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We study how a Luttinger liquid of spinless particles in one dimension approaches thermal equi-
librium. Full equilibration requires processes of backscattering of excitations which occur at energies
of order of the bandwidth. Such processes are not accounted for by the Luttinger liquid theory. We
treat the high-energy excitations as mobile impurities and derive an expression for the equilibration
rate in terms of their spectrum. Our results apply at any interaction strength.

PACS numbers: 71.10.Pm

The concept of Luttinger liquid was proposed by
Haldane as an effective low-energy description of one-
dimensional systems of interacting fermions1 or bosons2.
The main feature of this theory is that regardless of the
statistics of the particles, the low-energy excitations of
the system are bosons. The latter propagate at a fixed
velocity v in either left or right direction and have the
meaning of the waves of particle density, analogous to
phonons in solids.

In its simplest form the Luttinger liquid is described
by a Hamiltonian quadratic in boson variables, resulting
in excitations with infinite life time. Once excited, such a
system will never reach thermal equilibrium. Absence of
equilibration is the physical reason3 for perfect quantiza-
tion of conductance of a quantum wire connected to ideal
leads, when the electronic system in the wire is treated
as a Luttinger liquid4–6. Of course, real systems do equi-
librate, possibly explaining the experimentally observed
corrections to quantized conductance7–9. Equilibration
of one-dimensional boson systems was recently studied
in atomic traps10,11.

A finite life time of excitations in the Luttinger liq-
uid can be understood if small anharmonic corrections
are added to the Hamiltonian. Such perturbations are
irrelevant in the sense that their effect rapidly decreases
as the temperature approaches zero. However, they are
responsible for the interaction of bosonic excitations and
therefore for their equilibration. Scattering of the excita-
tions caused by the anharmonic coupling terms preserves
not only their total energy but also momentum. Thus
the resulting equilibrium distribution of the bosonic ex-
citations

Nq =
1

e~(v|q|−uq)/T − 1
(1)

is controlled by two parameters, temperature T and ve-
locity u. Here q is the wave vector of the excitation.

It is important to note that translation invariance of
the problem ensures conservation of the total momen-
tum of the system, rather than that of its elementary
excitations. This subtle distinction can be understood

by considering the expression

P =
π~N

L
J +

∑

q

~q b†qbq (2)

for the momentum of a Luttinger liquid1,2. Here bq is
the boson annihilation operator, N is the total number of
particles, L is the system size. Periodic boundary condi-
tions require that J be an even number if the underlying
physical particles are bosons, while for fermions J + N
must be odd. The first term in Eq. (2) accounts for the
momentum associated with the motion of the system as
a whole, which is possible even in the absence of excita-
tions.
Unless additional conservation laws are present, one

should expect the existence of scattering processes which
transfer momentum between the excitations and the sys-
tem as a whole. The minimum momentum transfer
∆p = 2π~N/L corresponds to J changing by 2. Be-
cause the typical momentum of an excitation ~q ∼ T/v
is small at T → 0, such processes involve a large number
of excitations. They are not included in the standard
Luttinger liquid theory. Although their rate is small,
these processes are required for the full equilibration of
the Luttinger liquid. Physically one expects them to lead
to relaxation of the velocity u of the gas of excitations in
Eq. (1) towards an equilibrium value vd,

u̇ = −u− vd
τ

. (3)

We limit our consideration to Galilean invariant systems
of particles, whose mass is denoted by m. In this case
the system must be at rest in a reference frame moving
with the center of mass, and vd = P/mN .
Equilibration of the electron liquid in a quan-

tum wire gives rise to a correction to the quantized
conductance3,12–14, which can be expressed in terms of
v and the equilibration time τ . The latter has been
studied in the limits of weakly and strongly interacting
electrons13,14. The goal of this paper is to develop a
theory of equilibration of spinless Luttinger liquids valid
for any interaction strength. Although we are primarily
interested in one-dimensional electrons, our result for τ
applies to both fermionic and bosonic Luttinger liquids.
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FIG. 1: (a) The simplest backscattering process in a weakly
interacting Fermi gas involves three particles, including one
near the bottom of the band. (b) Backscattering of a fermion
at the bottom of the band can be interpreted as a hole exci-
tation overcoming a barrier at Q = kF .

