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The electronic properties of a graphene sheet with attached hydrogen atoms is studied using a
modified Falicov-Kimball model on the honeycomb lattice. It is shown that in the ground state
this system separates into two phases: fully hydrogenated graphene (graphane) and hydrogen-free
graphene. The graphene-graphane boundary acquires a positive interface tension. Therefore, the
graphene-graphane interface becomes a straight line, slightly rippled by thermal fluctuations. A
smooth interface may be useful for the fabrication of mesoscopic graphene-based devices.

PACS numbers: 73.22.Pr, 72.80.Vp

I. INTRODUCTION

Creating a sample with flat edges is a significant
challenge for producing graphene mesoscopic devices1–3.
One possibility is to break a graphene sheet into frag-
ments with sharp edges.4 Another alternative involves
the use of graphane. Graphane5 is fully hydrogenated
graphene; it is an insulator with a gap of several eV.
With graphane, instead of physically cutting graphene,
one can create graphene patches of required shapes in-
side a sheet of graphane by local de-hydrogenation. In
such systems, low-energy electrons from graphene can-
not penetrate the insulating graphane host. Therefore,
the graphene-graphane interface serves as the effective
edge of the graphene structure. Different arrangements
of this type have been discussed.6,7 Thus, the issue of
the graphene-graphane interface stability is important
both for fundamental and applied research. There are
indications from numerical studies that such interface is
stable8,9, and that the adsorbed hydrogens tend to clus-
ter together.10 This tendency may be explained in terms
of phase separation into hydrogen-rich and hydrogen-free
regions. This separation was established on the basis of a
semi-phenomenological analysis of electron-mediated in-
teractions between hydrogen adatoms in graphene.11

The purpose of the present paper is twofold. First,
we put forward a microscopic approach to the problem
of phase separation in graphene-graphane systems. To
demonstrate the phase separation, Ref. 11 assumed a spe-
cific type of interaction between the graphene electrons
and the adatoms. For the hydrogen adatoms this as-
sumption is supported experimentally and numerically.
However, it remains unclear if the phase separation is
a unique feature of the hydrogen on graphene, or other
adsorbents would show the same feature. Avoiding phe-
nomenological arguments, we discuss the phase separa-
tion within the framework of a modified Falicov-Kimball
model, with an infinite interaction constant between ‘a
hydrogen hole’ and an s-electron on the hydrogen atom.
The advantage of such an approach is its generality: the

phase separation is a known property of a ground state
of Falicov-Kimball-like models12–16 robust against vari-
ation of microscopic details. To estimate the character-
istic energies of the phase-separated state, we apply the
Hubbard-I approximation.17 To check the validity of this
approximation, we also perform exact diagonalizations of
the model Hamiltonian in a finite cluster.

The phase separation implies that the homogeneous
state is either unstable or metastable. However, it is
possible to imagine that, under suitable conditions, such
phase may be stabilized for a long period of time. If the
stabilization is indeed possible, the properties of the ho-
mogeneous phase can be investigated. Our calculations
show that the homogeneous phase has finite density of
states at the Fermi energy, in agreement with the nu-
merical results of Ref. 10.

Our second goal is to explore the connection be-
tween phase separation and the stability of the graphene-
graphane interface. We show that the graphene-graphane
interface has a positive boundary tension. To stretch the
interface with a positive interface tension by a unit length
requires a finite amount of work. This amount is high for
the system considered. Thus, the interface remains flat
over substantial distances, which is a highly desired prop-
erty, necessary for the creation of ballistic mesoscopic sys-
tems. In other words, the interface is stable not only with
respect to vacancy defects in small samples, as found in
Refs. 8 and 9, but also with respect to any conceivable
defect. Our approach allows to obtain a qualitative es-
timate of the interface tension and to assess the flatness
of the interface at a given temperature. We estimate
that at room temperature the graphene-graphane inter-
face remains atomically smooth over distances of about
102 lattice constants.

