactions
in general dimensionality. In particular, this applies to symmetry classes DIII, CI, and AIII in three
spatial dimensions, and to symmetry classes D and C in two spatial dimensions.

PACS numbers: 72.10.-d,73.21.-b,73.50.Fq



I. INTRODUCTION

The considerable recent progress in understanding topological insulating phases in three dimensions was initiated
by studies of single-particle Hamiltonians describing electrons with time-reversal invariance.!® In both, two and
three dimensions, time-reversal invariant Fermi systems which have topological invariants of Zy type are known to
exists:insulators can be classified as “ordinary” or “topological” by band-structure integrals similar to the integer-
valued integrals that appear in the integer quantum Hall effect.®7 These invariants survive when disorder is added
to the system. In fact, stability to disorder is one of defining properties of topological insulating phases (and also
topological superconductors). The complete classification of topological insulators and topological superconductors
in any dimension has been obtained in Refs. 8 and 9, and in every dimension five of the ten Altland-Zirnbauer
symmetry classes!®!! of single-particle Hamiltonians (including some describing the Bogoliubov quasiparticles of
superconductors or superfluids, rather than ordinary electrons) contain topological insulating phases with topologically
protected gapless surface states.

An important question is how these various phases can be defined in terms of a physical response function. Aside
from aiding in experimental detection, such definitions also indicate that the phase is well-defined in the presence
of interactions. The best studied example is the conventional three-dimensional (“Zy-", or “spin-orbit”-) topological
insulator with no symmetries beyond time-reversal, which has been recently observed in various materials including
Bi,Sbi_, alloys'?, BisSes, and BipTes.'? 16 Such materials support a quantized magnetoelectric response generated
by the orbital motion of the electrons, i.e., the phase can be defined by the response of the bulk polarization to an
applied magnetic field.!”>'® The possibility of such a bulk response was discussed some time ago as a condensed matter
realization of “axion electrodynamics”.!?

The first goal of this paper is to find, for all three-dimensional topological insulators and superconductors, the
corresponding responses that result from the coupling of the theory to gauge and gravitational?® fields. The second
goal of this paper is to understand to what extent the classification scheme found previously for topological insulators
of non-interacting fermions can be stable to fermion interactions. This addresses the question as to whether certain
topological insulators which describe distinct topological phases in the absence of fermion interactions (connected
only by quantum phase transitions at which the bulk gap closes), can be adiabatically deformed into each other when
interactions are included. We find that this cannot happen e.g. in symmetry classes DIII, CI and AIII in three
spatial dimensions, and in symmetry classes D and C in two dimensions. More generally, in the last (more technical)
chapter of this paper we provide an answer to this question in general dimensionalities for a significant part of the
list of topological insulators (superconductors) within the ‘ten-fold’ classification scheme, obtained for non-interacting
particles®?21. In particular, we relate the topological features of these topological insulators to the appearance of a
topological term in the effective field theory describing space-time dependent linear responses. Alternately, we relate
these topological terms to what are known as ‘anomalies’ appearing in the theories describing the responses. Since
the ‘anomalies’ are known to be insensitive to whether the underlying fermions are interacting or not, our so-obtained
description of the topological features demonstrates the insensitivity of these topological insulators to interactions.

Finally, description of these weakly interacting topological insulators/superconductors in terms of a topolog-
ical term in the effective field theory points toward the possibility of interaction-dominated topological insula-
tors/superconductors; e.g., possibility of three-dimensional “fractional” topological insulator.?? In this paper, however,
our goal is more moderate and we will focus on interacting topological insulators/superconductors which can adia-
batically connected to their non-interacting counterpart. I.e., the characteristic interaction energy scale considered in
this paper is smaller than the non-interacting gap.

Let us now focus on the topological insulators (superconductors) in d = 3 spatial dimension (see also Table I).
From a conceptual point of view it is the surface responses which are simplest to describe and they are universal (but
they may not necessarily be most easily accessible experimentally; therefore we also discuss the bulk responses further
below):

Charge surface response: this is, in particular, relevant for the (“Zy”, or “spin-orbit”) topological insulator which is
time reversal invariant. Upon subjecting its surface to a weak time reversal symmetry breaking perturbation (in the
zero temperature limit), the surface turns into a quantum Hall insulator whose electrical surface Hall conductance
takes on the universal value??
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(a multiple of half the conductance quantum) as the strength of the symmetry breaking perturbation is reduced to
zero (always at zero temperature). Here n = 0 and n = 1 for the “Zy” (or “spin-orbit”) topological insulator!”?3
(in symmetry class AII), in the topologically trivial and non-trivial phase, respectively. While the surface of Zs
topological insulators in class AIl may exhibit any odd (even) number Dirac cones in the topologically non-trivial
(trivial) phase at the microscopic level, only the odd-even parity, n = 1 and n = 0 of that number is topologically



protected. On the other hand, in the less familiar topological insulator in symmetry class AIII, the number n in the
surface Hall conductance (1) is not restricted to n = 0 or 1 but can be as large as the topological charge (winding
number) v defined for the bulk topological states.?!:2°

Spin surface response: analogous effects are known?® for the time reversal invariant topological (spin-singlet) super-
conductor in symmetry class CI in d = 3 spatial dimension. Subjecting its surface, as above, to a weak time reversal
symmetry breaking perturbation (in the zero temperature limit), the surface turns into what is known as the “spin
quantum Hall insulator”2%:27. Due to spin-singlet pairing this superconductor has SU(2) Pauli-spin rotation symme-
try which permits the definition of the ‘surface spin conductivity’. In particular?®, a gradient of magnetic field within
the surface (say in the z-direction of spin space) leads to a spin-current perpendicular to the gradient (and within the
surface). This defines the ‘surface spin-Hall conductance’ which takes on?® the universal value
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(n-times half the ‘spin-conductance quantum’ %, where n can be as large as the integer v from the Z-classification

of the topological superconductor) as the time reversal symmetry breaking perturbation is reduced to zero.

Thermal surface response: as we show in section III B of this paper, an analogous effect occurs for the thermal
response at the surface of the time reversal invariant topological superconductor in symmetry class DIII in d = 3
spatial dimensions: subjecting its surface, as above, to a weak time reversal symmetry breaking perturbation (in the
low temperature limit), a temperature gradient within the surface leads to a heat (energy) current in the perpendicular
direction in the surface. The so-defined surface thermal Hall conductance ofy takes a universal value when divided
by temperature in the zero temperature limit

(04,/T)/ 5 (k5 /0 = 5 3)
where n can be as large as is the integer v from the Z-classification of the topological superconductor in symmetry
class DIII, as the symmetry breaking perturbation is reduced to zero.

These surface Hall conductances provide a characterization of the mentioned topological insulators, irrespective of
whether electron interactions are present or not: if we start out with a non-interacting topological insulator, one can
explicitly compute the theory describing various space-time dependent linear responses. (For the thermal responses
of the DIII topological superconductor in d = 3 spatial dimension, this is done in Subsec. IIIB of this paper. For
the SU(2) spin-responses of the topological singlet superconductor in symmetry class CI this was done in Ref. 28.
For a significant part of the list of all topological insulators (superconductors) this is done more generally in Section
V of this paper for all dimensionalities.) Owing to the fact that the underlying insulators are topological, the field
theories for the linear responses turn out to be described by what are called anomalies. These anomalies describe
the linear responses both, in the bulk and at the surface. The charge, spin, and thermal surface responses are
examples.?? Anomalies are known to be insensitive to the presence or absence of interactions. For this reason, the
dimensionless charge, spin, and thermal surface responses are independent of the strength of the interactions. These
surface responses can only change when a bulk quantum phase transition is crossed (at which the bulk gap closes).

