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In this paper, the exact solutions of Dirac electronic states of graphene in Coulomb and magnetic
fields are acquired. The Coulomb field not only causes the splitting of Landau levels in gapless
graphene but also leads to the variation of the energy level ordering in gapped graphene. The
dependence of the binding energies on the gap and the magnetic field is discussed. Furthermore,
the valley degree of freedom and the valley splitting spacing can be controlled by the Coulomb and
magnetic fields in gapped graphene. The inter-valley mixing of graphene is estimated and calculated
in the direct sum spaces of the two valleys. The results obtained help to understand the behaviors of
the planar Dirac electron in electromagnetic fields and can be applied to the controlling of electron’s
behaviors in graphene.

PACS numbers: 73.22.Pr, 73.20.Hb

I. INTRODUCTION

The discovery of graphene1–4 has provided a platform
to study the planar Dirac particles in quantum electro-
dynamics(QED). Due to its linear dispersion at the two
inequivalent points K and K ′ of the Brillouin zone,5 the
electronic structure of graphene in the vicinity of the
valley K(K ′) is described by Dirac equation with the
wave functions at K and K ′ related by time-reversal
symmetry.4The electron in graphene is usually consid-
ered massless and recent experiments can introduce an
adjustable gap (rest mass) to graphene systems, which is
crucial for the application in making devices.6–8

As doping plays a key role in the conventional semi-
conductor physics, impurity problem in graphene has
come into researchers’ attention.9–11,13–19 A simple and
practical model is the long-range Coulomb impurity in
graphene. The effects of the Coulomb impurities on
the transport properties,10–12 the bound (quasibound)
states of the Coulomb impurity13,14 and its screening
effects15–18 have been investigated systematically by both
the tight-binding model on the lattice and the two di-
mensional (2D) Dirac equation. The Coulomb attrac-
tive impurity in graphene mimics heavy atoms in QED19

and presents an accessible way to investigate the funda-
mental quantum relativistic phenomenon of QED, such
as atomic collapse and the supercritical nuclei.15,16 Un-
der uniform magnetic field, the well-known Landau lev-
els (LLs) in graphene are also relativistic, square root
dependent on the magnetic field and the Landau index,
which are confirmed by both the quantum Hall effect2

and the Landau level spectroscopy.20,21 Therefore, it is
a new way to study and control the Dirac particles of
2D QED in electromagnetic fields by investigating the
behaviors of the electron in either valley of graphene.
The planar Dirac equation can be solved analytically
in either Coulomb or magnetic field, but its full spec-
tra in Coulomb and magnetic fields haven’t been ob-

tained exactly since the problem is beyond the analytical
solution.22,23It is important to realize that the difference
between the graphene systems and 2D QED lies in that
the valley degree of freedom has to be taken into ac-
count when the valley degeneracy of graphene is broken.
The LLs are valley degenerate for low-lying states when
the magnetic field is not very high(< 10T ),but Zhang
et al observed experimentally the splitting of the K and
K ′ valleys at high magnetic fields (> 11T ).24 Theoret-
ically, a number of mechanisms are proposed to lead
to the valley splitting, such as disorder,25,26 the effect
of the trigonal warping,27graphene ring structures28 and
electron-electron interactions.29,30 These researches in-
spire us to explore the valley splitting of gapped graphene
in Coulomb and magnetic fields. To systematically inves-
tigate the planar Dirac electron in electromagnetic fields,
in this paper we generalize the series expansion method31

to the exact numerical solution of the Dirac electron con-
fined by Coulomb and magnetic fields in graphene. On
one hand, based on the exact solution, we study how the
spectra of the planar Dirac electron of QED evolve in
Coulomb and magnetic fields and the method given in
this paper may be generalized to other complex systems
of QED; on the other hand, in graphene we further inves-
tigate the effect of the Coulomb and magnetic fields on
the valley splitting and estimate the inter-valley mixing
caused by the Coulomb field in the direct sum spaces of
the K and K ′ valleys.

