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There is a growing need to understand the and mechanical and electronic properties of non-ideal graphene
nanoribbons. Using objective molecular dynamics and a density-functional based tight-binding model, we inves-
tigate the effects of torsion on the electromechanical properties of graphene nanoribbons with armchair edges.
We propose to characterize with an effective tensile strain scalar the torsional mechanical response, including
a reverse Poynting effect, and the fundamental band gap modulations. The demonstrated utility of this con-
cept in both the mechanical and electrical domains providesa perspective for understanding electromechanical
response in a unified way, and for designing NEMS devices withgraphene components.

PACS numbers: 73.22.Pr, 62.25.-g, 61.48.Gh

I. INTRODUCTION

Opening a band gap in graphene is an important current research topic. Graphene nanoribbons (GNRs), new one-dimensional
materials derived from graphene, present special importance because the lateral quantum confinement provides one route for
band gap opening and manipulation. Unfortunately current GNRs fabrication methodologies don’t yet allow for a precise
control of GNRs width and edges, and thus for precise band gapdesign. However, we note two promising developments2,3: In
one approach3, narrow helically-twisted GNRs with open edges were formedwithin a single-walled carbon nanotube (CNT).
The role of the CNT was to confine growth in one dimension and determine the GNR’s width. In another technique2, edge-closed
GNRs with enhanced conductivity were achieved after removal of the metal nanowire on which they were grown.

Twisting, a primary deformation mode for macroscopic slender elements, can be imposed with relative ease on nano-scale
elements, including single- and multi-walled CNTs4–7. Experiments found that the electronic structure of CNTs are very sensitive
to the torsional deformation. In terms of theoretical modeling, the idealized model of Yang and Han8 (YH) formulated in terms
of simpleπ-orbitals tight-binding treatment, is widely used to rationalize the intrawall band-gap variations with twist. The
model gives the fundamental band gap variation in cylindrical CNTs under a homogeneous strain. Moreover, it reveals that the
electronic response of CNT is selective to different pure deformation modes. For example, in any zigzag CNT, the valence and
conduction bands are coupled to an applied tensile strain but decoupled from any shear strain stored in the CNT wall.

Although of practical importance, the electromechanical behavior of twisted GNRs is less understood.Microscopic modeling
of twisted nanoribbons is not straightforward. The use of periodic boundary conditions (PBC) is inconvenient as it requires
large translational supercells and can describe only discrete torsional deformations compatible with the assumed translational
symmetry. Twisted GNRs have been studied in Möbius-like topologies9, which also allows little control over the imposed twist
rate.

In this article we model the electromechanical properties of uniformly twisted GNRs with H-terminated and closed armchair
edges with objective molecular dynamics (MD)10,11 and a density-functional-based tight binding (DFTB) model12 extended to
capture the long range van der Waals interactions13. Remarkably, the method allows for simulating GNRs under an arbitrary
twist value and study the coupling of twisting with axial deformation. We show that twisting without allowing for axial
relaxation provides an effective way to manipulate the band gap of these two GNR types. Their electromechanical response can
be understood in an unified way by using the notion of effective strain.

II. COMPUTATIONAL METHOD

The DFTB objective MD method was implemented by us in the codeTrocadero14 and used early on in Ref.15 to simulate the
electromechanical response of single- and multi-walled armchair CNTs in torsion. In DFTB, only the the valence shell consists
of four sp orbitals are considered to describe the electronic states.In objective MD, we describe an infinitely long twisted
structure from theN0 atoms belonging to the the primitive translational cell of the corresponding untwisted structure. LetX j be
their atomic positions of theseN0 atoms. Using the concept of objective structures16, theX j,ζ atomic positions in the primitive
cell replica indexed with an integerζ= 0, ...,∞ are given by

X j,ζ = RζX j + ζT, j = 1, ...,N0. (1)
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Rotational matrixR of angleθ combined with axial vectorT characterizes the helical repeating rule replacing the standard
translation.The above equation replaces the usual PBC boundaries.A pure twist rateγ is imposed by settingθ = γ|T|. The
symmetry-adaptation of the electronic wavefunction to eq.(1) is described in Ref.11.