The paper is organized as follows. In Sec. II we formu-
late the model of the adatoms adsorbed on a graphene
sample. This model is solved in Sec. III within the
Hubbard-I approximation. To check the accuracy of
the Hubbard-I approximation a finite-cluster numerical
study is presented in Sec. IV. In Sec. V we investigate
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the stability of the graphene-graphane interface, evalu-
ate the interface tension, and investigate its smoothness.
The conclusions are given in Sec. VI.

II. MODEL

We use the model Hamiltonian for graphane:

HA = HE −
∑

iσ

[
t0

(
P †
iσSiσ + h.c.

)
+ εHS

†
iσSiσ

]
, (1)

HE = −
∑

ijσ

(
P †
iσ T̂ijPjσ + h.c.

)
, (2)

where P †
iσ =

(
pA†
iσ , pB†

iσ

)
, S†

iσ =
(
sA†
iσ , sB†

iσ

)
, σ is the spin

projection. The Hamiltonian HE (HA) corresponds to
graphene (graphane). Below, label ‘E’ (‘A’) is used to
denote quantities associated with graphEne (graphAne).
The Hamiltonian HE is the usual graphene Hamiltonian
corresponding to pz-electrons of carbon hopping between
nearest carbon atoms arranged into the honeycomb lat-
tice. For such lattice, the electron creation operators

are arranged into a spinor P †
iσ , where i denotes the bi-

atomic unit cell of the lattice. The spinor component
labeled ‘A’ (‘B’) corresponds to a site on the A sublat-

tice (B sublattice). The hopping matrix T̂ij in the spinor
representation in momentum space is

T̂k =

(
0 tk
t∗
k

0

)
,

tk = tp

[
1 + 2 exp

(
3ikxa0

2

)
cos

(√
3kya0
2

)]
. (3)

The Hamiltonian HA is a simplified model of graphane.
It describes the pz-electrons of graphene hybridized with
the s-electrons of hydrogen, attached to each carbon
atom. Other bands are disregarded. The carbon-
hydrogen hybridization constant t0 = 5.8 eV exceeds the
carbon-carbon hopping amplitude tp = 2.8 eV and the
relative energy of the hydrogen s-orbital εH = 0.4 eV.7

In k-space the Hamiltonian HA can be expressed as

HA =

(
T̂k t0σ0

t0σ0 εHσ0

)
, (4)

where σ0 is the 2x2 unity matrix. Here the upper left
2x2 corner corresponds to the carbons atoms, lower right
2x2 block corresponds to the hydrogens, the remaining
blocks describe the C-H hopping.
The matrix for HA is easy to diagonalize. As a result

we obtain four graphane bands:

εAm =
1

2

(
±|tk| ±

√
4t20 + |tk|2

)
, m = 1, 2, 3, 4. (5)

In this formula εH is neglected for it is small.
Although only four bands in graphane are considered

in our model Hamiltonian, Eq. (1), it captures the main

features of graphane: at half filling, Eq. (1) describes
an insulator with a gap located at the Γ point. The
value of the gap Eg (for the parameters written above
Eg = 6.0 eV) is found to be consistent with Ref. 18,19.
Note, however, that there is no consensus about the ex-
act values of the graphane model parameters. But high
precision is not important for the qualitative results ob-
tained below.
The Hamiltonian HA is valid when the numbers of hy-

drogen and carbon atoms are equal. If at some site hy-
drogen is absent, then the hydrogen s-orbital is not avail-
able for the electrons. This constraint may be enforced
by introducing an infinitely-strong repulsion between the
“hydrogen hole” and the electron on the s-orbital:

HEA=HA+ U
∑

iσ

S†
iσN̂

hh
i Siσ, (6)

N̂hh
i =diag(nhh

Ai, n
hh
Bi), (7)

where U → +∞, and nhh
A,Bi are the numbers of hydrogen

holes at site i. These numbers can randomly take the
values 0 or 1 with mean value 〈nhh

A,Bi〉 = nhh, where nhh

is the concentration of hydrogen holes per carbon atom.
The Hamiltonian HEA is a version of the Falicov-Kimball
model in which mobile p- and s-electrons interact with
immobile “holes” whose concentration nhh is fixed exter-
nally. Thus, nhh = 1 refers to graphene, nhh = 0 refers
to graphane. Below, we will study partial hydrogenation:
0 < nhh < 1.