The paper is organized as follows: In Sec.II, we present
the Hamiltonian model and the calculation method of
series expansion. In Sec.III, we systematically investigate
the evolution of the spectra of the massless and massive
Dirac electron in Coulomb and magnetic fields in valley
K. In Sec.IV, we further calculate the valley splitting
and estimate the magnitude of the inter-valley mixing in
graphene, followed by a conclusion in Sec.V.
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II. HAMILTONIAN MODEL AND

CALCULATION METHOD

In the framework of the effective mass theory, we
first suppose the Coulomb potential doesn’t mix K and
K ′14,15 so that we can solve the Dirac equation in each
valley separately and then in Sec.IV we will discuss the
inter-valley mixing caused by the Coulomb field in the di-
rect sum spaces of the two valleys. In gapless graphene,
the screening which results from the electron-electron in-
teraction, preserves the shape of the Coulomb field and
simply reduces its strength13,14 while the screening is
complicated in gapped graphene.13 In the following, we
assume that the shape of the impurity potential obeys the
Coulomb law in both gapless and gapped graphene.13,23

Then the Hamiltonian for the Dirac electron confined by
Coulomb and magnetic fields in the K and K ′ valleys is
written as

Ĥτ=vFσx(Px+eAx)+ τvFσy(Py+eAy)+mv2Fσz−
vFα

r
(1)

where vF ≈ 106m/s is the Fermi velocity, ~P is the

momentum operator, ~A is the magnetic vector poten-
tial, m is the mass, σx, σy and σz are the 2 × 2 Pauli
matrices, τ = 1(−1) labels valley K(K ′). We adopt

the gauge ~A = 1
2Br~eθ and separate the radial and

azimuthal parts of the two-component wave function
the upper and lower components of which represent
the envelope functions for the A and B sublattices in
graphene. We label ϕ and χ as the radial parts of
the upper and lower components. The wave functions
for K and K ′ are ΨK= 1√

r
(ϕKeilθ, iχKei(l+1)θ)T and

ΨK′

= 1√
r
(iϕK′

ei(l+1)θ, χK′

eilθ)T , respectively, where i is

the imaginary unit. For convenience, we set the scales of

the length and energy as a0 =
√

~

eB0
and E0 = ~vF

a0
where

B0 = 1 T . Thus, a0 = 25.656 nm and E0 = 25.656 meV .

α = Ze2

4πǫǫ0~vF
is dimensionless and is lower or near 0.5 for

typical substrate materials in experiments.9,13,17 Then we
get the following radial functions from ĤτΨτ = EτΨτ

{

( d
dr

+ j
r
+ 1

2Br)χK = (E −M + α
r
)ϕK

( d
dr

− j
r
− 1

2Br)ϕK = −(E +M + α
r
)χK (2)

{

( d
dr

− j
r
− 1

2Br)χK′

= −(E −M + α
r
)ϕK′

( d
dr

+ j
r
+ 1

2Br)ϕK′

= (E +M + α
r
)χK′ (3)

where j = l+ 1
2 is the total angular momentum quantum

number and M = mv2F /E0. To get the eigenenergies
and eigenfunctions, we decouple the two components in
the same valley by substituting χτ into ϕτ . Then we get
the second order differential equations for ϕτ from Eq.(2)
and Eq.(3) as follows

[(
α

r
+ w+)

d2

dr2
+

α

r2
d

dr
+

2
∑

i=−3

qir
i]ϕτ= 0 (4)

where w+ = E +W and qi are as follows



























q−3 = α3 − j2α
q−2 = α2(3E +M)− (E +M)(j2 − τj)
q−1 = α(E +M)(3E −M)− ατB(τj + 1)
q0 = (E +M)[E2 −M2 − τB(τj + 1

2 )]
q1 = −αB2/4
q2 = −(E +M)B2/4

(5)

In the same way, we get the equations for χτ as

[(
α

r
+ w−)

d2

dr2
+

α

r2
d

dr
+

2
∑

i=−3

qir
i]χτ= 0 (6)

where w− = E −W and qi are



























q−3 = α3 − j2α
q−2 = α2(3E −M)− (E −M)(j2 + τj)
q−1 = α(E −M)(3E +M) + ατB(−τj + 1)
q0 = (E −M)[E2 −M2 + τB(−τj + 1

2 )]
q1 = −αB2/4
q2 = −(E −M)B2/4

(7)

We should point out that decoupling causes another regu-
lar singular point, i.e, r = − α

E+M
for ϕτ and r = − α

E−M
for χτ . In order to exclude these singular points from
the positive axis, we will calculate only the energy levels
above zero by solving ϕτ of Eq.(4)in this paper. The ex-
act solution of such differential equations can be obtained
from the series expansions around regular, irregular sin-
gular points and ordinary points, respectively.31

For Eq.(4), in regular region 0 ≤ r < R0

ϕτ = rρj

∞
∑

n=0

anr
n, ρj =

√

j2 − α2. (8)