We illustrate the importance of direct objective MD simulations over the YH predictions with a brief initial study of twisted
zigzag cylindrical CNTs. It is long known that elastic rods or tubes made out of simple solids elongate when subjected to
torsion17. To investigate whether this Poynting effect is present in CNTs, our calculations were conducted by performing
conjugate gradient relaxations at fixedθ first under the|T| corresponding to the stress-free untwisted structure and next under
relaxed|T|. An axial Poynting strainεPy is calculated from the difference in|T| values.

Indeed, we regain the expected behavior, as the relaxed structure elongates. Fig. 1(a) displays the results of a systematic
investigation on a collection of zigzag CNTs with differentR. We obtained thatεPy follows the expected17 linear dependence
on γ2, Fig. 1(a) left. The spread overR in Fig. 1(a) left is eliminated when the same data is plotted againstγ2R2 in Fig. 1(a)
right. HereγR represents the shear strain experienced by the cylindricalCNT wall. More precisely, the atomistic data gives
εPy = 0.54γ2R2. Concerning the response of the electronic states, our calculations indicated that the YH predictions should
be taken with caution at large shear deformations. For example, the band gap variations of a twisted (48,0) CNT, Fig. 1(b),
demonstrate that there is a significant band gap opening at a large twist rate (γ > 1 deg/nm). What is also interesting is that the
two curves corresponding to fixed and relaxed|T| become distinct at largeγ. Thus, the axial strain created in response to the
imposed large shear contributes to the band gap modulationsas well (although to a smaller extent in comparison with the shear
deformation).

III. MECHANICAL RESPONSE

For the structures of interest here, uniformly twisted GNRswith H-terminated, Fig. 2(a), and closed armchair edges, Fig. 3(a),
the twist-induced axial strain is of prime importance, as itdominates their gapping. Before discussing our results, let us actualize
our earlier predictions10,18,19 that these structures are prone to an inverse Poynting effect: when twisted they tend to shrink.
Interestingly, the compressiveεPy still depends linearly onγ2, Fig. 2(b) and Fig. 3(b). To understand the origin of this behavior,
it is important to summarize our previous results18,19: Firstly, under the sameγ, GNRs are much less sheared than cylindrical
CNTs. In particular, twisted GNRs with open edges have no shear. Consequently, a direct Poynting effect caused by the shear
deformation would be very small. Secondly, the distribution of tensional strain stored in twisted GNRs is inhomogeneous, with
the outermost dimer lines being the most stretched, a behavior that can be also seen in Figs. 2(a) and 3(a). Finally, the band gap
response of twisted GNRs with armchair open edges is determined by an effective tensile strain, defined asεe f f = 1

N

∑N
n=1 εn.

Hereεn is the local tensile strain along the dimer linen.
The inverse Poynting effect observed in our simulations is triggered by an axial tensile stressσ associated to the twist-induced

inhomogeneous tensile strain. To expressσ, we employ a continuum membrane description of the one-atomthick layer with
two parameters, the in-plane stiffnessC = 59 eV/atom and Poisson ratioν = 0.26. The local tensile stress under the local tensile
strainεn is obtained with Hooke’s law asC/(1− v2)εn. We then approximateσ as an average of the local tensile stress,

σ ≈ 1
N

N
∑

n=1

σn =
1
N

N
∑

n=1

C
1− v2

εn =
C

1− v2
εe f f . (2)

Here, the small effect from the difference in elastic stiffness between the edge and inner part of GNRs is omitted. Once|T| is
allowed to relax, the twisted GNR shrinks untilσ eventually vanishes. Thus, the axial strain−εPy associated to the Poynting
effect should be close toεe f f , in agreement with the atomistic data shown in Fig. 2(b) and Fig. 3(c).