III. CALCULATIONS

An analogy between HEA, Eq. (6), and the Falicov-
Kimball model is very useful for our purposes since the
latter model experiences phase separation in a broad
range of parameters.12–16 The reasons for the existence
of phase separation here can be understood with the help
of simple arguments. Since t0 exceeds tp, let us study the
limit

t0 ≫ tp. (8)

We now introduce the electron operators a, b diagonaliz-
ing those terms of HEA which do not involve the carbon-
carbon hopping:

HEA −HE =
∑

α

a†αaα
[
t0(1− nhh

α ) + Unhh
α

]

−t0
∑

α

b†αbα(1− nhh
α ), (9)

where

pα =
bα − aα√

2
(1− nhh

α ) + nhh
α bα ,

sα =
bα + aα√

2
(1− nhh

α ) + nhh
α aα . (10)
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We omit the sublattice and spin labels since the expres-
sions are the same for anyA,B, and σ. The index α labels
individual carbon atoms (i, j label unit cells). In Eq. (9)
we neglect the term proportional to εH since εH ≪ tp
(≪ t0). It follows from Eq. (9) that the on-site energy of
the fermions a is much higher than the on-site energy of
b for any nhh

α , since t0, U ≫ tp. Thus, to lowest order in
tp/t0, these states are empty, and can be neglected. In
this approximation

HEA ≈ −t0
∑

α

b†αbα(1 − nhh
α )

− tp
2

∑

〈αβ〉

b†αbβ[1 + γ(nhh
α + nhh

β ) + γ2nhh
α nhh

β ], (11)

γ =
√
2− 1 ≈ 0.41, (12)

where 〈. . .〉 denotes summation over the nearest neigh-
bors. From this equation we see that to separate two hy-
drogen holes sitting on neighboring sites one must spend
an energy of the order of tpγ

2〈b†αbβ〉. This corresponds to
the attraction between the hydrogen holes (and between
the hydrogen atoms) as in the model used in Ref. 11. This
attraction induces the phase separation. The additional
correlations between the adsorbed adatoms (e.g., due to
bond reorganization in graphane), which our model ne-
glects, may be incorporated as an effective short-range
attraction between the hydrogens. The effect of this at-
traction is obvious: it favors phase separation.
Using HEA, Eq. (6), we can derive the equation of mo-

tion for the single-electron Green’s function in the (ω,k)
representation:

(ω + µ)Ĝpp + T̂kĜpp + t0Ĝsp = 1,

(ω + µ+ εH)Ĝsp + t0Ĝpp − UF̂sp = 0. (13)

Here µ is the chemical potential, Ĝpp,sp and F̂sp are the
Fourier transforms of the time-ordered propagators

Ĝpp(i − j, t) = −i
〈
T Piσ(t)P

†
jσ(0)

〉
,

Ĝsp(i − j, t) = −i
〈
T Siσ(t)P

†
jσ(0)

〉
, (14)

F̂sp(i − j, t) = −i
〈
T N̂hh

i (t)Siσ(t)P
†
jσ(0)

〉
.