In irregular region R∞ < r < ∞

ϕτ = e−
|B|r2

4 rv
∞
∑

n=0

bnr
−n, v =

2q0 −Bw+

2Bw+
. (9)

R0 and R∞ are chosen to ensure the proper behaviors of
ϕτ in regular and irregular regions, respectively.
In ordinary point region R0 ≤ r ≤ R∞, we divide

it into k small sections [ri, ri+1] where i is from 0 to
k − 1. The solution in each section is expanded around
the center rci =

ri+ri+1

2 as

ϕτ=Ci

∞
∑

n=0

cn(r−rci )
n+Di

∞
∑

n=0

dn(r−rci )
n, (10)

where c0 = 1, c1 = 0, d0 = 0, d1 = 1. In Eqs.(8),(9)
and (10), an, bn, cn and dn(n > 0) are given by recur-
rence relations, and the eigenenergies and corresponding
a0, b0, Ci, Di ( then the wave functions ϕτ and their part-
ners χτ derived from Eq.(2)or Eq.(3)) are determined by
the continuity condition. The method of series expansion
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in different regions is a powerful tool to solve second or-
der ordinary equations exactly whether they are derived
from Dirac or Schrödinger equations.
Before we perform the numerical calculation, we dis-

cuss the analytical solutions in either Coulomb potential
or magnetic field for the two valleys for further analysis.
In pure Coulomb potential, bound states only exist

when M 6= 0. Make the transformation j → −j in Eq.(3)
of valley K ′ and Eq.(3) becomes similar with Eq.2 of val-

ley K. Thus EK′

C(n,j) = EK
C(n,−j) and the energy levels of

both valleys in pure Coulomb potential can be expressed
as13

Eτ
C(n,j) =















M(n+
√

j2−α2 )
√

(n+
√

j2−α2 )2+α2

M(n+1+
√

j2−α2 )
√

(n+1+
√

j2−α2 )2+α2

τj > 0
τj < 0

(11)

where n = 0, 1, 2... are the numbers of the nodes of the
radial wave functions. In consideration of the valley de-
gree of freedom, for n = 0, the energy levels are doubly
degenerate, i.e, EK′

C(0,−|j|) = EK
C(0,|j|) and for n ≥ 1, they

are quadruply degenerate, i.e, EK′

C(n,−|j|) = EK′

C(n−1,|j|) =

EK
C(n,|j|) = EK

C(n−1,−|j|) . When α ≪ 0.5 (the critical

value), expanding Eq.(11) in orders of α4, we acquire

EK
C(n,j) −M = −Mα2

2N2
+Mα4(

3

8N4
− 1

2|j|N3
), (12)

where N = n + |l| + 1
2 . Drop the last two terms and

the familiar formula of two-dimensional hydrogen atom
energy levels in non relativistic quantum mechanics are
obtained.31 However this approximation fails as α ∼ 0.5.
In pure magnetic field, decouple the equations in each

valley and four Schrödinger-like equations are obtained,
which are analytic. The eigenenergies are the well known
fourfold LLs

Eτ
L(n,l) = ±

√

M2 + 2[
1

2
(|l|+ τl + 1± 1) + n]B

(13)

where the first “±” indicates the particle-hole symmetry
in graphene, the second “±” represents the pseudospin
of the sublattices A and B in graphene (for valley K,
“+”(“−”) represents the sublattice A (B) and for val-
ley K ′, the signs are opposite) and n = 0, 1, 2... are the
numbers of the nodes of the radial wave functions of the
sublattice A (B). In the limit M2 ≫ B, suppose that
the Dirac sea is filled and that the the sign of the pseu-
dospin is “+” and then we obtain the LLs in nonrela-
tivistic quantum mechanics

EK
L(n,l) −M ≈ 1

2M
(N + 1)B (14)

where N = |l|+ l + 2n is the index of LLs. The depen-

dence on B− and
√
B− is the difference between non

relativistic and relativistic quantum mechanics.