We start by reviewing the simplest case of a system
with Luttinger liquid behavior at low energies, namely,
the weakly interacting Fermi gas. In fermionic Luttinger
liquids the integer J can be interpreted1 as the differ-
ence of the numbers of right- and left-moving fermions,
J = NR − NL. Clearly, the scattering process chang-
ing J by 2 involves backscattering of a fermion, ∆NR =
−∆NL = ±1. Because of conservation of energy and mo-
mentum, two-particle scattering in one dimension results
only in particles exchanging their momenta, and the dis-
tribution function remains unchanged. Thus the simplest
scattering process involves three particles, see Fig. 1(a).
Simultaneous conservation of momentum and energy re-
quires involvement of hole states below the Fermi level.
At T → 0 the most efficient process involves a hole near
the bottom of the band, whose scattering is accompa-
nied by creation and collapse of particle-hole pairs with
energies of order T near the two Fermi points15. Since
the occupation probability of a hole state near k = 0
is exponentially small, one finds a small equilibration
rate τ−1 ∝ e−EF /T , where EF = ~

2k2F /2m is the Fermi
energy13.
It is instructive to rephrase the above argument in the

language of a hole excitation with wave vector Q and
energy ǫ(Q) = ~vFQ(1−Q/2kF ) constructed by moving
a fermion from state kF −Q to the Fermi level state kF .
(Here vF is the Fermi velocity.) The hole is scattered
off of particles near the Fermi level, with its momentum
changing in steps of ∆Q ∼ T/vF . Backscattering occurs
when such a hole crosses the point Q = kF , Fig. 1(b).
This picture can now be generalized to the case of ar-

bitrary interaction strength. The particle hole pairs with
momenta ~q ∼ T/v near the two Fermi points trans-
form into the bosonic excitations in the Luttinger liquid1.
On the other hand, the hole with the large wave vector
Q ∼ kF is not accounted for by the Luttinger liquid the-
ory and should be treated as a mobile impurity16–19. In
the presence of interactions its energy ǫ(Q) is defined as
that of the lowest energy state of momentum ~Q, mea-
sured from the ground state. Throughout this paper
we assume that ǫ(Q) remains concave. Then the equi-
libration rate shows activated temperature dependence
τ−1 ∝ e−ǫ(kF )/T , where kF = πn0 is determined by the

average particle density n0 = N/L.
To obtain a full expression for the equilibration rate,

the distribution function of the holes should be consid-
ered carefully. To first approximation it can be obtained
by noticing that the holes are scattered by the bosonic
excitations, distributed according to Eq. (1). These scat-
tering events involve exchange of both energy and mo-
mentum between the hole and the bosons, leading to the
equilibrium distribution

f(Q) ≃
{

e−ǫu(Q)/T , Q < kF ,
e−[ǫu(Q)+2~kF u]/T , Q > kF ,

(4)

where ǫu(Q) = ǫ(Q) − ~uQ. The apparent asymmetry
between the cases of right- and left-moving holes, Q < kF
and Q > kF , is caused by our convention to measure the
momentum Q of the hole from the right Fermi point,
k = +kF .
The discontinuity of the hole distribution function (4)

at Q = kF originates from the implicit assumption that
the right- and left-moving holes are distinct particles. In
reality, the backscattering processes shown in Fig. 1 con-
vert right-moving holes into left-moving ones, thereby
smearing the discontinuity of the distribution function
f(Q). Because the hole moves in momentum space via
random small steps of ∆Q ∼ T/~v, this motion is dif-
fusive. Such diffusion was considered previously for the
cases of weakly-interacting13 and strongly-interacting14

electrons. It is described by the Fokker-Planck equation

∂tf = −∂QJ, J = −B(Q)

2

[

ǫ′u(Q)

T
+ ∂Q

]

f, (5)

where the expression for the probability current J as-
sumes that the system as a whole is at rest, vd = 0,
and prime denotes the derivative with respect to Q. The
diffusion constant in momentum space

B(Q) =
∑

δQ

[δQ]2WQ,Q+δQ (6)

is defined in terms of the rate WQ,Q+δQ of scattering
events changing the wave vector of the hole from Q to
Q+ δQ.
We now find a stationary solution of the Fokker-Planck

equation with the boundary conditions (4), which gives
a uniform in Q-space probability current

J = uB(kF )
~kF
T

( |ǫ′′(kF )|
2πT

)1/2

e−ǫ(kF )/T . (7)

Here to obtain the expression for J to leading order in u
we neglected the difference between ǫ(Q) and ǫu(Q).
A non-zero probability current J means that the holes

backscatter at a rate JL/2π. With each backscattering
event transferring momentum ∆p = 2~kF from excita-
tions to the motion of the system as a whole, we find
Ṗex = −JL~kF/π. Comparing this result with the ex-
pression Pex = (πLT 2/3~v3)u for the total momentum



3

of the excitations obtained using the distribution (1), we
find the relaxation law u̇ = −u/τ with the rate

τ−1 =
3~k2FB

π2
√
2πm∗T

(

~v

T

)3

e−∆/T . (8)

Here ∆ = ǫ(pF ), the effective mass of the hole m∗ =
−~

2/ǫ′′(kF ), and the diffusion constant B = B(kF ) re-
mains to be determined.

