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We report two dimensional Dirac fermions and quantum magnetoresistance in single crystals
of CaMnBiz. The non-zero Berry’s phase, small cyclotron resonant mass and first-principle band
structure suggest the existence of the Dirac fermions in the Bi square nets. The in-plane trans-
verse magnetoresistance exhibits a crossover at a critical field B* from semiclassical weak-field B2
dependence to the high-field unsaturated linear magnetoresistance (~ 120% in 9 T at 2 K) due to
the quantum limit of the Dirac fermions. The temperature dependence of B* satisfies quadratic
behavior, which is attributed to the splitting of linear energy dispersion in high field. Our results
demonstrate the existence of two dimensional Dirac fermions in CaMnBis with Bi square nets.
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The magnetoresistance (MR) of condensed matter gives information about the characteristics of the Fermi surface
and provides promising candidates for magnetic memory or other spintronic devices.! ® The normal MR in conventional
metals is small because semiclassical transport gives quadratic field-dependent MR in the low field range which would
saturate in the high field.> Application of strong magnetic field (B) leads to quantization of the orbital motion and
results in quantized Landau levels F,, (LLs). In the extreme quantum limit where only the lowest LL dominates, a large
linear MR could be expected.* ® However, the required magnetic field for the quantum limit in metals with parabolic
bands is usually very large because LLs are equidistant. The exceptions are large linear MR in Aga_sTe/Se and Bi film
below 6 T.>7 A. A. Abrikosov proposed that the linear MR is intimately connected with linear energy dispersion* and
recent first principle calculations confirmed the existence of surface states with linear energy-momentum relationship,
the so-called Dirac fermions.”

The distance between the lowest and 1% LLs of Dirac fermions in magnetic field is very large. The quantum
limit where all of the carriers occupy only the lowest LL is easily realized in relatively small fields.'%!* Consequently
large linear MR, could be achieved. Besides Aga_sTe/Se, the unsaturated linear MR and other quantum transport
phenomena were experimentally observed in other Dirac materials, such as topological insulators (TIs), graphene and
some organic conductors.'? 16 Recently, highly anisotropic Dirac states were observed in SrMnBig,'” where linear
energy dispersion originates from the crossing of two Bi 6p, , bands in the double-sized Bi square net which is a part
of (SrBi)* layer.1718

In this work, we report the quantum oscillation and magnetoresistant behavior in CaMnBi, single crystals with
different layered structure but similar two dimensional (2D) Bi square nets when compared to StMnBis. The non-zero
Berry’s phase, small cyclotron resonant mass and first-principle band structure suggest the existence of Dirac fermions
in the Bi square nets. The quasi-2D in-plane transverse magnetoresistance exhibits a crossover at a critical field B*
from semiclassical weak-field B? dependence to the high-field linear-field dependence. The temperature dependence
of B* satisfies quadratic behavior attributed to the splitting of linear energy dispersion in high field.

Single crystals of CaMnBiy were grown using a high-temperature self-flux method.'® Stoichiometric mixtures of Ca
(99.99%), Mn (99.9%) and excess Bi (99.99%) with ratio Ca:Mn:Bi=1:1:9 were sealed in a quartz tube, heated to 1050
°C and cooled to 450 °C where the crystals were decanted. The resultant crystals are plate-like and the basal plane
of a cleaved crystal is the crystallographic ab-plane. Electrical transport measurements up to 9 T were conducted in
Quantum Design PPMS-9 with conventional four-wire method. In the in-plane measurements, the current path was
in the ab-plane, whereas magnetic field was parallel to the c-axis except in the rotator experiments. In the out of
plane (c-axis) resistivity measurements, electric current and magnetic fields were parallel to the c-axis. High field MR
oscillation up to 35 T were performed at National High Magnetic Field Laboratory in the same configuration to the
in-plane MR. The magnetization measurements were performed in a Quantum Design MPMS in both
zero field cooling (ZFC) and field cooling (FC). Fist principle electronic structure calculation were performed
using experimental lattice parameters within the full-potential linearized augmented plane wave (LAPW) method?®
implemented in WIEN2k package.?! The general gradient approximation (GGA) of Perdew et al.,>?> was used for
exchange-correlation potential.