III. SPECTRA OF VALLEY K IN COULOMB

AND MAGNETIC FIELDS

In this section, without loss of generality, we investi-
gate how the spectra evolve with the mass, the Coulomb
and the magnetic fields in valley K (τ = 1) by the cal-
culation method in Sec.II. Typically, we choose α = 0.3
in the subcritical region and critical value α = 0.5 of
the Coulomb potential to investigate the effect of the
Coulomb interaction. To understand the role of the
mass, we consider the cases of M = 0 (massless) and
M = 10.524E0 (270 meV ).9,23 In this paper, we only fo-
cus on the positive energy states when the Dirac sea is
filled.32 We should point out that in the Coulomb and
magnetic fields, the energy level ordering won’t be dom-
inated by either the Coulomb or the magnetic field. For
each j (l), to distinguish the quantum states, we label the
eigenstates of Eq.(4) as (n, j) ((n, l)) where n = 0, 1, 2...
in the order of the increasing eigenenergies which lie
above zero. In Tab.I, we give the energy levels when
M = 0, 10.524E0 and α = 0.3, 0.5 at B = 5T . For conve-
nience, the symbols a, b, c...therein labeling the quantum
states (0, 1

2 ), (0,− 1
2 ), (0,− 3

2 ), etc are adopted.

A. Spectra of massless Dirac electron

First we discuss the spectra of a massless electron.
There are no bound states when M = 0 and B = 0. How-
ever, magnetic field helps to form bound states. From
Tab.I, when M = 0 and B = 5T , the energy level of α =
0.3 is higher than the corresponding level of α = 0.5 and
the level ordering doesn’t change with α. Furthermore, in
Fig.1(a) and (b), we give the first two LLs as functions of
B for α = 0.3 and 0.5. We can see that the Coulomb in-
teraction causes the LLs to split below. More specifically,
EK

(0, 12 )(a)
< EK

(0,− 1
2 )(b)

< EK
(0,− 3

2 )(c)
< EK

(0,− 5
2 )(d)

... fall be-

low the first Landau level LL1 andEK
(1, 12 )(g)

< EK
(1,− 1

2 )(h)
<

EK
(0, 32 )(m)

< EK
(1,− 3

2 )(i)
< EK

(1,− 5
2 )(j)

... fall below the second

Landau level LL2. At α = 0.3, the states g, h,m, i, j
still stay above LL1, but at α = 0.5, g falls even be-
low LL1 and h is very close to LL1. Clearly, the smaller

ρj =
√

j2 − α2 in Eq.(8) is, the farther EK
n,j is away from

the corresponding Landau level for ρj implies to what
extent the Coulomb center attracts the electron. As a
whole, the splitting of LLs increases with α and B, but
the energies are still approximately proportional to

√
B,

which characterizes the massless electron. When B, α
and the quantum number n are fixed, the splitting be-
tween the states with the same ρj (e.g.b and a ) is smaller
than that between the states with ρ−|j|−1 and with ρ−|j|
(e.g.c and b ). For the excited states with the same n, the
splitting between the states with ρ−|j|−1 and with ρ−|j|
decrease with the increase of |j|. In Fig.3(a) and (c), we
plot the radial distributions of the states a, b, g, h and
m. The plot indicates that for the states with the same
ρj and the same Landau level index N (e.g. a and b),
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the state with |j| (e.g. a) is more localized to the center
than the state with −|j| (e.g. b). That’s why the state a
(g) is below the state b (h). At the critical value α = 0.5,
the states a, b, g and h whose ρj = 0 are quite far away
from their corresponding LLs and they will all disappear
if α > 0.5 because their ρj become imaginary. It means
that the Coulomb potential is so strong that electrons
with |j| < α collapse onto the Coulomb center, namely
atomic collapse.15Such phenomena will be continuing to
take place with the increase of α. For example, the states
c (0,− 3

2 ) and m (0, 3
2 ) will disappear when α > 1.5, un-

less we properly regularize the Coulomb potential by tak-
ing into consideration the shape of the Coulomb center,26

which is beyond the scope of the current paper.

B. Spectra of massive Dirac electron

We now move on to the massive case. From Tab.I, at
B = 5T , the level orderings of M = 10.524E0 are differ-
ent from those of M = 0 and they change with α. Fur-
thermore, in Fig.1(c) and (d), we give the first two LLs as
functions of B when α = 0.3 and 0.5 for M = 10.524E0.
It is shown that the energy level structures with respect
to B are more complicated as bound states exist even
without B. Take α = 0.3 as an example. At weak mag-
netic field, the levels and their ordering are determined
by the Coulomb interaction and the magnetic field serves
as a perturbation to lift some degeneracies. Specifically,
Fig.1(c) displays that EK

(0, 12 )(a)
<EK

(0,− 1
2 )(b)

<EK
(1, 12 )(g)

<

EK
(0, 32 )(m)

<EK
(0,− 3

2 )(c)
<EK

(1,− 1
2 )(h)