The propagator F̂sp requires an additional equation of

motion, which relates F̂sp with the propagator

F̂pp = −i〈T N̂hh
i (t)Piσ(t)P

†
jσ(0)〉. (15)

To truncate the infinite set of equations for the Green’s
functions, we apply the Hubbard-I approximation. It
is a simple mean-field scheme developed in the semi-
nal papers17. The applicability of Hubbard-I and re-
lated approaches has been tested in many cases (see, e.g.,

Refs. 17,20,21). In the Hubbard-I approach, F̂pp is ap-
proximated by the product

F̂pp = 〈N̂hh〉Ĝpp = nhhĜpp. (16)

This closes the system of equations (13), whose solution
may now be written explicitly as

Ĝpp =
ω + µ+ εH

(ω + µ+ εH)(ω + µ+ T̂k)− nHt20
,

Ĝsp = − nHt0

(ω + µ+ εH)(ω + µ+ T̂k)− nHt20
, (17)

where nH = 1 − nhh is the hydrogen concentration per
carbon atom. These equations are obtained in the limit
U → ∞. Similarly, the Green’s function

Ĝss(i− j, t) = −i
〈
T Siσ(t)S

†
jσ(0)

〉
(18)

is calculated

Ĝss = nH 1− t0Ĝsp

ω + µ+ εH
. (19)

In the limiting case nH = 0 (nH = 1), the Green’s
functions in Eqs. (17) and (19) coincide with the exact
Green’s functions corresponding to the Hamiltonian HE

of graphene (HA of graphane).
When the Green’s functions are known, the density of

states, the electron concentration, and the energy can
be calculated as a function of µ. Fixing the electron
concentration (1 + nH) per carbon atom, we find µ =
µ(nH) and the energy E = E[µ(nH)] at T = 0.
The Hubbard-I results are presented in Fig. 1. The

energy-versus-density curve has negative curvature for
any nH. This indicates the instability of the homoge-
neous phase toward the phase separation. The energy
of the phase separated state can be found with the help
of the Maxwell construction. In our case, it is simply a
straight line connecting the energy of the pure graphene
at nH = 0 and the energy of the fully hydrogenated
graphane at nH = 1. This means that the separated
phases are pure graphene and pure graphane.
The single-electron band structure of the unstable

mixed graphene-graphane phase is shown in Fig. 2. It
is interesting to note that the homogeneous phase has
finite density of states at the Fermi energy. This is con-
sistent with numerical results for small clusters.10

IV. NUMERICAL CALCULATIONS

To verify our analytic approach, we also perform ex-
act diagonalizations of the Hamiltonian (6) on a finite
honeycomb cluster containing 10× 10 unit cells (200 car-
bon atoms). Periodic boundary conditions are used. For
each nH , hydrogen atoms are randomly distributed on
the cluster, and we calculate the system energy by aver-
aging it over 1500 configurations.
To check the reliability of the numerical results we in-

vestigate their dependence on the number of sites in the
cluster (Nsites) and the number of the configurations used
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FIG. 1: (Color online) Electron energy E vs the concentration
nH of hydrogen adatoms calculated in the Hubbard-I approx-
imation (green solid curve) and by exact diagonalizations of
10×10 unit cells cluster (red dashed curve). The negative cur-
vature of E(nH) over the whole range of nH is an indication of
the instability of the system toward the macroscopic separa-
tion into phases with nH = 0 and nH = 1. The Maxwell
construction is shown by blue dot-dashed line. The inset
shows the energy difference between homogeneous and phase
separated states calculated in the Hubbard-I approximation
(green solid curve) and by exact diagonalizations of 10 × 10
and 6×6 clusters (red dashed and blue dotted curves, respec-
tively). The model parameters are: t0 = 5.8 eV, tp = 2.8 eV,
εH = 0.4 eV. For exact diagonalizations, U = 400 eV.

for the averaging (Nconfig). In Fig. 3 the averaged energy
(normalized per site)

〈E〉 = 1

NconfigNsites

Nconfig∑

Θ=1

E[Θ] (20)

and the normalized energy dispersion

DE =
√
〈E2〉 − 〈E〉2 (21)

are plotted as functions of Nconfig. In Eq. (20) index Θ
labels different realizations of disorder, E[Θ] is the en-
ergy for a given disorder realization Θ. Both 〈E〉 and
DE demonstrate saturation for Nconfig & 750. This sug-
gests that the Nconfig = 1500 we used in our numerical
calculations is sufficient to obtain reliable results.
In Fig. 4 the same quantities are plotted versus Nsites.