While these surface responses are universal, and theoretically useful in that they permit one to understand the
stability of the topological insulator (superconductor) phases to interactions (for the cases discussed above, and in
Section V for general dimensionalities), they may not all be directly accessible experimentally.

Therefore we discuss below also the various bulk responses.

The bulk responses that we find are of three types: charge response, previously shown to lead to a quantized
E - B term in the ordinary topological insulator (“axion electrodynamics”) 17 19; gravitational response, when energy
flows lead to an analogue of this term for gravitational fields, leading to a Lense-Thirring frame-dragging effect®’
when a temperature gradient is applied; and magnetic dipole response, when a magnetic dipole current induced by
an applied perturbation leads to an electrical field. A single phase may show more than one of these effects; for
example, a phase with a conserved SU(2) spin current can show a non-Abelian “charge” response in the presence
of an SU(2) gauge field coupling to this current, but will also show a magnetic dipole response via its coupling to
ordinary U(1) electromagnetism. We obtain these possible responses for each of the five symmetry classes in three
dimensions supporting topological phases.®? As in the classification in Ref. 8, the approach we take is based upon the
gapless surfaces of these topological phases; these surfaces carry currents leading to new terms in the effective action
of gravitational and electromagnetic fields. Our results for the various symmetry classes with topological invariants
in three dimensions are summarized in Table I.

These bulk responses are “topological” to varying degrees. The charge response is topological both in its spatial
dependence and as a term of the effective action: quantization of the response is tied to quantization of the elec-
trical charge and the Dirac quantization condition. The gravitational response is topological in terms of the spatial



Symmetry Charge Gravitational Dipole

AllL v v

CI v v
CII v v
DIII v
AIII * v *

TABLE I. Electromagnetic and gravitational (thermal) responses for five out of ten Altland-Zirnbauer symmetry classes (AIl,
CI, CII, DIII and AIII). The assumptions made in the first four classes are that U(1) conserved currents arise from electrical
charge and that SU(2) conserved currents arise from spin. *: In class AIII, the U(1) conservation law may arise either from
charge or one component of spin.

dependence, but its coefficient is related to the mass or energy of the underlying particles and hence not quantized
to the same degree as the charge response. The magnetic dipole response is not topological in the sense of being
metric-independent, but it does arise from sample boundaries in the same way as the other responses.

This paper is organized as follows: We begin in Sec. II by reviewing the axion electromagnetism for the three-
dimensional topological insulators in the spin-orbit symmetry class (symmetry class AII). In Sec. III, thermal response
of three-dimensional time-reversal invariant topological superconductors (such as the B-phase of *He) is discussed by
exploiting a close analogy of electromagnetism and gravity in Newtonian approximation. In Sec. IV, dipole response
is discussed for three-dimensional topological phases when at least one component of spin is conserved. All these
responses will be discussed from much a wider perspective in Sec. V in terms of anomalies of various kind (chiral
anomaly, gauge anomaly, gravitational anomaly), and the descent relation relating these anomalies. We conclude in
Sec. VI

II. CHARGE RESPONSES

For an explicit example, consider a cylinder of topological insulator with surface Hall conductance +e?/(2h), defined
with reference to the outward normal. (Below, we choose plus sign for the surface Hall conductance, by subjecting
the surface to a weak external time-reversal symmetry source.) The motivation for considering this example in some
detail is that it will lead to a direct interpretation of the corresponding gravitational response below. The current
response to an applied electrical field along the cylinder axis is

e
Jo = %Ez- (4)
Now the magnetic field induced by this current follows from one of Maxwell’s equations,
4
VxB=—j, (5)

which leads to the magnetostatic equation

B(x) = 1/j(x') « f"_ix) & (6)

x —x/|?

The result for a thin cylinder is that the magnetic field at the cylinder axis, well away from the cylinder ends, is given
by B = B,z with

1 [ r(27r)je 4t .~ 2me’E,
BZ = — "5 5 d _ - . 7
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This magnitude follows from minimizing the magnetic energy
B2 e2
Hg=—-—E-B 8
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which follows from the Maxwell Lagrangian supplemented with the theta term (axion term)
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FIG. 1. Electric and thermal response of topological insulators, and thermal response of topological triplet superconductors,
in a cylindrical geometry. (a): Electric (j) or thermal (j7) current driven by applied electric field (E) or thermal gradient (
VT/T). (b): A response dual to (a) where an applied magnetic field in z-direction induces charge polarization.

for the coupling @ = —m. (The negative sign in this equation is picked out by the choice of the direction of the current
flow around the cylinder.)

To understand the dual response, which is an electrical field induced by an applied magnetic field, one needs to
include the ends of the cylinder. Applying a magnetic field normal to a Hall layer increases or decreases the charge
density depending on the direction of the field, as is required for the charge continuity equation to follow from
Maxwell’s equation
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Hence an applied magnetic field induces an electrical polarization along the interior of the cylinder. We now turn to
a gravitational version of the above physics, generated by energy flows from surface thermal Hall layers.

III. GRAVITATIONAL RESPONSES
A. gravitoelectromagnetism

Our approach will be to start from the energy flow at surfaces of a topological phase, which is the microscopic source
of the gravitational response. The importance of this response is that it is the only one that exists in the important
symmetry class DIII, which includes superfluid 3He. We use this phase as an explicit example in the following. The
surface Majorana mode that exists in this phase does not carry charge, but does carry heat, leading to a thermal
Hall effect. Hence a temperature gradient applied to a cylinder leads to an energy flow perpendicular to the applied
gradient

jo = Ua:cry(_azT) = C_QTazTyEg’z’ .

where for future use we have treated temperature as a scalar potential generating a field E, = —c?(VT) /T with units
of acceleration. The physical meaning of this scalar potential was worked out by Luttinger in his derivation of the
thermal transport coefficients®!: in a near-equilibrium system, the effect of a thermal gradient is equivalent to that
obtained from a gravitational potential 1 such that

V= (12)

where ) is the gravitational potential energy per mass, divided by c2.

This rotational energy flow couples to the gravitational field at the first post-Newtonian approximation (i.e., the
coupling is down by a factor v/c compared to the static gravitational effect present in the absence of the applied
gradient). Because temperature couples to the local energy density in the same way as an applied gravitational
potential, as used by Luttinger in his derivation of the thermal Kubo formula®!, we can view this effect similarly to
the charge response above, as a gravitational “magnetic” field resulting from the energy flow that was induced by a
gravitational “electric” field reflecting the temperature gradient.



This analogy can be made precise in the near-Newtonian limit using the gravitoelectromagnetic equations®? that
apply to a near-Minkowski metric. The relevant equation is that a mass current induces a gravitomagnetic field B,
defined more precisely below, via the equation

—4A7Gjm

C

V x By = (13)
Here j,, is the (three-dimensional) mass current density, satisfying j,, = j7/c?, and G is Newton’s constant. The
negative sign in this equation compared to the corresponding Maxwell’s equation is physically significant and results
from the difference that equal masses attract, while equal charges repel. The field E,, like B, has units of acceleration,
and the gravitational force on a test particle of small mass myeq; is

F:n%ﬁ0%+2%x30, (14)

where v is the particle velocity. The factor of 2 here results from the spin-2 nature of the gravitational field.
Now, by the same steps as above, there is an induced field along the cylinder axis

_ 4AnGiY ArG Tog E,,
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Since o}, has the units k3T/h of a two-dimensional thermal conductivity, the ratio between B, and Ej is of the form
G(energy?)/(hc®), which is dimensionless (the gravitational analogue of the fine structure constant that appears in
the charge case).