<EK
(0,− 5

2 )(d)
< ...at

B = 0.1T . The degenerate states (n,−|j|) and (n+1, |j|)
such as the states b and g in pure Coulomb field (see
Eq.(11)) are lifted by B. As B increases, the states h,m
and g which are below LL1 at weak magnetic field will
climb above LL1 in sequence and at high magnetic fields
the level ordering will become more like that of the mass-
less case (Fig.1(a)). Along with the transition of the level
ordering, crossing of levels happen. In Fig.1(c), the state
m (g) intersects with the state c at about 1.3T (3.3T ). As
the ground state a is most influenced by the Coulomb in-
teraction, it remains well below the gap (10.524E0) even
at high magnetic fields while the other states climb over
the gap in sequence as the magnetic field increases. From
the viewpoint of the LLs, their degeneracies are all lifted
by the Coulomb field and they split into quasi linear lines,
i.e, ∝ B, different from the quasi square root dependence
on B of the massless case. At the critical value α = 0.5,
the splitting of the LLs is more clear and the spacing is
larger. The state h (m) intersects with the state c at a
higher magnetic field 2.5T (4.0T ), but the state g stays
below the state c. Especially, from Eq.(11), for α = 0.5,
with EK

C(0, 12 )(a)
= 0, the state a with its ρj = 0 is at the

point of atomic collapse and the maximum of its eigenen-
ergy is only 0.23E0 at 10T , much smaller than LL1. From
the above analysis, it is evident that the massive spectra
are quite different from the massless spectra, especially

the respective quasi B− and quasi
√
B− dependence of

the energy levels and the variation of energy level or-
dering in the massive case. The results will be helpful
in understanding the electronic structure of planar Dirac
electron in QED.

C. Binding energy

To understand how the contribution of the Coulomb
interaction to the variation of EK

n,j , we define the binding
energy as the difference of the LLs and the energy

EK
B(n,j) = EK

L(n,j) − EK
n,j (15)

where we adoptEK
L(n,j) in Eq.(13) above zero. In Fig.2(a)

we give the binding energies of Dirac electron as functions
of mass with α = 0.3 and B = 10T . The evolutions of
the binding energies with the mass vary with the total
angular momentum quantum number j. For the states
with j > 0 (e.g. a,m, n), their binding energies increase
with the mass, but for the states with j < 0 (e.g. b, c, d),
their binding energies decrease with the mass except that
the state b experiences a minimum at M ≈ 7.8E0 and
then increases slowly. Interestingly, the binding energies
of the states b and m (c and n, d and o) with the same
|l| (l = j − 1

2 ) tend towards the same limit when M is
large enough. In Fig.3, we plot the radial distributions
of ΨK

(0,± 1
2 )
, ΨK

(1,± 1
2 )

and ΨK
(0, 32 )

for α = 0.3 and B = 10T

with M = 0, 10.524E0. From Fig.3(a) and (c), We can
see that for M = 0, both the upper and lower compo-
nents of the state b are closer than those of the state
m, causing, causing EK

B(0,− 1
2 )(b)

larger than EK
B(0, 32 )(m)

.

From Fig.3(b) and (d), forM = 10.524E0, the lower com-
ponents of the states b and m become smaller and their
upper components become more similar, so the difference
between EK

B(0,− 1
2 )(b)

and EK
B(0, 32 )(m)

decreases.

To investigate how the binding energies evolve with the
magnetic field, in Fig.2(b) we plot the binding energies
of the states a, b, c,m, n as functions of B with α = 0.3
with M = 0, 10.524E0. They all increase with B for the
magnetic field drives the electron to the Coulomb cen-
ter. For M = 0, their binding energies approach zero as
B approaches zero for no bound states exist for M = 0
and B = 0. For M = 10.524E0, their binding energies
approach certain values as B approaches zero for bound
states exist for M 6= 0 and B = 0. As B increases, the
binding energies of the states with j > 0 of the mass-
less case grow faster than those of the massive case and
will exceed those of the massive case at certain magnetic
field, but for the states with j < 0(e.g. m,n), their bind-
ing energies of the massless case remain below those of
the massive case. The different dependence of the bind-
ing energies on the mass and the magnetic field helps to
distinguishe the massless and the massive Dirac electron.
What is mentioned above clearly shows that the planar

Dirac electronic states can be controlled by the mass,
Coulomb and magnetic fields. The j−, α− and M−
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dependent quantum behaviors can be helpful in making
devices based on graphene and in experimental designs
such as Landau level spectroscopy or scanning tunneling
microscopy (STM)in graphene.33

IV. VALLEY SPLITTING AND INTER-VALLEY

MIXING IN COULOMB AND MAGNETIC

FIELDS

The difference between QED and graphene is that val-
ley splitting and inter-valley mixing of K and K ′ have to
be taken into account when the valley degeneracy is bro-
ken and inter-valley coupling is nonnegligible. In what
follows, we will focus the valley splitting and inter-valley
mixing in graphene based on the effective mass theory.