We further detail the utility of the scalarεe f f (and notγ) to characterize the mechanical response of twisted GNRs with open
edges. On one hand, one is is tempted to study the stress-strain relation of these structures with the derivative of the total energy
Etot to twist rateγ. However, in Fig. 4(a) we obtained an unusual nonlinear behavior of dEtot/dγ. On the other hand, in Fig. 4(b)
the derivative of the total energyEtot to εe f f becomes linear inεe f f with a slope of 61.3 eV, in good agreement with the predicted
C/(1− v2) parameter. Focussing on the tensile strain energy component of the total GNR energy, for an armchair GNR withN
dimer lines, this writes

Es ≈
1
N

N
∑

n=1

1
2

C
1− v2

ε2n =
γ4

8N

N
∑

n=1

C
1− v2

d4
n. (3)

Heredn is the distance of the dimer line with indexn to the GNR axis andεn =
1
2γ

2d2
n was used. Thus,dEs/dγ ∼ γ3.

If instead we introduce the effective strain withεn = ε
e f f + ε0n and using the evident relation

∑N
n=1 ε

0
n = 0, we have

Es ≈
1
2

C
1− v2

(

εe f f
)2
+

1
N

N
∑

n=1

1
2

C
1− v2

(

ε0n

)2
. (4)
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We label the first term withEe f f and second term withO(E). Thus, confirming eq. (2),σ ≈ dEs/dεe f f ≈ εe f f C/(1− v2). When
|T| is kept fixed,Ee f f is the dominant component of the strain energy. If|T| is allowed to relax at each imposedθ, εe f f vanishes
for the linear elastic case. However, in practice there is still a small residualεe f f due to the intrinsic elastic nonlinearity in the
chemical bonds18.

In Fig. 4(b), the unusual upwards shift from the lineεe f f C/(1− v2) by ∼ 0.35 eV is due to the misalignment ofπ orbitals to
the total energy. Indeed, unlike the flat case, theπ-orbitals are no longer parallel with each other but rotatedaccording to the
their axial location. We evaluated the energy contributiondue to theπ-orbital misalignmentEπ by computing the adjustment
in hopping integrals between rotatedπ-orbitals located on the nearest carbon atoms. Note that unlike in graphene under pure
bending case20, the two faces of the twisted GNR are equivalent. Thus, thereis noπ charge spill from one site to the other,
i.e., no shift in thesp2 hybridization at any atomic site.Consider the two atoms (see the insert) highlighted in Fig. 2(a).
The misalignment angle between the twoπ-orbitals located on these two atoms due to a twist rateγ is simplyγaC−C , where
aC−C = 1.42 Å is the carbon-carbon bond length. Lett0 = 2.8 eV be the nearest neighborhood hopping parameter for aligned
π-orbitals. The strain energy associated with the twist induced misalignment is∼ 2

√
3γ2 a2

C−C t0/3. The
√

3 factor reflects the
resonance bonding correction20. For the whole GNR withN dimer lineswe obtain

Eπ ≈ 0.04t0|T|2γ2 = Dεe f f . (5)

Here,D = 1.28t0|T|2/(N2 − 1)a2
C−C and

εe f f = γ2 1
2N

N
∑

n=1

d2
n = γ

2 1
32

(N2 − 1)a2
C−C . (6)

For the 12 GNR, the above model givesD = 0.23 eV, in good agreement with the intersect ofdEtot/dεe f f in Fig. 4(b).
In summary, the above insights suggest the following decomposition of the DFTB computed energy

Etot ≈ Ee f f + Eπ + O(E) =
1
2

C
1− v2

(

εe f f
)2
+ Dεe f f + O(E). (7)

Although Ee f f is the dominant component,Eπ, a quantum mechanical quantity which cannot be captured by the continuum
membrane model20, is still visible in Fig. 4(c). Note that for open edges saturated with other chemistry, the above equation
should be further enhanced to include edge energies21.