The gravitomagnetic field then has exactly the same spatial dependence as the magnetic field in the axion case
computed above. In particular, it is topological (e.g., the field at the cylinder axis does not fall off as the cylinder
radius becomes larger) and scales with the energy flow, which in turn scales quadratically with the mass of the
underlying particles.

B. gravitational instanton term

We now discuss the gravitational response in topological insulators and superconductors from more formal point
of view. When discussing electromagnetic responses in topological insulators, we can couple electrons to an external
(source) U(1) gauge field. The O-term in the effective action for the gauge field then results by integrating over the
gapped electrons. In order to discuss gravitational and thermal responses, we can take a similar approach: we can
introduce an external gravitational field that couples to fermions (electrons for topological insulators, and fermionic
Bogoliubov quasiparticles for topological superconductors.) By integrating over the gapped fermions, we obtain an
effective gravitational action. The derivation of the effective action proceeds in a way quite parallel to that of the
U(1) case: Indeed, both of them are related to a chiral anomaly as we will see below.

For topological insulators or superconductors defined on a lattice, it is not obvious how to couple fermions to gravity
in a way fully invariant under general coordinate transformations. Also, there is of course no Lorentz symmetry on a
lattice. Yet, energy and momentum are conserved, and one can think of introducing an external field which couples
to these conserved quantities. The gravitoelectromagnetic approach discussed in the previous subsection is based on a
particular background (flat Minkowski metric), and is an approximation of the full Einstein gravity in the limit where
the mass flows are small in some particular reference frame defined by the system with no thermal perturbation.

However, all topological insulators (superconductors) are known?! to possess a representative in the same topological
phase which is described by a Dirac hamiltonian. Fermions whose dynamics is described by a Dirac hamiltonian can
naturally be coupled to a gravitational background field. (The theory is fully Lorentz invariant, and the coupling
to gravity is fully invariant under general coordinate transformations, and can be described in terms of the spin
connection.) For this reason we provide (below) a derivation of the effective action in terms of the Dirac representative
of the topological phases. The topological features of the effective action for the gravitational responses are expected
to be independent of the choice of representative in the topological class, and thus to have a much more general
applicability. Physically, such gravitational responses describe thermal response functions.?!

We thus consider the following single 4 x 4 continuum Dirac model,

"= /dgszT(—ia-a—i-mﬁ)z/J, (16)

where ¥ and 1) represent creation/annihilation operator of complex fermions, and a = 0y ® o and 8 = 03 ® 0 are
the Dirac matrices (0¢,1,2,3 are the Pauli matrices). (In this subsection, we use the natural unit, ¢ = h = 1, and set



the Fermi velocity to be one for simplicity.) For topological superconductors, we need to use real (Majorana) fermions
instead of complex fermions.

We assume the Dirac model is in a topologically non-trivial phase for m > 0 while it is in a trivial phase for m < 0:
While this does not look apparent from the action in the continuum limit, when the Dirac model is derived from
an appropriate lattice model, the sign of the mass does determine the nature of the phase. In the presence of a
gravitational background, the fermionic action is given by3

Stm b6 = [ ate 3L, a7)
L= &ea“i’ya (8# — %w#abEab)d) — map,

where p,v,...=0,1,2,3 is the space-time index, and a,b,... =0,1,2, 3 is the flat index; e,* is vielbein, and w#“b is
a spin connection; X, = [Ya, Y] /(44). (See Ref. 34 for our conventions of metric, vielbein, spin connection, etc.) The
effective gravitational action Weg[m, €] for the gravitational field is then obtained from the fermionic path integral

eiWCff[m,e] — /D [1/_1,'(/1] eis[m7’l/;7w7e] (18)
A key observation is that the continuum Hamiltonian H enjoys a continuous chiral symmetry: we can flip the sign
of mass, in a continuous fashion, by the following chiral rotation
Y= h = eiﬁb’Ys/Qw/, L)) g wT/e*iqb’y:s/?, (19)
under which
1/; (ia;fm - m) P = 1/7 (ia;fm - m/(ﬁb)) 7//7
m'(¢) = me'®’® = m[cos ¢ + ivssin @], (20)

so that m'(¢ = 0) = m and m/(¢ = m) = —m. Since m can continuously be rotated into —m, one would think,
naively, Weg[m, €] = Weg[—m, €]. This naive expectation is, however, not true because of chiral anomaly. The chiral
transformation which rotates m continuously costs the Jacobian J of the path integral measure,

D[$,y] =JID [, 4] . (21)

The chiral anomaly (the chiral Jacobian J) is responsible for the f-term. The Jacobian J can be computed explicitly
by the Fujikawa method®® with the result

W‘fff::— InJg (22)
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when m > 0 while WfH = 0 when m < 0. The expression in square brackets is the so-called Dirac genus (see Section
V below for details) which is equal®3, by the Atiyah-Singer index theorem, to the index of the Dirac operator in
the curved background. The multiplicative prefactor 1/2 arises because of the Majorana nature of the Bogoliubov
quasiparticles. The index in square brackets is in fact an even integer (by Rochlin’s Theorem?®). Therefore, (1/2)
of that expression, i.e. half the index, is an integer. Thus the gravitational effective action WC(’H in Eq. (22) equals 0
times an integer, i.e. it is a so-called #-term. Now, since § — —6 under time reversal, the theta angle is fixed by time
reversal symmetry and periodicity to either # = 0 or § = w. The former corresponds to a topologically trivial state,
and # = 7 to the topologically non-trivial state. (See, for a similar discussion on the derivation of the f-term, i.e.,
E - B term, for the electromagnetic response, Ref. 25, as well as for the non-Abelian SU(2) response in Ref. 28.) Note
that if instead we consider complex (Dirac) fermions in the background gravity field, the theta angle 6 is an integer
multiple of 27, but not 7 as in the Majorana case.

The part of the effective action, which is not related to the Fujikawa Jacobian, takes the form of the Einstein-Hilbert
action Wen = (167G)~! [ diz /g where G is the effective Newton constant in the bulk of the topological insulator
(superconductor). The gravitoelectromagnetism equations mentioned above can be derived from the effective action
by taking the Newtonian limit (near Minkowski limit).

To make the connection with the existence of topologically protected surface modes we note that when there are
boundaries (say) in the z3-direction at 23 = L and at 23 = L_, the gravitational instanton term WS, at the non-
trivial time-reversal invariant value 6 = 7 of the angle 6, can be written in terms of the gravitational Chern-Simons
terms at the boundaries,

WCGH' = ICS|C63:L+ - ICS|x3:L77 (23)



where (4,j,k=0,1,2)

Ics = % % i dgxe”ktr(wiajwk + ;Wiijk)- (24)
with ¢ = 1/2. This kind of relationship between the theta angle term and the Chern-Simons type term in one lower
dimensions is a special case of the so-called descent relation and will be discussed further in Section V. This value of
the coefficient of the gravitational Chern-Simons term is one-half of the canonical value (1/47) x (¢/24) with ¢ = 1/2.
As before, for fermions with a reality condition (Majorana fermions), the canonical value of the coefficient of the
gravitational Chern-Simons term corresponds to ¢ = 1/2, as opposed to ¢ = 1 for fermions without a reality condition
(and ¢ = n/2 for n species of fermions with a reality condition.) As discussed by Volovik®® and, Read and Green?7
in the context of the two-dimensional chiral p-wave superconductor, the coefficient of the gravitational Chern-Simons
term is directly related to the thermal Hall conductivity, which in our case is carried by the topologically protected

surface modes®. (See Eq. (3) of the Introduction.)