A. Valley splitting

Before we discuss the valley splitting of K and K ′ in
this section, we mention that the valley degeneracy can’t
be broken by magnetic field unless M 6= 0. When M = 0,
make the transformation of ϕK′ ↔ −χK′

in Eq.(3) of
valley K ′ and they become the same as Eq.(2) of valley

K. Thus, EK′

n,j = EK
n,j for M = 0. Therefore, we only

need to investigate the valley splitting in the case ofM 6=
0.
We choose M = 10.524E0 and α = 0.1, 0.3 to see how

the spectra of valley K ′ evolve with the magnetic field.
In Fig.4, we give the spectra of valley K ′ along with
some energy levels of K for comparison. Clearly, it is ob-
served that the degenerate EK′

n,−j and EK
n,j in Eq.(11) are

lifted by the magnetic field. The valley splitting results
from the breaking of the true time-reversal symmetry by
the magnetic field and the breaking of the effective time-
reversal symmetry by the mass.34 As the full spectra of
K and K ′ are complicated, we will only turn to the split-
ting of the ground and first excited states for α = 0.1, 0.3,
respectively. When α = 0.1, it is clear that the state B of
valley K ′ is always the ground state. However, the first
excited state transfers from the state a of valley K to the
state C of valley K ′ at B ≈ 2T . The largest splitting
spacing is about ∆KK′ ≈ 0.19E0 = 4.87meV at B ≈ 2T .
For α = 0.3, the state B of valley K ′ is still the ground
state and in the range of 0 ∼ 10T of the magnetic field,
the state a of valleyK is the first excited state. The split-
ting between the states B and a increases linearly with
B. The splitting reaches ∆KK′ ≈ 0.86E0 = 22.06meV
at B = 10T .
Finally, it is worthwhile to point out that the split-

ting of valleys K and K ′ is of particular importance in
experiments and the design of electronic devices based
on graphene.35,36 The breaking of the valley degener-
acy provides a way to observe the intrinsic physics of
a single valley in experiments. The low-lying states of
Dirac electron can be tuned between valley K and valley
K ′ by adjusting B, α and M in the subcritical region

α < 0.5which may be useful in the manipulation of the
valleys in graphene.36

B. Inter-valley mixing

In this section, we discuss how the Coulomb field
affects the inter-valley mixing in graphene. For the
Coulomb field 1

r
, its three dimensional Fourier trans-

formation is 1
q2

and it is often treated as a long-

range field which doesn’t involve inter-valley mixing in
semiconductors.37 However, its two dimensional Fourier
expansion in graphene is 1

q
,14 less singular than 1

q2
.

Therefore, we have to carefully examine the inter-
valley mixing caused by the Coulomb impurity in
graphene.14,19,26 Based on the effective mass theory,
Ando and Nakanishi38 presented an effective way to es-
timate the coupling strength of the two valleys by the
equation

U ′
A(B)(R)=

∑

R′
A(B)

g(R−R′
A(B))e

i(~K′−~K)·~R′
A(B)UA(B)(R

′
A(B)) (16)

where U ′
A(B)(R) is the coupling strength between the

A(B) sublattices of K and K ′, UA(B)(R
′
A(B)) is the

on-site energy and g(R) normalized by
∑

R g(R) = 1
has an appreciable amplitude in the region where |R|
is smaller than a few times of the lattice constant
and decays rapidly with increasing |R|.38For the po-
tentials whose ranges are shorter than the lattice con-
stant, UA(B)(R

′
A(B)) may be treated as a delta func-

tion and thus the coupling strength U ′
A(B)(R) is also a

delta function.38For the potentials that vary slowly on

the scale of the lattice constant, the phase ei(
~K′− ~K)·~R′

A(B)

in Eq.(16) leads to the coupling strength U ′
A(B)(R) =

0.38,40As the Coulomb potential contains both long-
ranged and short-ranged portions, it is difficult for us
to evaluate the coupling strength quantitatively directly
from Eq.(16). Recently Zhang et al39have estimated the
matrix elements between the two valleys of graphene un-
der periodic external potentials as

UKK′ =< ΨK |e−i( ~K− ~K′)·~rU(r)|ΨK′

> (17)

where U(r) is the external potentials and their re-
sults were in agreement with those acquired by the
density function theory. Actually, the integral kernel

e−i( ~K− ~K′)·~rU(r) in Eq.(17) is the result derived from
Eq.(16) by supposing g(R) behaves like the delta func-
tion.