IV. ELECTRONIC RESPONSE

Twisted armchair GNRs with open and closed edges exhibit fundamental band gap modulations, Fig. 5. The utility ofεe f f to
describe gapping of GNRs with open edges18 is confirmed in Fig. 5(a) for the twisted 12 GNR. The quadraticband gap variation
with γ, Fig. 5(a) left, turn into linear variations withεe f f , Fig. 5(a) right, as expected for a GNR under uniaxial tension22,23. We
recall18 that the linear band gap–εe f f has a slope of∼ 3t0(1+ v) and an oscillation period of 2π/[3(1+ v)(N + 1)]. According to
YH model, these are also the characteristics for a (N + 1, 0) CNT in tension.

A 2N GNR with two closed armchair edges3 is essentially a collapsed24,25(N, 0) CNT. The two opposite walls with one-atom
thickness facing each other with a separation of 3.4 Å are mediated by van der Waals forces. While the two walls stack mostly
with a A-B pattern in collapsed armchair CNTs19, here we obtain an intermediate stacking pattern between A-A and A-B in
zigzag CNTs, Fig. 2(a). Therefore, the bilayer coupling should play little role in gapping19,24. We focus our attention on the
intra-wall strain and show that gapping of these structuresis determined byεe f f , Fig. 5(b). To characterize the coupling of the
conduction and valence bands to twisting, we actualize the effective strain theory19 where the influence of inhomogeneous local
tensile strain on electronic energetic state is derived with a perturbativeπ-orbital orthogonal tight-binding.

In the “helical-angular” representation, a cylindrical (N, 0) CNT is described with a two-atom objective cell as

X j,(ζ1,ζ2) = Rζ22 Rζ11 X0
j + ζ1T1, j = 1, 2. (8)

Index j runs over the A and B atoms at locationsX0
j inside the repeating objective domain. Integersζ1 = 0, ...,Ns (whereNs is

typically∞) andζ2 = 0, ...,N − 1 label various replicas of this domain. Rotational matrixR1 of angleθ1 = π/N and the axial
vectorT1 of length∼ 3

2aC−C indicate a helical transformation applied to the objectivedomain. Rotational matrixR2 indicates
the angular operation, an axial rotation of angleθ2 = 2π/N.

In this representation, theπ electronic eigenstates of energiesEnκ are labeled by a helical quantum number−π ≤ κ < π and
n = 0, 1, ...,N − 1. They are obtained in terms of two symmetry-adapted Bloch sums:

| j, nκ〉 = 1
√

NsN

Ns−1
∑

ζn=0

N−1
∑

ζ2=0

eiκζ1+inθ2ζ2 | j, ζ1ζ2〉. (9)
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Here | j, ζ1ζ2〉 is the atomicπ-orbital located on the atomj in the objective domain indexed byζ1 andζ2. If follows that theπ
electronic energy dispersion writes19

E2
nκ =

∣

∣

∣

∣

∣

∣

∣

∑

η

tη(ε) fη(n, κ)

∣

∣

∣

∣

∣

∣

∣

2

. (10)

Here integerη = 1, 2, 3 indicates the sum running over the three nearest neighboring atoms of a carbon atom andtη is the
correspondingπ-orbital hopping parameters whilefη is the relative Bloch phase for the neighbor atom indexed with ζ.

Under homogeneous tensile strainε (in the YH model) the effect ofε is included in eq. (10) via the variation of the hopping
parameter withε. To first order inε, the resulted variations of the hopping parameters in the axial and lateral directions are 2t0ε
and 0.5t0(1− 3ν)ε, respectively18. Under inhomogeneous tensile strain, the hopping parameter tη varies according to the local
tensile strainεn at each “helical angular” objective cell. Theπ electronic energy dispersion now becomes

E2
nκ ≈

∣

∣

∣

∣

∣

∣

∣

1
N

∑

n,η

tη(εn) fη(n, κ)

∣

∣

∣

∣

∣

∣

∣

2

≈

∣

∣

∣

∣

∣

∣

∣

∑

η

tη(εe f f ) fη(n, κ)

∣

∣

∣

∣

∣

∣

∣

2

. (11)

Note that in the above, (1/N)
∑

n tη(εn) ≈ tη(εe f f ) stands under the expansion oftη to the first order inεn. What is important is
that the last expression in eq. (11) indicates that the band gap variations should still follow the ideal YH behavior but underεe f f .

