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An original and simple route towards achieving isotropic optical negative index in 3D is 
theoretically proposed. We show that, in contrast of previous studies, the plasmonic ring 
resonators, symmetrically split with odd number of gaps, have both degenerate electric and 
magnetic resonances and thus provide isotropic negative index if randomly distributed in a host 
medium. For even number of gaps, the electric and magnetic dipoles sufficiently overlap only by 
additional symmetry breaking which is demonstrated to allow a unique control of the relative 
contribution from higher order multipolar moments. 

 
Optical metamaterials have seen tremendous progress in the last few years [1-4]. Applications 
such as perfect lens [5], rainbow trapping and light stopping devices [6], directive antennas [7] 
and cloaking [8-9] are the main motivations because of their potential in the fields ranging from 
astrophysics, defense, medicine or integrated nanophotonics. As one of the best designs for 
negative index materials at optical frequencies, the fishnet has attracted a considerable amount of 
attention, and possible low loss operation in this structure is being addressed using optical gain 
[10]. However, even a loss free optical fishnet will not make the super lens because its index is 
unambiguously defined and negative only for normal incidence while a single light ray cannot 
form a sub-diffractional image. Recent studies have also shown that imaging using the complex 
dispersion of fishnet metamaterial leads to degraded performance compared to conventional 
imaging systems due to the narrow acceptance angle of fishnet [11]. While most applications, 
and especially the perfect lens, critically require a direction independent negative refractive 
index, optical isotropy has not been realized for any of the structures reported so far. Theoretical 
proposal have been made for structurally symmetric negative index, from microwave up to 
terahertz frequencies, but these systems suffer from issues limiting the possibility to push their 
operation to optical domain. The structure reported in [12] has high spatial symmetry which is 
however not synonym of isotropy [13] and required a lithographic resolution of 3nm for 
operation at 2μm wavelength. Coupled coaxial waveguides [14] was theoretically proposed for 
broad angle negative refractive index, but is still anisotropic since its index varies with the angle. 
Designs based on coupling of waveguides are two dimensional in nature [15] and will hardly 
lead to a 3D isotropic system. Physically, it is not possible to have the tensor response of a single 
non-degenerate atomic transition to be isotropic (linear and equal in all directions) [16]. The 



isotropy can either come from an averaging process of randomly oriented anisotropic particles if 
the transition is non-degenerate, or from the impossibility to separately excite the transitions if 
they are degenerate. 
An array of four metal nano-particles was proposed for pure magnetic response [17-18]. A 
magnetic mode was also experimentally observed in a unit cell of core shell nano clusters [19], 
but this system also failed in providing an electric mode spectrally overlapping with the magnetic 
mode.  
There have been two fundamental issues in the application the random particles route to negative 
index metamaterials. The first is that metamaterials with negative index have employed long 
wires for the negative permittivity thus preventing the use of discrete particles. The second is that 
even when discrete resonators are combined [20], two subsets of particles have been used to 
separately control the permittivity and the permeability. In such dual component systems, it is 
difficult achieve the required mixture. A single particle approach that can exhibit strong electric 
and magnetic moments with sufficient overlap is thus crucial for the success of isotropic negative 
index. In this letter, we identify a random monometatomic strategy to negative index using 
discrete meta-particles with overlapping electric and magnetic dipoles. We also show that it is 
possible to control the relative contribution of the second order degenerate multipolar radiation, 
departing from the solely dipole moments reliably controlled so far. This would open new 
avenues for the exploration of wave transport phenomena in random metamaterials as well as the 
design of more complex nanoantennas. 
The meta-atoms under consideration are presented in Fig. 1. The first is a split-ring resonator 
with one gap (odd) and the second is a cut wire pair with its symmetry broken along the long 
side of the wire [21]. We argue that a random distribution (positions and orientations) of these 
unit cells can lead to an isotropic and polarization independent negative index. 