Based on Ref.38 and Ref.39, we estimate the matrix
elements between K and K ′ caused by the Coulomb po-
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tential as

UKK′ = < ΨK
n,j |e−i( ~K− ~K′)·~rU(r)|ΨK′

n′,j′ >

= −α
i

2π

∫ 2π

0

∫ ∞

0

1

r
[ϕK

n,jϕ
K′

n′,j′e
i(j′−j+1)θ −

χK
n,jχ

K′

n′,j′e
i(j′−j−1)θ]e−i( ~K− ~K′)·~rdrdθ (18)

where U(r) = −α
r
. In order to calculate the inter-valley

mixing of the lowest lying states, we limit the quantum
states (n, j) to 0 ≤ n ≤ 3 and − 5

2 ≤ n ≤ 7
2 in each valley.

In the direct sum spaces of the two valleys, we acquire the
spectra in consideration of inter-valley mixing by exact
diagonalization.
In Fig.5 we plot the spectra of the two lowest ly-

ing states with and without inter-valley mixing as func-
tions of the magnetic field for α = 0.3, 0.4 and M =
0, 10.524E0. For the massless case (M = 0), the degen-
erate states (K, 0, 1

2 ) and (K ′, 0, 12 ) without inter-valley
mixing are lifted by the inter-valley mixing and the split-
ting increases with the magnetic field. In Fig.5(a), for
α = 0.3, the difference between the energies with and
without inter-valley mixing is not remarkable, about 2%
at B = 10T . In Fig.5(b), for α = 0.4, the difference
becomes larger, about 6% at B = 10T . For the mas-
sive case (M = 10.524E0), the spacing between the two
lowest states with inter-valley mixing is larger than that
between the two ground states of K and K ′ without
inter-valley mixing and the spacing changes little with
the magnetic field. In Fig.5(c), for α = 0.3, the differ-
ence between the energies with and without inter-valley
mixing is still tolerable, about 8% at B = 1T , which is
larger than the massless case. The wave functions of the
massive electron are more localized and their upper com-
ponents are larger than the lower components (see Fig.3),
causing the matrix elements of the massive electron in
Eq.(18) larger than those of the massless electron. How-
ever, in Fig.5(d), for α = 0.4 near the critical value 0.5
and B = 1T , the ground energy level without inter-valley
mixing is 160% of the first energy level with inter-valley
mixing, indicating that the electron is so localized by the
Coulomb field and the inter-valley is so strong that the
effective mass theory breaks down.
Our calculation shows that the inter-valley mixing in-

creases with the strength of the Coulomb potential, espe-
cially for the massive case. When the Coulomb strength
α ≤ 0.3, the inter-valley mixing is not remarkable (less
than 10%), especially for the massless electron and the
effective mass theory can still be considered valid. How-
ever, near the critical value α = 0.5, the electron is so
localized to the Coulomb center that the inter-valley mix-
ing can’t be neglected, where the effective mass theory
in graphene breaks down.

V. CONCLUSION

In summary, by the series expansion method, we have
acquired the exact energies of both ground and excited

states of the planar Dirac electron in Coulomb and mag-
netic fields and our method may promote exact solutions
of Dirac equation in other complex electromagnetic fields
in QED. In graphene, we calculate and analyze the spec-
tra of the valley K in detail to reveal the competition be-
tween the Coulomb and the magnetic fields. The energy
levels and their ordering can be controlled by the mass,
the Coulomb and magnetic fields in graphene. The dif-
ferent characteristics between the massless and massive
Dirac electrons are reflected in their binding energies.
As graphene has K and K ′ valleys, we investigate the

valley splitting and inter-valley mixing by the calcula-
tion method developed in this paper. The valley degree
of freedom and the splitting spacings in graphene can be
tuned by the mass, Coulomb and magnetic fields. By
exact diagonalization, we estimate the inter-valley mix-
ing caused by the Coulomb field and find that the inter-
valley mixing depends on the strength of the Coulomb
field. When the strength of the Coulomb field is near
the critical value α = 0.5, the effective mass theory in
graphene breaks down. We hope our calculations may
contribute to future experiment designs.
Financial supports from NSF China (Grant No.