CaMnBiy unit cell with P4/nmmm space group contains alternatively stacked two MnBi, tetrahedron layers and
a 2D Bi square net separated by Ca atoms along the c-axis (Fig. 1(a)). The MnBiy tetrahedrons are less distorted
and the lattice is smaller when compared to StMnBiy with I4/mmm space group since Ca has smaller radius than
Sr.1%23 The in-plane resistivity pqs(T) (Fig. 1(b)) is metallic with a weak anomaly at ~ 50 K. The resistivity along
the c-axis is higher in magnitude than the in-plane resistivity with p.(T")/pas(T) ~ 10 — 15 below 100 K. In what
follows we will only discuss the in-plane MR. An external magnetic field enhances the low-temperature resistivity
and the MR ratio MR= (pas(B) — pab(0))/pap(0) reaches 120% at 2 K in 9 T field. As the temperature is increased,
the magnetoresistance is gradually suppressed and becomes negligible above ~ 50 K. Magnetization shows a kink at
~ 250 K indicating an antiferromagnetic (AFM) transition (Fig. 1(d)). The anomaly in the resistivity at 50 K is
clearly not related to the AFM order and is possibly due to the weak ferromagnetic order or impurity scattering since
the magnetization shows an upturn around that temperature, which is denoted by arrow in Fig. 1(c).

The spin polarized first-principle calculation reveals that the net magnetization in the unit cell is nearly zero
confirming the AFM ground state (Fig. 1(d) and (e)). The structure with Néel-type AFM configuration in the ab-
plane has the lowest energy in first-principle calculation because the MnBiy layers are separated by Ca and Bi layers
along the c-axis and consequently the inter-layer coupling is rather weak. The density of states (DOS) at the Fermi
level of CaMnBiy (Fig. 1(d)) is dominated by the contribution from states in Bi square nets since the AFM order of
Mn ions expels the states of Mn away from the Fermi level. The band structure (Fig. 1(e)) confirms this. There are
two narrow bands at the Fermi level with nearly linear energy dispersion along the I' — M and the A — Z directions
in addition to a wide band along the X — R direction. Hence the 2D Bi square nets of CaMnBiy host Dirac states
with quasi-2D Fermi surfaces (FS).

The magnetotransport of solids only responds to the extremal cross section S of the Fermi surface along the field
direction. For a (quasi-) 2D FS, the cross section has Sp(0) = Sy/|cos(d)| angular dependence, and 2D states will
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FIG. 1. (Color online) (a) Crystal structures of CaMnBiz. Bi atoms in 2D square nets are shows by red balls. Ca atoms are
denoted by green balls. Another location of Bi atoms is denoted by purple balls. Mn atoms are denoted by orange balls. Blue
lines define the unit cell. (b) Temperature dependence of the in-plane resistivity pqs»(7") (open symbols) and c-axis resistivity
pe(T) (filled symbols) of the CaMnBiy single crystal in B = 0 T (squares) and B = 9 T (circles) magnetic field respectively.
(¢) Magnetization (M) in B = 1 T field applied parallel (open symbols) and perpendicular (filled symbols) to the c-axis in
both ZFC (squares) and field cooling FC (circles) runs. (d) The total DOS (black line) and local DOS from Ca (blue line), Mn
(olive line), Bi square nets (Bil, red line) and Bi in MnBiy tetrahedron (Bi2, green line) for AFM CaMnBis. The dotted line
indicates the position of the Fermi energy. (e) The band structure for CaMnBiz. The heavy lines with circles denote the bands
from Bi square nets and the dotted line indicates the position of the Fermi energy.