IV. DIPOLE RESPONSES
A. topological singlet superconductor (class CI) and spin chiral topological insulator (class CII)

The last response we consider can be measured in systems with a conserved spin or magnetic dipole current.
Among the five symmetry classes which admit a topological phase in three-spatial dimensions, we thus focus on
topological singlet superconductors in symmetry class CI (possessing time-reversal and spin rotation invariance), and
also on topological insulators in symmetry class CII (possessing time-reversal but without spin rotation invariance)
(see Table I).

Simple lattice models of the three-dimensional topological singlet superconductor in symmetry class CI were dis-
cussed previously on the diamond lattice?® and on the cubic lattice®®, for which, in the presence of a boundary
(surface), there is a stable and non-localizing Andreev bound state. Similar to the quantized E-B term for the charge
response in the topological insulator, the response of topological singlet superconductors to a fictitious external SU(2)
gauge field (“spin” gauge field which couples to conserved spin current) is described by the f-term at 6 = 7 in the
(3+1) dimensional SU(2)’ Yang-Mills theory.?® The #-term predicts the surface quantum Hall effect for spin transport
(the spin quantum Hall effect), as already mentioned in the Introduction (Section I).

To detect such a quantum Hall effect for the SU(2) symmetric spin current requires a fictitious external spin gauge
field, and hence one would think it cannot be detected experimentally. Nevertheless, we discuss in this section that
the electromagnetic response carried by the dipole moment of the spin current can be measurable. (See Ref. 40 for a
similar discussion on the dipole response in a *He-A superfluid thin film or two-dimensional p-wave paired states. )

The topological insulator in symmetry class CII (called “spin chiral topological insulator” in Ref. 25) is in many
ways analogous to the more familiar quantum spin Hall effect in two spatial dimensions, but requires the chiral
symmetry in addition to time-reversal symmetry. (For a lattice model of the Zs topological insulator in symmetry
class CII, See Ref. 25). Just like an intuitive understanding of the quantum spin Hall effect can be obtained by
starting from two decoupled and independent quantum Hall systems with opposite chirality for each spin and then
glue them together, this spin chiral topological insulator can be obtained by considering two independent topological
insulators in symmetry class AIIl. More general quantum spin Hall states or spin chiral topological insulators can
then be obtained by destroying the S, conservation by mixing spin up and down components. The dipole response
for class CII topological insulators, which we will describe below, assumes that a U(1) part of the SU(2) spin rotation
symmetry is conserved (i.e., one-component of spin is conserved). However, even when there is no such symmetry, if
mixing between two species is weak, we can still have such a dipole response.

B. magnetic dipole responses

The spin current response at the surface of such a system to an applied magnetic field B via the Zeeman effect can
be written as

jg = aeijk(aje)akBa, (25)

where « is some constant. Here we have introduced a scalar field 6 (“axion” field)?®, by analogy with the local
electromagnetic polarizability of the topological insulator, to describe the spatial location of the dipole current, which
as before is a surface property. Here ji* represents the a-th component of a magnetic dipole current of dipoles in spatial
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FIG. 2. Surface of a spin chiral topological insulator (class CII) or topological singlet superconductor (class CI).

direction 4. Such a current can generate two types of static electromagnetic responses: a dipole density through the
continuity equation

0ijd +on®* =0, (26)
and an electrical field through the equation

(V x E)l = EijkajEk e %&J;‘l- (27)

4
(One could alternately have a time-varying magnetic field, just as a current density can produce either a constant
magnetic field or a time-varying electrical field.) The second response may be unfamiliar but can be derived from
elementary principles; see Ref. 41 for a discussion of how it can be measured experimentally. Start from a dipole field
in the lab frame; take one copy with the dipoles pointing along some direction fi and boost that along v, and take
another copy with the dipoles pointing along —ii and boost that along —v. For a dipole density n®, this leads, in
comoving frame, to the field B, = (u/4m)n®, and hence

V-B=Lom, (28)
where p is the permeability of the material of interest. Using the non-relativistic Lorentz transformation law
E—-~vy(E+vxB) (29)
with v ~ 1 leads to Eq. (27), with j¢ = v;n®.

Now we consider these responses for the surface spin current of a three-dimensional topological singlet supercon-
ductor. The spin Hall current is always divergence-free by commutation of derivatives,

0ij = oveiji0; (8j98kBa) =0, (30)
since whichever term the 0; acts on gives zero. However, the electromagnetic response can be nonzero:
eijkajEk - %&Jf - %8(1 (ElmnameanBa) . (31)

There are two parts to this: one “monopole” part is only nonzero if d, B* # 0, and we therefore neglect it. There is

also a term
J7%e!

et (0200)0, B (32)

C. example

As an example, we compute this response for the case of a surface of a topological singlet superconductor, where
the theta angle 6 varies as a function of the distance from the surface (Fig. 2). For the response to be nonzero, we
need a = m = z, so the response is to the z component of the magnetic field. We get, up to a possible sign,

Qg Qi
(V xE), = —7-0200,B., (V xE),="0200,B.. (33)
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For the case where 6 is first constant, then changes linearly in z within a surface surface layer, and is then constant
again outside this layer (Fig. 2), this response will occur entirely at the top and bottom surfaces of the region of linear
change. As an example relevant to possible experiments, we compute this response for the magnetic field produced
by a magnetic monopole field of strength g, (i.e., from one end of a long magnetic dipole), suspended a distance z
above a spin Hall surface layer where 6 changes linearly across a thickness d. This surface layer gives two surfaces
with

(VXxE), =j'"=Fp80,B., (VxE),= Jy = £B0:B.. (34)
where 8 = (ap)/(4w) 7/d. At the top layer, the z component of magnetic field is, in cylindrical coordinates,

qm=z0

B, = 7(1"2 TR (35)
which leads to a surface magnetic current of magnitude
Jo = (T2 ¥ 28)5/2' (36)

at the top surface. Since

Bi) = [ o &I )

r =12

we obtain that the electrical field from the top surface, at a height z; above the top surface (and directly above or
below the original monopole), is

[ 3BGmzor T
E.(z1) = /0 (2mr) dr ot 22 o (38)

Evaluating this at the original height zg gives

2 A7 Baqm,
Ez(ZO) = (GWﬁQmZO)TZO;; = 5203

(39)

Comparing this to the case of an image charge above a metal, we see that the electrical field falls off by one more
power of height. From the above, the dipole currents are localized to the top and bottom surfaces of the region where
0 changes. The bottom surface contributes with an opposite sign and with z — z + d, so we obtain

_ AnfSgm
5

so that for d < zp the electric field falls off as the fourth power of distance.

We can understand the scaling of the result by noting that ¢,, divided by length cubed has units of magnetic field
per length; multiplying by S8 converts this to a 2D magnetic charge current density, which has the same units as
electric field. While the dipole response originates in a topological phase, it is not itself “topological” but depends
sensitively on the geometry used to probe it.