10974108 and 11174170) and the “973” Programme of
China (No. 2011CB921901) are gratefully acknowledged.
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Figures

FIG. 1: Valley K: Energy spectra of Dirac electron as func-
tions of B for M = 0 with α = 0.3(a) and 0.5(b) and
M = 10.524E0 with α = 0.3(c) and 0.5(d), respectively. The
solid and dashed lines label the first and second LLs in the
presence of the Coulomb potential, respectively. The lines la-
beled with LL1 and LL2 are the first and second Landau levels
without the Coulomb potential. The energy level symbols are
in accordance with Tab.I.

FIG. 2: Valley K: (a)Binding energies of states
(0,± 1

2
),(0,± 3

2
),(0,± 5

2
) and (0, 7

2
) as functions of M for α =

0.3 with B = 10T . (b) Binding energies of states (0,± 1

2
),

(0,± 3

2
) and (0, 5

2
) as functions of B for α = 0.3 with M = 0

(solid lines) and 10.524E0 (dashed lines). The symbols of the
states are in accordance with Tab.I.

FIG. 3: The radial wave functions of the valley K for the
states (0,± 1

2
),(1,± 1

2
),(0, 3

2
): the upper components ϕ for

M = 0(a) and M = 10.524E0(b) and the lower components χ
for M = 0(c) and M = 10.524E0(d) at α = 0.3 and B = 10T .
ϕ and χ are normalized by

∫
∞

0
|ϕ|2+ |χ|2dr = 1. The symbols

of states are in accordance with Tab.I.
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FIG. 4: Valleys K and K′: Energy spectra of Dirac electron
in Coulomb and magnetic fields as functions of B for M =
10.524E0 with α = 0.1(a) and 0.3(b). The symbols of states
are in accordance with Tab.I. The capital letters represent
the states of K′ and the lower-case letters the states of K.

FIG. 5: Inter-valley mixing: The two lowest lying states (solid
lines)as functions of B in consideration of the inter-valley mix-
ing. The parameters of the Coulomb field and the mass are
(a)α = 0.3,M = 0, (b)α = 0.4,M = 0,(c)α = 0.3,M =
10.524E0, (d)α = 0.4,M = 10.524E0. The dashed lines rep-
resent the ground states of valleys K and K′ without inter-
valley mixing for comparison.

Tables

TABLE I: Energy levels of Dirac electronic states when M =
0, 10.524E0 and α = 0.3, 0.5 in the case of B = 5T . For con-
venience, a, b, c, d... are adopted to label the level ordering.
The energies are expressed in the unit E0.

M = 0 M = 10.524E0

(n, j) α = 0.3 α = 0.5 α = 0.3 α = 0.5
a:(0, 1

2
) (a)2.3883 (a)1.1006 (a)8.6387 (a)0.1180

b:(0,- 1
2
) (b)2.5442 (b)1.5811 (b)10.4460 (b)9.4519

c:(0,- 3
2
) (c)2.8062 (c)2.5496 (c)10.6445 (g)9.6757

d:(0,- 5
2
) (d)2.8803 (d)2.6849 (d)10.7127 (c)10.3736

e:(0,- 7
2
) (e)2.9208 (e)2.7558 (g)10.7241 (m)10.4468

f:(0,- 9
2
) (f)2.9474 (f)2.8018 (e)10.7512 (h)10.4712

g:(1, 1
2
) (g)3.8869 (g)3.0596 (f)10.7769 (d)10.5120

h:(1,- 1
2
) (h)3.9442 (h)3.1832 (m)10.9311 (e)10.5838

i:(1,- 3
2
) (m)4.0837 (m)3.7970 (h)10.9976 (f)10.6299

j:(1,- 5
2
) (i)4.1459 (i)3.9092 (i)11.1249 (i)10.8924

k:(1,- 7
2
) (j)4.2073 (j)4.0228 (j)11.1776 (j)10.9938

l:(1,- 9
2
) (k)4.2423 (k)4.0845 (k)11.2097 (k)11.0523

m:(0, 3
2
) (l)4.2659 (l)4.1255 (l)11.2319 (l)11.0918

n:(0, 5
2
) (n)5.1790 (n)4.9688 (n)11.5248 (n)11.2607

o:(0, 7
2
) (o)6.0727 (o)5.8983 (o)12.0047 (o)11.8054
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