only respond to perpendicular component of the magnetic field B|cos(#)|.? For example, the 2D states in graphene
and the surface states of TIs exhibit |cosf| angular dependent magnetotransport.'’!? The magnetoresistance of
CaMnBiy shows significant dependence on the field direction (Fig. 2). The crystal was mounted on a rotating stage
such that the tilt angle § between the crystal surface (ab-plane) and the magnetic field can be continuously changed
with currents flowing in the ab-plane perpendicular to magnetic field, as shown in the inset of Fig. 2(a). Angular
dependent magnetoresistance p(B,0) at T ~ 2 K is shown in Fig. 2(b) and (c). When B is parallel to the c-axis
(6 = 0°,180°), the MR is maximized and is linear in field for high fields. With increase in the tilt angle 6, the MR
gradually decreases and becomes nearly negligible for B in the ab-plane (§ = 90°). Angular dependent resistivity
in B=9 T and T = 2 K shows wide maximum when the field is parallel to the c-axis (§ = 0°,180°), and sharper
minimum around 6 = 90°,270° (Fig. 2(a)). The whole curve follows the function of | cos(#)| very well (red line in
Fig. 2(a)). The angular dependent in-plane magnetoresistance suggests the quasi-2D Fermi surface.?

In Fig. 3(a) and (b), the in-plane magnetoresistance R, and the AR,, = Ry,— < Ry, > shows clear Shubnikov-
de Hass (SdH) oscillations below 45 K. The Fourier transform spectrum of the oscillation at 0.36 K (inset in Fig.
3(c)) reveals a periodic behavior in 1/B with a frequency F = 185 T. The temperature dependence of the oscillation
amplitude can be used to determine cyclotron effective mass through the Lifshitz-Kosevitch formula.?’ Using the
highest oscillation peak (indicated by the arrow in Fig. 3(b)), the fitting gives a m =~ 0.35m. where m. is the bare
electron mass (Fig. 3(c)). In metals, SAH oscillations correspond to successive emptying of LLs as the magnetic
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FIG. 2. (Color online) (a) In-plane resistivity p vs. the tilt angle 6 from 0° to 360° at B = 9 T and T' = 2 K for CaMnBis.
The red solid line is the fitting curve using |cos(0)| (see text). Inset shows the configuration of the measurement. (b) In-plane
Resistivity p vs. magnetic field B of CaMnBis crystal with different tilt angle 6 between magnetic field and sample surface
(ab-plane) at 2 K. (c) p vs. the tilt angle 6 in the fixed magnetic fields (3 T, 6 T and 9 T) and 2 K.

field is increased. The LL index n is related to the cross section of FS Sg by 2m(n +v) = SF%. In the index plot
(Fig. 3(d)), the inverse peak and minimum fields 1/B fall on a straight line (red line) versus the integers n and the
extrapolation of the high-field SAH peaks and minimum gives v ~ 0.45. ~ should be zero for conventional metals
but (£)1/2 for Dirac fermions due to the nonzero Berry’s phase associated with their cyclotron motion. The Berry’s
phase and the ~ 1/2 intercept of the linear fit of LLs have been observed in Dirac fermion systems, such as monolayer
graphene!® and topological insulators.!?13 The resulted v ~ 1/2, as well as the small cyclotron mass 0.35m, reveals
the presence of Dirac fermions in CaMnBis.

Fig. 4(a) shows the magnetic field dependence of MR at different temperatures and Fig. 4(b) shows the field
derivative of MR, dMR/dB. dMR/dB initially decreases with increase in field indicating B'/? dependence of MR,
and then linearly increases with field in the low field region which indicates a B2 dependent MR by linear fitting
(lines in the low field region). But above a characteristic field B*, dMR/dB saturates to a much reduced slope This
indicates that in the high fields the MR is dominated by a linear field dependence plus a very small quadratic term
(MR = A1 B + O(B?)) as shown by lines in the high-field region. With increase in temperature, MR decreases and
the cross over field B* increases gradually. Above 50 K MR becomes negligible. Below 9 T and 50 K, the evolution
of B* with temperature is parabolic (squares in Fig. 4(c)).