The meta-atoms under consideration are bianisotropic and as such, bianisotropic mixing rules 
should be applied to predict the properties of the composites. Split-ring resonator (SRR) is well 
recognized as a magnetic meta-atom [22]. However, SRR is also an electric meta-atom, and this 
response was recently used to demonstrate a non-magnetic cloak [23]. The decomposition of Fig. 
1(a) shows that the electric and magnetic modes share the same structural resonance. This will be 
the case for all ring resonators symmetrically split with odd number of gaps. In periodic system 
of odd SRRs, it has not been possible to simultaneously exploit the electric and magnetic 
response because the dipole moment parallel to the wavevector does not contribute to the 
scattering. However, in a random distribution of odd split-ring resonators, the two dipole 
moments can be simultaneously excited while the resonances are naturally overlapping, resulting 
in an isotropic metamaterial. Odd-ring resonators can make negative index only in random media 
(illustrated here with one gap). Symmetrically cut ring resonator or bars with even number of gap 
have a degenerate magnetic dipole and electric quadrupole moments [24], but in general no 
overlapping electric and magnetic dipole moments in frequency if the bars are symmetrically 
aligned. However, breaking the symmetry of the double bars by shifting one of them in the 
direction of the wires (Fig. 1(b)) allows an overlap. A random distribution of such broken 



symmetry bar-pairs also builds up an isotropic negative index composite. Non-isotropic negative 
index can be achieved in periodic arrangement of broken symmetry even-rings (see ref. 25). 
The most general way of describing an electromagnetic effective medium is given by: 
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where ε, μ, ξ and ζ are the permittivity, permeability and magneto-electric coupling terms. 
Adopting the 6Χ6 vector notation, the effective materials parameter Meff gives the relation 
between the vacuum field e and the average flux densities <d> though: <d>=M0e + <P>= Meff e, 
<P> being the average polarization six vector. In order to predict the properties of the mixture, 
the polarizability of the elementary particle thus need to be known [26-27]. A host dielectric with 
a refractive index of 1.33 (water) is considered in our calculations for sake of possible 
realization. However, any isotropic non-magnetic background will simply modify the resonant 
frequencies of the particles while the underlying physics remains the same. The general form of 
the polarizability tensor of a split-ring resonator has already been reported in numbers of 
previous papers ([28] and references therein). The multipoles decomposition [29] of the field as 
well as the calculation of the dynamic electric and magnetic polarizabilities are carried out 
numerically using a three dimensional finite element Maxwell equation solver. The dimensions 
of the square metallic SRR resonator are w=60nm (width); t=30nm (thickness); L=240nm (side 
length). Fig. 2 confirms quantitatively that the electric and magnetic resonances indeed occur at 
the same frequency. For split-ring resonator particle, the electric quadrupole resonance occurs at 
higher frequency than the degenerate electric magnetic dipoles. Using the Maxwell-Garnett 
formalism the effective permittivity and permeability of a random distribution of such split-ring 
particles are presented on Fig. 2(c) as a function of the filling fraction at λ= 2.4μm where the two 
polarizabilities are negative. The number of particles per unit volume, n, is simply related to the 
filling fraction f and the volume of the particle (cube enclosing the particle) by f=n.vparticle. We 
found that the permittivity and permeability are simultaneously negative for filling fraction of 
~40%. This filling fraction can be reduced by working at lower frequencies where the 
polarizabilities will be more important due to lower Drude loss from the metal. We underline 
here that comparable filling fraction have been recently reported experimentally for study of 
metallic nano-particles [30]. The high confinement of fields in SRRs at the fundamental 
resonance also prevents inter-particles coupling. Negative index obtained for lower filling 
fraction around ~21% (Fig. 2(d)) corresponds to a single negative medium. Our further 
calculation revealed that the effective parameters are not negative for random split-ring resonator 
with one gap in the visible region. The first reason is the increasing contribution of the kinetic 
energy of electrons at higher frequencies [31] and the second reason is the fact that, contrary to 
the case where the resonators are aligned, only one third of the polarizability of a split-ring 
resonator now works to cancel the incident field for a given direction. The saturation of the 
magnetic response thus comes earlier in frequency (infrared) in the random system compared to 
fully aligned configuration where it occurs in the visible. However, the maximum frequency can 
be increased by using split-rings with increasing odd number of gaps [31]. The ring geometry 



reported in reference 32 for visible wavelengths can indeed be regarded as a multigap SRR 
where conduction currents are progressively replaced by displacement currents [32]. However, 
this geometry does not exhibit a degeneracy of the electric/magnetic resonance irrespective of 
the parity of the number of particles, making it unsuitable for isotropy. The effective 
bianisotropic parameter is proportional to the effective chirality in the 3D random medium. Since 
SRRs have a plane of symmetry, we can conclude that the effective magneto-electric coupling 
should be zero in the random system. 