The dispersion decays as N
−1/2
sites . This means that the rel-

ative strength of the energy fluctuations decreases when
the cluster size grows, and the energy experiences self-
averaging. The energy itself saturates for Nsites & 125.
Therefore, our choice of Nsites = 200 is adequate. In ad-
dition, the ratio DE/〈E〉 sets the relative error for 〈E〉.
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FIG. 2: (Color online) Electronic dispersion ε(k) of the un-
stable homogeneous phase for nH = 0.2. Four single-electron
bands, found with the help of Hubbard-I17,22 are plotted for
different points of the Brillouin zone. The chemical poten-
tial µ is marked by the horizontal green dashed line; µ was
calculated self-consistently to ensure that the electron con-
centration is (1+nH) per carbon atom. The gap between the
conducting and the valence bands at nH = 0.2 is smaller than
the graphane gap (nH = 1).
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FIG. 3: (Color online) The lower (brown) curve represents
the averaged energy 〈E〉, Eq. (20). The upper (blue) curve
represents the dispersion, Eq. (21). The curves are plotted as
functions of the number of the disorder realizations Nconfig.
Both curves demonstrate saturation for Nconfig & 750.

For Nsites = 200 this error is a fraction of a percent. We
conclude that our numerical calculations are reliable.

The most important results are shown in Fig. 1, where
the negative curvature of the function E(nH) is clearly
seen. It implies that the system is unstable and phase
separates in two phases: with nH = 0 (graphene) and
with nH = 1 (graphane). Unless nH is close to 0 or 1,
the energy gain due to the phase separation is of the
order of 103K, see the inset of Fig. 1. Thus, even at
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FIG. 4: (Color online) Finite size effects. The solid (green)
curve (connecting skew crosses) represents the averaged en-
ergy 〈E〉, Eq. (20), versus cluster size, Nsites. It saturates
for Nsites & 125. The solid (red) curve connecting filled cir-
cles represents the energy dispersion, Eq. (21). It decays as

N
−1/2
sites . The decay of the dispersion implies that for large

samples the energy is a self-averaging quantity. The value of
the dispersion may be used to evaluate the accuracy of the
estimated value of the energy. For Nsites = 200, the error for
〈E〉 is a fraction of a percent.

room temperature we can safely use the results obtained
at zero temperature.

Further, the numerically evaluated energy is of the
same order as the Hubbard-I energy: the magnitude of
the Hubbard-I energy is approximately two times higher
than the numerical estimate (see inset in Fig. 1). Thus,
the qualitative consistency between the numerical calcu-
lations and the Hubbard-I results provides firm support
to the findings of Sec. III.

V. INTERFACE TENSION AND INTERFACE

STABILITY

In the phase-separated state there is a boundary be-
tween graphene and graphane. The geometry of the sta-
ble inhomogeneous state depends on the sign and the
value of the interface tension σ0. If σ0 < 0, then the inho-
mogeneous phase breaks into small clusters to maximize
the boundary length. In the case of σ0 > 0, the inter-
face tension acts to minimize the length of the graphene-
graphane border. In the case of a long strip this bor-
der is a straight line (if the concentration of the hydro-
gen adatoms is not small). However, at finite temper-
atures, even for positive σ0, small thermal fluctuations
destroy the perfect smoothness of the boundary between
the two phases. The difference in the lattice symmetry
between graphene and graphane, at the level of the elec-
tron model, manifests itself through the values of the or-

bital overlaps. In the model considered here we make an
approximation regarding the orbital overlaps: we assume
that several of them are equal to zero.
Further, we neglect the difference between the lattice