Ez (Zo) (20_3 - (ZO + d)_3) 5 (40)

V. TOPOLOGICAL FIELD THEORIES FOR SPACE-TIME DEPENDENT RESPONSES IN
TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS IN GENERAL DIMENSIONS FROM
ANOMALIES

The previous sections of this paper complete the list of the (topological) field theories describing the space-time
dependent linear responses of all topological insulators and superconductors in three spatial dimensions (3 + 1 space-
time dimensions). In this section we will describe, more generally, the (topological) field theories for such responses
in general dimensions. Most importantly, the main result obtained in this section is a general connection between
the appearance of such topological terms in the field theories for the responses and the appearance of what are called
anomalies?? for the field theories in those space-time dimensions in which topological insulators (superconductors)
appear. In fact, we may ask if the existence of a particular type of anomaly in a given dimension allows us to predict
the existence of a topological insulator (superconductor) of the ‘ten-fold’ classification in that dimension. The answer
to this question is affirmative. As we demonstrate below, a large part of the ‘ten-fold’ classification can be derived
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from the existence of the known anomalies in corresponding quantum field theories in space-time.** This can then be
thought of as yet another derivation of the ‘ten-fold’ classification, in addition to the previously known derivations
such as that based on Anderson localization at the sample boundaries®, and K-theory” (as well as a later point of
view based on D-branes?>46). Moreover, and most importantly, the appearance of an anomaly is a statement about
the respective quantum field theory (of space-time linear responses) independent of the assumption of the absence of
inter-particle interactions. Thus, anomalies provide a description of topological insulators (superconductors) in the
context of interacting systems.

A. Topological insulators (superconductors) in the two complex symmetry classes A and AIII from
anomalies in the gauge field action

1. the integer quantum Hall effect (class A)

Let us begin by describing the topological field theories describing the space-time dependent linear responses of the
two “complex” symmetry classes, classes A and AIII in the Cartan (Altland-Zirnbauer) classification.®2! This includes
the most familiar example, namely the integer quantum Hall insulator (IQH), belonging to symmetry class A. In both
symmetry classes, A and AIII, there has to exist a conserved U(1) charge (particle number). This is the electromagnetic
charge, since these symmetry classes can be realized as normal electronic systems (as opposed to superconducting
quasiparticle systems)*”. Therefore we can minimally couple these topological insulators to an external U(1) gauge
field. The field theory describing the space-time dependent linear responses of the topological insulator can then be
obtained by integrating out the gapped fermions. The fact that the underlying insulator is topological is reflected in
the fact that the effective action for the external U(1) gauge field, describing the electromagnetic linear responses,
contains a term of ‘topological origin’, such as e.g. a Chern-Simons- or a #-term, or corresponding higher dimensional
analogues of these terms (see below for more details).

In turn, the presence of terms of topological origin in the so-obtained effective action for the external U(1) gauge
field are closely related to the presence of a so-called anomaly. To see how an anomaly for the theory of the external
U(1) gauge field can actually predict the presence of a topological phase, let us consider first, as the simplest example,
the IQH insulator in d = 2 spatial dimensions — symmetry class A. (The space-time dimension is thus D = 2 + 1).
In fact, let us first focus attention on the theory of the sample boundary (the edge state), which has d = 1 spatial
dimensions. It is known (see below) that the effective theory for the linear responses of the U(1) gauge field in
D =1+ 1 space-time dimensions (i.e. of the edge state) can have what is called a “gauge anomaly” since the space
time dimension D is even.?3:3% The presence of this anomaly simply means that U(1) charge conservation is spoiled
by quantum mechanics. In the condensed matter setting of the IQH insulator the meaning of this anomaly is that the
system (i.e. the edge) in D =1+ 1 space-time dimensions, exhibiting the anomaly, does not exist in isolation, but is
necessarily realized as the boundary of a topological insulator in one dimension higher. In this case, the breakdown of
the conservation law of U(1) charge conservation at the boundary simply means that the current “leaks” into the bulk.
Thus, in the condensed matter setting, the presence of the anomaly in the theory at the boundary is not something
abnormal, but it is a physical effect: it is the integer quantum Hall effect. As we will discus shortly below, the same
reasoning applies to all even space-time dimension, D = 2k. Consequently, we see that the presence of a U(1) gauge
anomaly predicts the presence of a topological insulator in one dimension higher. L.e., this predicts the presence of a
topological insulator in symmetry class A in D = 2k + 1 space-time dimensions, in agreement with the ‘ten-fold” way
classification.

2. three-dimensional insulator (superconductor) in symmetry class AIII

Let us now consider the topological insulator (superconductor) in the other complex symmetry class, class AIIL, in
d = 3 spatial dimensions. Again, the space-dimension D = 3+ 1 =4 is even. It is known (see below) that in all even
space-time dimensions the effective action for the space-time dependent U(1) gauge field may also possess a different
anomaly [in contrast to the discussion in subsection above], often referred to as the “chiral (or: axial) anomaly in
a background U(1) gauge field”.3® The meaning of such an anomaly can be explained using Eq. (46) below: the
so-called axial (or: chiral) U(1) current JL(z) is not conserved in the presence of a background U(1) gauge field, i.e.
D, J¥(x) # 0, where D,, denotes the covariant derivative in the presence of a background gauge field. In the simplest
case of a single copy of a massive Dirac fermion (mass m), this covariant derivative of the current is given by Eq.
(46) below. As displayed in this equation, there are two sources of the lack of conservation: (i) a finite mass m # 0
and (ii) the extra “anomaly” term Asg, 12 (to be discussed in more detail below), which represents the breaking of the
conservation of J£ by quantum effects.?® Now, as discussed in Ref. 25, the presence of a “chiral (or: axial) anomaly
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in a background U(1) gauge field” implies directly the possibility of having a non-vanishing 6-term when deriving the
effective action for the external U(1) gauge field®°. (The -angle is fixed?! to § = 7 by a discrete symmetry, which is
the chiral symmetry for symmetry class AIIL.) Thus, the presence of a “chiral (or: axial) anomaly in a background
U(1) gauge field” in D = 2k space-time dimensions signals the existence of a topological insulator in this space-time
dimension through the appearance of a f-term in the (topological) field theory for the linear responses.

3. anomaly polynomials and descent relation

Observe that above we have used anomalies of two kinds, and we used them in two different ways:
(i): in case (a) there was an anomaly in the theory of linear responses at the boundary [which had D = (d — 1) + 1
space-time dimensions]. In this case the anomalous theory (i.e. the one at the boundary) was gapless (critical); we
refer to this situation as a gauge anomaly (i.e., non-conservation of the U(1) charge in question). The presence of
this anomaly implied the existence of a topological insulator in one dimension higher, i.e. in D’ = d + 1 space-time
dimensions. The linear responses of this topological insulator are described by an effective Chern-Simons action for
the U(1) gauge field in D’ = d + 1 space-time dimensions. [See also Eq. (42)].
(ii): in case (b) there existed an anomaly in the massive bulk theory in D = d + 1 space-time dimensions. This was a
chiral anomaly (referring to the violation of the conservation of the global azial U(1) current J£') in the background
of a non-vanishing U (1) background gauge field.

There are important relationships between the following different anomalies,

e the U(1) gauge anomaly in D = 2n,
e the Chern-Simons term (i.e., parity anomaly) in D = 2n + 1 and

e chiral anomaly in the presence of a background gauge field in D = 2n + 2,

1”33, Let us now

which can be summarized, in terms of the so-called descent relation of the “anomaly polynomia
explain this relation.