The difficulty to scale SRR to higher frequencies calls for new design. We propose the shift-bar 
system of Fig. 1(b) which is to the best of our knowledge the only discrete particle reported so 
far that can be potentially scaled to the visible and exhibit strong overlapping magnetic and 
electric dipole moments. In this system, Δω, the frequency difference between electric and 
magnetic dipoles can be continuously altered from positive to negative values by the level of 
symmetry breaking, i.e. the shift between two bars. Positive Δω corresponds to the usual 
situation with the magnetic mode at lower energy compared to the electric mode, while negative 
Δω corresponds to the opposite situation. The structure can be described by the electric, 
magnetic and magneto-electric polarizabilities tensors of the form:  
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We shall ensure that for the description with the tensors above, the matrix coefficients are non 
zero. Apart from brute force calculation of these coefficients, a simple “gedanken” experiment 
can be performed. It is obvious that αeexx and αmmzz can be taken non zero. Let now consider the 
plane wave excitation at normal incidence of the particle of Fig. 1(b) with E=E0ex and k=k0ez. It 
is not possible to excite the magnetic dipole because the two cut wires sit in an equiphase plane 
of the exciting field. We can thus conclude that αemxz =0. The electric and magnetic 
polarizabilities are numerically calculated as a function of the relative shift of the bars. While the 
dipoles modes are spectrally separated in the initial configuration (shift=0 symmetric case), they 
largely overlap and cross each other for sufficient shift of the bars (Fig. 4). The coupling strength 
κ between the two bars in the shift-bar particle can be expressed as: Δω= ω+- ω- =κω0, where ω+ 
and  ω- are frequencies of the symmetric and antisymmetric modes respectively and ω0 is the 
resonance frequency of uncoupled bars. The crossing of the eigenmodes of the structure can thus 
simply be interpreted as a negative coupling between the particles and a random collection of 
such negatively coupled bars builds an isotropic negative index metamaterial. To illustrate the 
possibility of achieving negative index in a random distribution of such particles, we calculated 
the effective parameters as a function of the filling fraction (see Fig. 3) for the shift-bar particle 
with the bars also embedded in water. It appears that filling fraction of ~23% around 1.7μm 
generate a negative index medium. At that wavelength, the medium is double negative and the 
effective index is n~-1. The real and imaginary parts of the index are presented in the insets of 