The above predictions of the band gap variations with twist agrees well with the direct objective MD calculations: When
plotted againstεe f f extracted from the DFTB data, the band gap variations for the96 GNR display the YH behavior of a
cylindrical (48,0) CNT under tension, Fig. 5(b). Thus, the variety of other factors, like the effective shear strain19 stored in the
wall, the bilayer coupling across opposite faces, the misalignment of theπ orbitals due to twisting, and high-curvature at the
edges, play little role in the gapping of twisted (2N, 0) GNRs with closed armchair edges, i.e., collapsed (N, 0) CNTs.

V. CONCLUSION

In summary, we have performed DFTB objective MD calculations on GNRs with H-terminated open and closed armchair
edges. These calculations are complementing our previous studies18,19 to show that the effective strain concept allows for a
unified understanding of the electromechanical propertiesof non-ideal GNRs. In the mechanical domain, we reveal with eq. (2)
that the axial strain associated to the unusual inverse Poynting effect for these nanostructures is related to theεe f f stored in the
one-atom thick layer. A supportive energetic analysis on twisted GNRs with open edges shows that the mechanical response
is dominated byεe f f , although the twist induced misalignment betweenπ orbitals is non-negligible. In the electrical domain,
both GNR types exhibit linear YH band gap modulations in theεe f f space, making it possible to establish relations with the
known response of ideal cylindrical CNTs and flat GNRs in tension. We note that the effect uncovered here was not visible in
the previous study of twisted GNRs in Möbius-like topologies9. Since the ring GNRs were allowed to fully relax, the average
in-plain strain, similar toεe f f , was vanishingly small and didn’t contribute to the reported strain energies and band gap openings.

We thank NSF CAREER Grant CMMI-0747684 and AFOSR Grant FA9550-09-1-0339. Computational resources from Uni-
versity of Minnesota Supercomputing Institute were used.
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FIG. 1: (a) Axial strainεPy versus twist rate squareγ2 (left) and shear strain squareε2 (right) for cylindrical (12,0), (24,0), (36,0), and (48,0)
CNTs. (b) Fundamental band gap modulations cylindrical (48,0) CNTs under twisting with DFTB objective MD calculationswith fixed and
relaxed|T|.

FIG. 2: (a) Side and axial view of 28 deg/nm twisted GNR withN = 12 dimer lines and two armchair open edges saturated with H. The axis
is along the dash-dot line. The repeating objective domain is shaded. Along the directions delineated by the dimer lines, distances between
carbon atoms in the neighboring cells varies from 4.48 Å (outmost n=1 line) to 4.26 Å (centraln = 6 line). The insert shows that theπ orbitals
located on selected carbon atoms are misaligned. (b) Computed effective tensile strain (solid curve) versusγ under the length fixed constraint.
The axial strain−εPy (black dash curve) describes the inverse Poynting effect.

FIG. 3: (a) Side view of 8.1 deg/nm twisted 96 GNR with closed armchair edges [a (48,0) collapsed CNT]. The axis is along the dash-dot
line. (b) Distribution of the local tensile strain around the circumference computed under fixed (filled squares) and relaxed (empty squares)|T|
conditions. (c) Computed effective tensile strain (solid line) versusγ under the length fixed|T| constraint. The−εPy (black dash line) describes
the inverse Poynting effect.

FIG. 4: Derivative of the total energyEtot to (a) twist rateγ and (b) to the effective tensile strainεe f f , for 12 GNR with H-saturated armchair
edges. The solid line in (b) isεe f f C/(1− v2). (c) The total energy versusγ. Ee f f andEπ energy components refer to eq. (7).

FIG. 5: Fundamental band gap variations of (a) 12 GNR with H-terminated armchair edges and (b) 96 GNR with closed edges [a collapsed
(48,0) CNT] versus twist rate (left) and effective tensile strain (right). In (b) The band gap variationin cylindrical (48,0) CNT in tension
predicted with YH model (solid gray curve) is shown for comparison. Calculations were performed at fixed|T|.
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