As mentioned above, it is known that in even spacetime dimensions D = 2n, there is a U(1) gauge anomaly. If
there is a gauge anomaly, the (Euclidean) effective action In Z|[A] in the presence of the gauge field A is not invariant

under a gauge transformation A — A 4 v. Thus we can write

5y n Z[A] = 2ri / QD (0, A, F). (41)

Moy,

where the variation J, is the gauge transformation in question, and le) is a 2n-form built from the connection 1-form,
A = A,dz", its field-strength 2-form, F = (1/2)F),, dz"dz", and the variation v = v,dz" of the gauge field. (By
definition, le) is linear in v. The integral is taken over the physical D = 2n dimensional (Euclidean) space-time
Ma,.) Now, the descent relation tells us that Qgh) can be derived from the so-called anomaly polynomial Qsa,, 2 (F),
which is a 2n 4 2-form built from the curvature 2-form F, with the aid of yet another 27n 4 1-form ngl) 11, by

Qonto = dQé?z)_,_l, 5DQ§(7)3+1 = dﬂgz) (42)

Le., Q9,42 is closed, and gauge invariant, and hence can be written as a polynomial in F. Here Qé(33+1(¢4, F) is its
corresponding Chern-Simons form.
There is a simple closed form expression for the anomaly polynomial s, which is given by

Qp(F) = ch(F)lp (43)

Let us explain the notation: ch(F) is the following power series (”characteristic class”) constructed from the field-
strength two-form F and is given by

) 1
_t —
2T T 2@ne

ch(F) =71+ trF2 4 (44)
This expression is written for the general case of a gauge field transforming in a r-dimensional irreducible representation
of a (possibly non-Abelian) gauge group, where tr denotes the trace in this representation. Observe that ch(F) consists

of a sum of different p-forms with different p where p = even. The notation - --|p in Eq. (43) means we extract a
D-form from ch(F).
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While up to this point the differential forms ngl) 41 and Q.42 appear to have been introduced solely to express
the D = 2n-dimensional gauge anomaly in terms of other objects, they themselves are known to be related to other

types of anomalies: the Chern-Simons form Qg,)l) 41 represents an anomaly in a discrete symmetry (parity or charge-
conjugation symmetry, depending on dimensionality) discussed in more detail in subsection V A 4, below, and Qa,, 2
represents®? the chiral anomaly in the presence of a background gauge field, discussed in subsection V A2 above.
The integral of Qo,12 over D = 2n + 2 dimensional space-time, on the other hand, represents the 6 term (see also
subsection VA5 below).

4. the Chern-Simons term

The integral of Qg,)l) +1(A, F) over D = 2n + 1-dimensional space-time is the Chern-Simon type action for the gauge
field A, and represents, as already mentioned, an anomaly in a discrete symmetry: the parity or charge-conjugation
anomaly.

In turn, the presence of such a Chern-Simons term in the effective (bulk) action for the gauge field A in D = 2n+1-
dimensional space-time signals the presence of a topological phase: when there is a boundary in the system, the
integral of the Chern-Simons term is not invariant on its own; rather, upon making use of the descent relation Eq.
(42), one obtains

. Y (45)
Moy 41 OMap 41

Mop 41

This is something we are familiar with from the physics of the quantum Hall effect: the presence of the boundary
term faM2 . le) appearing on the right hand side of Eq. (45) signals the presence of edge mode. In turn, as we have
seen in subsection V A 2, the gauge anomaly in D = 2n dimensional space-time which is represented by the integral
1)

over 5,7,

higher.

itself signals the presence of a topological phase in D = 2n + 1 space-time dimensions, i.e. in one dimension

5. the theta-term

The integral of the anomaly polynomial Q9,12 over D = 2n+ 2 dimensional space-time is the #-term and represents
a chiral anomaly in the presence of a background gauge field (discussed in subsection V A 2 above). Again, to be more
explicit, in the presence of such an axial anomaly, the axial current J'(x) (which in the present case is an axial U(1)
current) is not conserved: D, J (x) # 0 where D,, is the covariant derivative in the presence of the gauge field. For a
single copy of a massive Dirac fermion, it is given by

D, JE (z) = 2imiyani1th + 2iAony2(2), (46)

where the first term represents the explicit breaking of the chiral symmetry by the mass term, whereas the 2nd term
represents the breaking of the chiral symmetry by quantum effects. As, 2 quantifying the breaking of the axial
current conservation by an anomaly is essentially identical to Qg,,42, and given by removing all dz* which appear in
the differential form Qg 2.

Just as it was the case for the Chern-Simons term, the presence of such a 6-term in the effective action for the
gauge field signals the presence of a topological phase. In particular, the descent relation tells us that

/ Qopnto Z/ dQ;?z)-l-l :/ Qé(r)z)-i-l
Map 2 Map 2 OMap 42

This is, again, something we are familiar with from the physics of the three-dimensional topological insulator in class
ATIT, which is described by the #-term (the axion-term). In the presence of a boundary 9Maz, 12, such a topological

(47)

state supports boundary degrees of freedom, as signaled by the boundary term | OMan i1 Qg,)l) 1 which is a Chern-Simons

term.®?

Let us summarize: in order to derive the existence of topological phases in symmetry class A and AIIl, we start
from the anomaly polynomial €25, 12. Then the terms f Man s Qopyo and f Mani Qé?l) 41 are the effective actions for the

(topological) field theory of the space-time linear responses for the gauge field for the topological phases in class AIIL
(D =2n+42) and A (D = 2n+ 1), respectively.
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B. Topological insulators (superconductors) in the remaining eight ‘real’ symmetry classes from
gravitational and mixed anomalies

1. Gravitational anomaly and azial anomaly in the presence of background gravity

For the remaining eight “real” of the ten symmetry classes, having a conserved U(1) quantity is less trivial. Classes
AT, AIl, and CII are naturally realized as a normal (as opposed to superconducting) electronic system, and thus
for these there is a natural notion of a conserved U(1) quantity (the electrical charge). One realization of the BDI
symmetry class, which is only part®? of the entire symmetry class, can also be considered to have a conserved U(1)
quantity and we consider this realization in this subsection. On the other hand, classes D, DIII, C and CI are naturally
realized as BdG systems. While for classes C and CI, SU(2) spin is conserved (so a conserved U(1) charge exists),
for classes D and DIII, there is no conserved U (1) quantity at all.

Since for the latter four of eight real symmetry classes (D, DIII, C, CI) we cannot rely on a conserved U(1) quantity
to describe these topological phases, it is not possible to couple these systems minimally to a U(1) gauge field.
However, it is natural to consider a coupling of these topological phases to gravity. Let us focus first on topological
insulators (superconductors) with a integer topological charge, Z, but not on those with a binary topological charge,
Zs. For now we also do not consider topological insulators/superconductors with a 27 charge.

An analogue of the U(1) gauge anomaly, which we have described in section V A 2 at the boundary (of space-time
dimension D = 2n) of topological phases in symmetry class A is the gravitational anomaly. It corresponds to the
breakdown of energy-momentum conservation, and when it happens, it must be realized in a system which represents
the boundary of a topological phase in one dimension higher (in analogy to the case of a U(1) gauge anomaly, section
V A2). We refer to this anomaly also as a ‘purely gravitational anomaly’. In the following we will show that one can
predict the appearance of the topological phases in symmetry classes D, C, DIII, CI [i.e. those without conserved U(1)
charge] from the presence of a purely gravitational anomaly which appears in the field theory for the gravitational
(or: thermal3!) linear responses.