Following Refs.16–19, we treat the hole in a Luttinger
liquid as a mobile impurity. The Fokker-Planck equa-
tion for such an impurity was discussed in Ref.20. The
parameter B was found to scale as

B = χT 5 (9)

at T → 0. The approach of Ref.20 does not allow for
the determination of the coefficient χ. The latter is con-
trolled by the interactions between the physical parti-
cles forming the Luttinger liquid. In the limit of strong
Coulomb repulsion it was calculated in Ref.14. A re-
lated calculation was performed in the context of decay of
dark solitons in weakly-interacting one-dimensional Bose
systems21.

Our next goal is to obtain an exact expression for the
coefficient χ in Eq. (9) for arbitrary interactions between
the particles forming the Luttinger liquid. Microscop-
ically the case of arbitrary interaction strength can be
approached only for integrable systems, where an infi-
nite number of conservation laws allows one to diagonal-
ize the Hamiltonian exactly. However, the same conser-
vation laws ensure that the excitations have infinite life
times and B = 0. We thus develop a phenomenological
theory and express B in terms of hole spectrum ǫ(Q).

We describe the system in terms of the displacement
u(y) of a small element of the liquid from its refer-
ence position y in a state of uniform particle density
n0, and the conjugate momentum density p(y) such that
[u(y), p(y′)] = i~δ(y − y′). In the absence of the hole
excitations the Hamiltonian of the liquid can be written
as

HL =

∫
[

p2

2mn0
+ n0U(n)

]

dy, (10)

where U(n) is the internal energy per particle, deter-
mined by the fluctuating density n(y) = n0/[1 + u′(y)].
Expanding (10) up to the third order in small deforma-
tion u′ one finds

HL =

∫
(

p2

2mn0
+

mn0v
2

2
u′2 − αu′3

)

dy. (11)

Here the sound velocity v = [(2n0U
′ + n2

0U
′′)/m]1/2 and

α = n2
0U

′ + n3
0U

′′ + n4
0U

′′′/6. The quadratic part of
Eq. (11) is the Hamiltonian of the Luttinger liquid, which
can be brought to the form

∑

~v|q|b†qbq by introducing

the boson operators bq via the standard procedure

u(y) =
∑

q

√

~

2mn0Lv|q|
(bqe

iqy + b†qe
−iqy), (12a)

p(y) = −i
∑

q

√

~mn0v|q|
2L

(bqe
iqy − b†qe

−iqy).(12b)

The presence of a hole excitation at the point in the liq-
uid with reference position Y is accounted for by adding
a term Hh = ǫ(Q) = ǫ(−i∂Y ) to the Hamiltonian (11).
Since our goal is to evaluate B = B(kF ), we assume that
Q is near kF = πn0 and use the expansion

Hh = ∆(n(Y ))− ~
2

2m∗(−i∂Y − πn0)
2. (13)

It is worth mentioning that our Hamiltonian is written
in terms of the Lagrangian variable u(y) defined as func-
tion of reference position y, rather than Eulerian variable
n(x) at the physical position x = y + u(y). The two ap-
proaches are, of course, equivalent and lead to the same
results22. Although the use of Eulerian variables is more
common in the Luttinger liquid theory, our method has
the advantage of more simply accounting for the Galilean
invariance of the problem. In addition, since Y is the po-
sition of the hole in the reference state of uniform density
n0, the maximum of ǫ(Q) is located at Q = πn0, regard-
less of the physical density n. On the other hand, the
maximum value ∆ is a function of n = n0/(1 + u′). This
dependence gives rise to interaction of the hole with the
Luttinger liquid. Expanding (13) in u′, we obtain

Hh = −β1u
′(Y )+β2[u

′(Y )]2− ~
2

2m∗
(−i∂Y −πn0)

2, (14)

where β1 = n0∆
′, β2 = n0∆

′ + n2
0∆

′′/2, and we omitted
the constant ∆(n0). Note that unlike the calculation
of the dynamic correlation functions16–19, evaluation of
the diffusion constant requires expansion of Hh to second
order in bosonic fields.
In order to find the diffusion constant in momentum

space B(kF ), Eq. (6), we evaluate the scattering rate
WQ,Q+δQ. The momentum of the hole changes as it in-
teracts with the bosonic excitations, see Eqs. (14) and
(12). The processes involving one boson cannot simul-
taneously conserve both energy and momentum of the
system. The simplest allowed process for a hole near
Q = πn0 involves absorption of a boson q1 and simulta-
neous emission of a boson q2 such that q2 ≈ −q1