Fig. 3(a) and 3(c) respectively. It can also be noticed in Fig. 3 that resonance wavelength of the 
permittivity moves to longer wavelength with the filling fraction. This can simply be understood 
as a continuous transition of the electric response towards a Drude model. 
For the shift-bar particles, the magnetic dipole and electric quadrupole are degenerate. They are 
contribution from respectively the antisymmetric and symmetric parts of the current in the 
symmetrical bar-pair (Fig. 1(b)). It is thus not possible to suppress preferentially one of them in 
this system. However, the relative contribution of these second order multipolar radiations can 
surprisingly be controlled by symmetry breaking (Fig. 4). Larger relative shift of the bars 
decreases the magnetic dipole while enhances the electric quadrupole. For the non shift-bar 
meta-atom (shift=0), the scattering cross section of the magnetic dipole is ~3.5 times that of the 
electric quadrupole. In contrast, for the meta-atom with shift=240nm, the electric quadrupole 
contribution becomes ~2.75 times more than the magnetic dipole. This can be qualitatively 
explained by the progressive elimination of the loop needed to obtain a magnetic moment. We 
have thus identified a method to control higher order multipolar moment in metamaterials. This 
unique ability as well as the recent identification of toroidal moment in metamaterials [33] is in 
sharp contrast with works reported so far where the control was limited to the lower order 
electric and magnetic dipoles, and will open a new avenue in the control of more elaborated 
meta-structures as well as the design of complex nanoantennas. The resonant modes (electric, 
magnetic dipoles and electric quadrupole) of our meta-atom can for example be made to 
spectrally overlap (shift~120nm) so that to create a metamaterial super scatterer [34]. 
The extent to which mixing theories actually predict the behavior of complex mixture has been a 
long standing question [35]. However, we have validated our calculations in periodic systems, 
more stringent in term of interparticle coupling (see ref. 25). More elaborated calculation such as 
Monte Carlo simulations could be used to better estimate the coherent coupling between the 
particles [36-37]. Such calculations are however beyond the scope of this letter. Nevertheless, 
our work revealed a class of particles that can achieve isotropic optical negative index, but also 
call for experiments in those systems. Recent studies revealed that broader loss should be 
expected in real experiment [30] especially in the presence of multipolar radiation. The principal 
contribution of this paper lies in the classification of ring resonators and the identification of 
discrete particles with overlapping electric and magnetic responses at optical frequencies. The 
particles proposed here can be made by bottom up self assembly methods, or top down 
fabrications. The meta-atoms could then be dispersed into any liquid or gel media, followed by 
condensation to fabricate the 3D isotropic negative index medium. Such explorations will be 
crucial for further development in the field of plasmonic metamaterials. 
 
In conclusion, we have demonstrated a random monometatomic route to 3D isotropic negative 
index based on ring-resonators symmetry/parity. We showed that symmetrically cut ring 
resonators with odd number of gaps and broken symmetry ring resonators with even number of 
gaps lead to isotropic negative index if randomly distributed in a host medium. The proposal 
conceptually differs from strategies reported so far and is based on discrete particles each with 



overlapping and sufficiently strong electric and magnetic dipole moments. We have also 
identified a mechanism toward the control of second order multipoles of a metamaterial. This 
work open a new door for electromagnetic field control beyond the effective medium approach 
as well as mixing using active and non-linear metamaterials. 
 
Note: During the review process of this paper, another paper on a similar topic, NJP 13, 123017, 
(2011) came to our knowledge. 
 
 
 

 

FIG. 1. Energy diagram of the degenerate transitions of symmetrically cut, odd and even ring 
resonators. (a) Decomposition of the fundamental resonance of one gap split-ring resonator as a 
superposition of magnetic (M) and electric (P) dipole resonances. (b) The antisymmetric mode 
of a broken symmetry bars pair (shift-bar) as a superposition of magnetic (M) dipole and electric 
quadrupole (Q) modes. Dashed lines represent displacement currents. Cartesian coordinates with 
origins at the center of the particles are used. 

 

 

 

 

 



 

FIG. 2 (color online). (a) Magnetic and (b) electric polarizabilities of the one gap split-ring 
resonator. Black (continuous black) and blue (continuous dark grey) are real and imaginary parts 
respectively. (c) Real parts of the relative permittivity (continuous black) and permeability (red, 
continuous dark grey) as a function of the filling fraction at λ=2.4μm and (d) corresponding 
effective index (real and imaginary parts) for randomly distributed split-ring resonators. 

 
 
 
 
 
 
 
 



 

FIG. 3 (color online). Real and imaginary parts of the relative permittivity (a, c) and permeability 
(b, d) as a function of the wavelength and the filling fraction for randomly distributed shift-bar in 
water with shift=120nm. The dimensions of the particle are L=340nm (length), w=40nm (width), 
t=30nm (thickness) and s=70nm (separation). Insets in (a) and (c) are real and imaginary parts of 
the effective refractive index as a function of the filling fraction at 1.7μm. 

 

 

 



 
FIG. 4 (color online). Scattering cross sections (μm2) of electric dipole (left axis) as well as 
electric quadrupole and magnetic dipole (right axis) of the shift-bar particle in water for different 
shifts. 
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