Finally, we will need to discuss the still remaining symmetry classes AI, BDI, AIl, and CII. Topological insulators
(superconductors) in these symmetry classes can be coupled to both, a U(1) gauge field®® as well as a gravitational
background. We will show that the field theories for the space-time dependent linear responses for these topological
insulators possess a so-called mixed anomaly. Indeed, we will show that the appearance of a mixed gravitational and
electromagnetic axial anomaly signals the existence of topological phases in these symmetry classes.

2. Topological insulators (superconductors) in symmetry classes D, C, DIII, CI, from the purely gravitational anomaly

As mentioned earlier in this paper, each topological insulator (in any dimension) has a Dirac Hamiltonian
representative.2! We can consider the coupling of this Dirac theory to a space-time dependent gravitational back-
ground. Upon integrating out the massive fermions, we obtain an effective gravitational action in D space-time
dimensions. If there is a gravitational anomaly, the (Euclidean) effective action In Z]e,w] in the presence of the
gravitational background is not invariant under a general coordinate transformation x* — z* + e/, where e is the
vielbein and w is the spin-connection one-form. I.e.,

SyInZle,w) =2mi [ QY (v,w,R), (48)

Mp
where §,, represents an infinitesimal SO(D) rotation, under which w, the spin-connection 1-form w, is transformed as
w = w4+ Qg)(v,w,R) is a D-form related to the gravitational anomaly. In complete analogy to the case of the
gauge anomaly discussed above, Qg) (v,w,R) can be derived from a corresponding anomaly polynomial Qp, ,(R) (see

Egs. (54), (55) below) through its Chern-Simons form lel(w,’l%), by using a descent relation which takes a form
identical to Eq. (42). Thus, once the existence of the (purely) gravitational anomaly is known for a given dimension
D, it predicts the presence of topological phases in D + 1 and D + 2 dimensions, using the same logic as in the gauge
field case above.

Now, according to Ref. 54, a purely gravitational anomaly can exist in

D=4k+2 (d=4k+1). (49)

Thus, breakdown of energy-momentum conservation due to quantum effects can occur in these dimensions. As in
the case of symmetry class A, discussed above, we take this as evidence for the existence of a topological bulk in one
dimension higher, i.e. in space-time dimensions

D=4k+3 (d=4k+2). (50)
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Cartan\d 0 1 2 3 5 6 7 8 9 1011
A Z 0 7Z 0 0 Z 0 7Z 0 Z 0 -
ATII 0z 0z 0z 0 Z 0 Z 0 Z -
Al Z 0 0 0 2Z 0 Ze Zx Z 0 0 0O -
BDI Zx 7 0 0 0 2Z 0 Zs Zz 7 0 0 -
D Zo Zo 7 0 022 0 Za Zo Z 0O -
DIII 0 ZoZoZ 0 0 0 2Z 0 Zo Zo Z -

ATl 220 Zo Zo Z 0 0 0 2Z 0 Zo Zz ---

CII 0 22 0 ZaZo 7 0 0 0 2Z 0 Zo
C 0 0 22 0 ZyZy Z 0O 0 0 2Z O
CI 0 0 022 0 ZyZe Z 0 0 0 27Z ---

TABLE II. Topological insulators (superconductors) with an integer (Z) classification, (A): in the complex symmetry classes,
predicted from the chiral U(1) anomaly, and (B): in the real symmetry classes, predicted from the gravitational anomaly (red),
the chiral anomaly in the presence of background gravity (blue), and the chiral anomaly in the presence of both background
gravity and U(1) gauge field (green).

This thus predicts the appearance of topological phases in
class D (d = 2), class C (d = 6), (51)

as well as all the other higher-dimensional topological phases that we can obtain from these by Bott periodicity.
(These are colored red in Table II.)

On the other hand, there is an analog of the “axial anomaly in the presence of a background gauge field” which
we discussed in section V A 2 in the context of symmetry class AIIl in D = 2n space-time dimensions. This analog
is the “axial anomaly in the presence of a background gravitational field”. If only a background gravitational field is
present, this anomaly exists in space-time dimensions

D=4k (d=4k-1). (52)
This covers symmetry classes
class DIIT (d = 3), class CI (d=7), (53)

as well as all higher-dimensional topological phases that we can obtain from these by Bott periodicity. (These are
colored blue in Table II.)
The anomaly polynomial related to the gravitational anomalies is known explicitly. It can be written as

Qp—s=A(R)|p (54)

where A(R) is the so-called Dirac genus given by

AR) =1+ L 1w

(4m)2 12
- L (tr R*)? + L R + (55)
— | —(tr —tr cee
(4m)2 [ 288 360
Here R is the D x D matrix of two-forms
1
Ry = 5 Rapp” dz®da? (56)

where R,p," is the usual Riemann curvature tensor, and the trace refers to the D x D matrix structure. This defines,
by the descent relation [which takes a form identical to Eq. (42)], the differential forms Qf&ll and QSC)?Q. As before,

the notation A(R)|p extracts a D-form from A(R). It is obvious from (55), that the anomaly polynomial exists only
for D = 4k because Eq. (55) is a function of R?. (Note that the descent relation Eq. (42) then implies the existence

of a purely gravitational anomaly QSC) 42(R) in D = 4k + 2 space-time dimensions, in agreement with Ref. 54.)
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3. Topological insulators (superconductors) in symmetry classes AI, BDI, AII, CII from the mized anomaly

Before proceeding let us briefly summarize the previous subsection: by considering various anomalies related to
gravity, we can predict the integer topological phases in the BdG symmetry classes D, DIII, C, and CI. (As mentioned
above, for a moment, we do not consider topological phases with Zs or 2Z topological charges). On the other hand,
we have so far not covered the description of topological insulators in symmetry classes AI, BDI, AIIl, and CII in
terms of anomalies.

So far, we have considered for the ‘real’ symmetry classes only those anomalies which involve solely gravity. Since
the (gapped) topological insulators in symmetry classes Al, BDI, AIl, and CII, also possess a conserved U (1) charge®3,
we can couple those to both, a U(1) gauge field as well as a gravitational background. Therefore, it is natural to
consider an anomaly which occurs in the presence of both, a background gauge and a background gravitational field.

As it turns out, even in the presence of both gauge and gravitational fields, the structure of the anomaly is similar
to the one discussed so far: the non-invariance of the effective action under a gauge transformation or coordinate
transformation can be expressed as

5oIn Z[A, e,w] = 2m'/ QW (v, Aw, F,R), (57)
Mp
where Qg)(v, A,w, F,R) can be derived from an associated anomaly polynomial which reads,33°
Qp(R, F) = (h(F)A(R)) |- (58)

As the right hand side is given simply given by the product of the anomaly polynomials for a gauge field [Eq. (44)]
and gravity [Eq. (55)], by switching off either R or F, we recover the results discussed in the previous subsections:
for all even spacetime dimensions D = d+ 1 = 2k (k = 1,2,...) we obtain a non-vanishing anomaly polynomial
Qp(R = 0,F) = Qp(F), which we have already used to predict topological insulators/superconductors in class
A (D = 2k + 1) and AIIl (D = 2k). For space-time dimensions D = d+ 1 = 4k (k = 1,2,...) we obtain a
non-vanishing anomaly polynomial Qp(R,F = 0) = Qp(R), which we have already used to predict topological
insulators/superconductors in class DIIT (D = 4 + 8k) and CI (D = 8 + 8k).