14,20,21.
The scattering rate is then found from the Fermi golden
rule expression

WQ,Q+δQ =
2π

~

∑

q1,q2

|tq1,q2 |2Nq1(Nq2 + 1)δq1−q2,δQ

×δ(ǫ(Q)− ǫ(Q+ δQ) + ~v|q1| − ~v|q2|).

The matrix element tq1,q2 accounts for all processes that
destroy boson q1 and create boson q2. For example, a
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contribution proportional to β2b
†
q2bq1 is found in the sec-

ond term in Eq. (14). Identical scattering processes can
be obtained in the second-order perturbation theory with
amplitudes proportional to β2

1 or αβ1. The calculation is
simplified considerably by applying to the Hamiltonian
the unitary transformation U †(HL +Hh)U with

U = exp

(

iβ1

~mn0v2

∫ Y

−∞

p(y)dy

)

. (15)

This removes the −β1u
′(Y ) term in (14) and generates a

correction to β2 proportional to αβ1. In addition, a new
term p2(Y ) is generated with the coefficient proportional
to β2

1 . Both the [u′(Y )]2 and p2(Y ) terms contain con-
tributions of the form b†q2bq1 and give rise to the matrix
element

tq1,q2 = −~
√

|q1q2|
mn0Lv

(

β2 −
3αβ1

mn0v2
+

β2
1

2m∗v2

)

. (16)

In addition to the amplitude β2 describing the coupling
of the hole to two bosons there are two additional contri-
butions in parentheses. The second term accounts for the
possibility of the hole coupling to a single boson which
then decays into two bosons. Such processes are possi-
ble due to the non-linearity of the excitation spectrum
near the Fermi level which gives rise to the cubic term
−αu′3 in Eq. (11). The last term accounts for coupling
to one boson in second order, and its magnitude is con-
trolled by the curvature 1/m∗ of the hole spectrum near
the maximum.
Using the expression (16) we recover the temperature

dependence (9) with the coefficient χ given by

χ =
4π3n2

0

15~5m2v8

(

∆′′ − 2v′

v
∆′ +

∆′2

m∗v2

)2

, (17)

where prime denotes the derivative with respect to the
particle density n0. The above result completes our eval-
uation of the relaxation rate of a Luttinger liquid, given
by Eqs. (8), (9), and (17). The rate has activated tem-
perature dependence with both the activation tempera-
ture ∆ and the prefactor determined by the spectrum of
holes ǫ(Q).
Although our result is applicable at any interaction

strength, the spectrum ǫ(Q) is known analytically only in
a few special cases. For non-interacting spinless fermions
∆ is given by the Fermi energy (π~n0)

2/2m, v is the
Fermi velocity π~n0/m, and m∗ = m. This results in
χ = 0, as there is no scattering of holes in the absence
of interactions. In the limit of weak interactions, the
spectrum ǫ(Q) should be evaluated up to second order
in interaction strength. This gives rise to a result22 for
χ consistent with the rather complicated expression for
the three-particle scattering amplitude15 that controls
the scattering of holes, Fig. 1(a). In the limit of strong
long-range repulsion, the system forms a Wigner crystal,
and the hole spectrum coincides with that of phonons in
the crystal. Assuming the interactions fall off faster than

1/|x| at large distances, the Luttinger liquid theory ap-
plies to the Wigner crystal. We have verified that in this
regime our expression (17) recovers the results of Ref.14.
We have also found that in the case of weakly interacting
bosons Eq. (17) is consistent with the expression for the
mobility of the so-called dark soliton21.
At arbitrary interaction strength the spectrum of holes

is known only for integrable models. As we already men-
tioned, integrability means absence of scattering of exci-
tations, B = 0. We have verified that our expression (17)
vanishes for the Calogero-Sutherland model of particles
with inverse-square repulsion23, and for the Lieb-Liniger
model of bosons with point-like repulsion24,25.
Comparison of measured equilibration rates with the

prediction (8) should be performed at temperatures
somewhat lower than ∆, so that the exponential e−∆/T

is small but the rate (8) is still measurable. It is worth
mentioning that in quantum wires ∆ and the shape of
the hole spectrum ǫ(Q) can be measured by studying
momentum resolved tunneling between two wires26.
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