The energy splitting between the lowest and 1%% LLs of Dirac fermions can described by A7, = +vpv/2ehB where
vp is the Fermi velocity.'® '3 In the quantum limit at specific temperature and field, A, becomes larger than both
the Fermi energy Fr and the thermal fluctuations kg7 at a finite temperature. Consequently all carriers occupy
the lowest Landau level and eventually the quantum transport with linear magnetoresistance shows up. The critical
field B* above which the quantum limit is satisfied at specific temperature T is B* = s (Ep + kgT)?.'* The

2ehv?
temperature dependence of critical field B* in CaMnBi, clearly deviates from the linear relatignship and can be well
fitted by the above equation, as shown in Fig. 4(c). This confirms the existence of Dirac fermion states in CaMnBis.
In a multiband system with both Dirac and conventional parabolic-band carriers (including electrons and holes)
where the Dirac carriers are dominant in transport, the coefficient of the low-field semiclassical B? quadratic term,

As, is related to the effective MR mobility v/As = U—V;J;:: (e + pn) = parr (Where o, op, e, iy are the effective
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FIG. 3. (Color online) (a) Magnetic field dependence of resistance of CaMnBis crystal and (b) Magnetoresistant SAH oscillations
ARy = Rzo— < Raz > as a function of 1/B below 35 T. (¢) Temperature dependence of the oscillation amplitude (Osc. Amp.)
in magnetoresistant SAH oscillations. The red line is the fitting results giving cyclotron mass. Inset shows the Fourier transform
spectrum of the SAH oscillation. (d) The integer Landau levels as a function of inverse field. Inset shows the oscillation of
AR, at 0.36 K where arrows indicate the positions of estimated LL index n labeled by the numbers.

electron and hole conductivity and mobility in zero field respectively). The effective MR is smaller than the average
mobility of carriers pgpe = WT‘”’ and gives an estimate of the lower bound.!*'® Fig. 4(c) shows the dependence of
parr on the temperature. At 2 K, the value of /g is about 1800 cm? /Vs in CaMnBip which is larger than the values
in conventional metals.

Compared to SrMnBis, the effective MR mobility in CaMnBis is smaller (~ 3400 cm?/Vs in SrMnBis), while the
crossover field B* ~ 3 T at 2 K and the cyclotron mass m ~ 0.35m, is larger, implying smaller Fermi velocity of Dirac
Fermions. This may be due to the contribution of the wide parabolic band in CaMnBiz (as shown in Fig. 1(d)) which
is absent in SrMnBi;.!7'%27 The Berry’s phase revealed by the quantum oscillation, combined with our
first-principle electronic structure and the quadratic-temperature dependence of the crossover field
from semi-classical transport to quantum linear magnetoresistance is more than convincing evidence
for the existence of Dirac fermions in 2D Bi suqare nets of CaMnBi, and SrMnBi,.?” The direct
obervation of the linear energy dispersion in Bi square nets and the detailed information on multiband
characteristics could deserve further study by more powerful spectroscopy methods such as angle-
resolved photoemission spectroscopy (ARPES) and will be sought after.

In summary, we report two dimensional Dirac fermions and quantum magnetoresistance in single crystals of
CaMnBiy. The non-zero Berry’s phase, small cyclotron resonant mass and first-principle band structure suggest the
existence of 2D Dirac fermions in the Bi square nets. The in-plane transverse magnetoresistance exhibits a crossover at
a critical field B* from semiclassical weak-field B? dependence to the high-field unsaturated linear magnetoresistance
(~ 120% in 9 T at 2 K) due to the quantum limit of the 2D Dirac fermions. The temperature dependence of B*
satisfies quadratic behavior, which is attributed to the splitting of linear energy dispersion in high field. Our results
demonstrate the existence of two dimensional Dirac fermions in CaMnBis with similar Bi square net structural unites.
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FIG. 4. (Color online) (a) The magnetic field (B) dependence of the in-plane magnetoresistance MR at different temperatures.
(b) The field derivative of in-plane MR at different temperature respectively. The lines in high field regions were fitting results
using MR = A1 B 4 O(B?) and the lines in low field regions using MR = A>B?. (c) Temperature dependence of the critical
field B* (black squares) and the effective MR mobility parr extracted from the weak-field MR (blue circles). The red solid line
is the fitting results of B* using B* = ;(EF + kBT)Q.
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