On the other hand, while both individual anomaly polynomials 2p(R = 0,F) = Qp(F) and Qp(R = 0,F) =
Qp(F) vanish in D = 4k + 2 dimensions, the one obtained from Eq. (58), namely Qp(R, F), is non-vanishing in these
dimensions.

As before, the anomaly polynomial itself is related to a ‘chiral anomaly in the presence of both gauge field and
gravity’ of the massive bulk system in D = 4k + 2 space-time dimensions, D, J¢ (z) = 2imypyp_1v + 2iAp(x), where
Ap(z) is given in terms of Qp(R,F). For this reason, one predicts also a topological insulator (superconductor)

in these space-time dimensions. Therefore, one predicts the occurrence of topological phases in spatial dimensions
d=9, (d=1)and d =5,

class BDI (d =9, (d=1)), class CII (d =5), (59)

as well as of all higher-dimensional topological phases that we can obtain from these by Bott periodicity.’® (These are
colored green in Table IT). Indeed, for class BDI and CII, we can realize these symmetry classes as a normal (i.e. not
superconducting) system, and hence they have a natural U(1) charge®®. The effective topological field theory for the
space-time dependent linear [electrical and gravitational (thermal)] responses possesses a term of topological origin of
the form [Qp(R,F), where D = 4k + 2.

Moreover, it turns out that a descent relation which is identical in form to Eq. (42) also holds for the ‘mixed’” anomaly

polynomial defined in Eq. (58). Therefore, the space-time integral of the Chern-Simons form Qi%)ﬂ of Qyp+2, which

is obtained from 4142 by using the descent relation, de&) +1 = Qag2, describes the term of topological origin in the
effective action for the linear responses in D = 4k + 1 space-time dimensions. This corresponds to a “mixed anomaly”

QSC) in the corresponding boundary theory in 4k space-time dimensions. For this reason, one predicts the occurrence
of topological insulators in spatial dimensionalities d = 0 and d = 4, for the two symmetry classes

class AI (d =0), class AIl (d =4), (60)

as well as for all their higher dimensional equivalents obtained from the Bott periodicity (These are colored magenta
in Table II).
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4. Atiyah-Singer Index Theorem

For all the symmetry classes with chiral symmetry the hamiltonian can be brought into block off-diagonal form?®.
Above we have discussed all symmetry classes of this form which possess topological insulators with a Z classification
(ie. Alllin D =2n, DIl in D =4+ 8k, Cl in D = 8+ 8k, CIll in D = 6 + 8k, BDI in D = 10 + 8k). A Dirac
hamiltonian H with chiral symmetry possesses an index, and the Atiyah-Singer Index Theorem?? relates the integral
of the anomaly polynomial discussed above to this index through the formula

index(H) = y Qp(R,F) (61)

where Qp (R, F) is the most general anomaly polynomial, as defined in Eq. (58) above. Here, the Dirac hamiltonian H
refers to the hamiltonian in a gravitational background and a background (Abelian or non-Abelian) gauge field. The
index index(#) is by definition an integer. We note that it is because of this theorem that the space time integral of
the anomaly polynomial represents a 6 term for the theory of the space time dependent linear gauge and gravitational
responses, and that the 6 terms only occur for symmetry classes possessing a chiral symmetry.

5. Global gravitational anomalies

The discussion that we have given so far for the connection between anomalies and topological insulators and
superconductors in “the primary series” (those located in the diagonal of the periodic table and characterized by an
integer topological invariant) can be extended to some of the “first and second descendants” (the topological insulators
and superconductors in the same symmetry class, but in one and two dimensions less than the one with a Z invariant;
these are each characterized by a Zs invariant). We propose that for these we need to use so-called global anomalies,
instead of the so-called perturbative anomalies that we have made use of in this section. Such anomalies do not affect
infinitesimal, but large (of order one) symmetry transformations.

It was found in Ref. 54 that global gravitational anomalies can exist, given certain assumptions are satisfied, (i): in
D =8k, in (ii): D = 8k+1 and (iii): in D = 4k+ 2 space time dimensions. If so, then following the same reasoning as
above, the presence of these anomalies would indicate the existence of a topological insulator in one dimension higher
(of which the anomalous system is the boundary). This would then indicate the existence of topological insulators
(superconductors) in space time dimensions (i): D = 8k + 1, (ii): D = 8k + 2 and (iii): D = 4k + 3 [corresponding to
spatial dimensions (i): d = 8k, (ii): d = 8k + 1 and (iii): d = 4k + 2]. Indeed, there exist Zy topological insulators
in these dimensions (Table II). More precisely, there exist two Zs topological insulators in these dimensions and at
this point we have not yet explored in detail which of the two (or if both) could be related to this global gravitational
anomaly. Moreover we note that there also exist other (i.e. not gravitational) global anomalies, and we propose
that the other, so far not yet covered Zy topological insulators can be obtained from considering these other global
anomalies.

We end by mentioning that the notions presented in this Section (Section V) may also be further supported by
the connection with the tenfold classification of D-branes*>*5: In the D-brane realizations of topological insulators
and superconductors, massive fermion spectra arise as open string excitations connecting two D-branes, which are
in one-to-one correspondence with the Dirac representative of the ten-fold classification of topological insulators and
superconductors, and come quite naturally with gauge interactions. The Wess-Zumino term of the D-branes gives
rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the #-term in various
dimensions.

VI. CONCLUSIONS

There are various important future research directions in the field of topological insulators and superconductors.
Let us mention two here. One is the search for experimental realizations of the topological singlet and triplet
superconductors in three spatial dimensions, besides the B phase of the He superfluid. Given how fast experimental
realizations of the quantum spin Hall effect in two spatial dimensions and the Z, topological insulators in three
dimensions have been found, one may perhaps anticipate a similar development for these three-dimensional topological
superconducting phases. Notably, Cu,BisSes, which arises from the familiar three-dimensional topological insulators
BiySes, was found to be superconducting at 3.8 K.°6 Subsequent theoretical work proposed that this superconducting
phase should be a topological superconductor.?” The various linear responses discussed in this paper, as summarized
in Table I, may become helpful in the search for, and for identifying various such topological phases.
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Another important issue is to complete the study of the effect of interactions for the symmetry classes so far not yet
included in the discussion given in Section V. (These include, in general dimensionalities the topological insulators
(superconductors) with a 27 classification, as well as the majority of those with a Zs classification.) Moreover,
this includes the case of symmetry class BDI in d = 1 spatial dimension (recall also Refs. 52 and 55), discussed
in the work of Refs. 58-60. Further important outstanding questions concern possible topological phases (besides
superconductors) which may arise from interactions rather than from band effects. How can one describe “fractional”
versions of the topological insulators (superconductors),?? and how can one classify bosonic systems such as e.g. spin
systems?%! Clearly, in order to address any of these interaction-dominated issues one cannot rely on a topological
invariant defined in terms of single-particle Bloch wavefunctions. Rather, a definition of topological quantum states
of matter in terms of responses to physical probes is necessary. In this paper we have developed a description of this
type for all topological insulators in three spatial dimensions, and for a significant part of the topological insulators
in general dimensions. From a conceptual point of view the gravitational responses are the most fundamental ones,
in that they apply to all topological insulators. Owing to Luttinger’s derivation®' of the thermal Kubo formula, these
correspond physically to thermal responses functions.
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