constants in graphene and graphane. The contribution of
the electron-electron interaction to the interface tension
is also disregarded (we briefly discuss the effect of the in-
teraction below). In other words, the interface tension in
our model arises only due to the electron motion through
the graphene-graphane boundary.
These assumptions can be justified post factum: (i)

from our model it follows that the binding energy be-
tween a hydrogen atom and the graphene-graphane in-
terface is of the order of tp, which is consistent with the
results presented in Ref. 9; (ii) we pointed out above that
the value of the graphane gap in our simplified model
Eq. (1) turns out to be consistent with other studies;
(iii) we found that for intermediate hydrogenation the
stable homogeneous phase has finite density of states at
the Fermi energy, in agreement with Ref. 10.
We will now evaluate σ0 in the limit shown in Eq. (8).

In this approximation, electrons in graphane are localized
on the C-H valence bonds [see Eq. (9)] and their contri-
bution to σ0 is small (this contribution is proportional to
t2p/t0 and εH). In graphene, electrons are moving from
one carbon atom to its nearest neighbors. However, the
electrons from graphene cannot penetrate into graphane
since they have to overcome the graphane gap, which,
according to Eq. (9), is of the order of t0 when Eq. (8)
holds. Thus, each carbon-carbon bond connecting an
atom in graphene with an atom in graphane does not
contribute to the graphene electron kinetic energy. This,
in effect, is equivalent to an increase in the kinetic energy
of the electrons in graphene. The longer the interface, the
larger the number of “broken” bonds. Thus,

σ0 ∼ κ εb
a0

, (22)

where εb is the kinetic energy for each carbon-carbon
bond. The numerical coefficient

κ =

{
1/

√
3 ≈ 0.6 for zigzag

2/3 ≈ 0.7 for armchair
(23)

characterizes the linear concentration of the carbons on
the interface. The kinetic energy per bond is equal to

εb =
2

3

∫
d2k

S0|tk|
(2π)2

∼ tp , (24)

where the integration is performed over the first Brillouin
zone, S0 = 3

√
3a20/2 is the area of the graphene unit cell,

the factor 2 corresponds to two spin projections, (1/3)
enters since there are three bonds in a graphene unit
cell, and tk is defined by Eq. (3). After integration, we
have εb ≈ 1.05 tp, and in our approximation,

σ0 ∼ 0.6 tp/a0. (25)
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A more accurate calculation (following Ref. 23) provides

σ0 ≈ 0.2tp/a0 ≈ 0.6 eV/a0. (26)

In the calculations presented above, the contribution of
the electron-electron interaction to σ0 is disregarded.
The detailed account of the interaction goes beyond the
scope of the present study. Yet, we would like to of-
fer two observations. First, the contribution due to the
interaction is of the same order as σ0. Indeed, the lat-
ter originates mostly from the energy of C-C bond. The
chemical energy of C-H bond is of the same order (few
eV). Thus, there is no energy scale in the system which
would be able to generate an overwhelmingly large con-
tribution to the interface tension. Second, the contri-
bution due to the interaction increases the tension. To
prove this, let us neglect the interaction in the bulk, as
it is usually done for graphene, but retain the interac-
tion term for the electrons near the graphene-graphane
edge. This assumption mimics the relative importance of
the interactions for electrons in lower dimensions. It is
known that repulsive interaction gives positive contribu-
tion to the electron energy (see, e.g., Sec. I, § 6 of Ref. 24)
and, consequently, to the interface tension.
We neglect the effects of the temperature T on the

phase separation since the characteristic energies of the
problem are much higher than kBT for any realistic T .
However, the temperature fluctuations could affect the
smoothness of the graphene-graphane interface even un-
der such conditions. Following Ref. 25, we can express
the average square fluctuation of the deviation u of the
interface having a length L as

〈u2〉 = kBTL

2πσ0

. (27)

Thus, we obtain

〈u2〉
a20

≈
(
L

a0

)(
kBT

tp

)
. (28)

Using the value of the carbon-carbon hopping tp =
2.8 eV, we find that, at room temperature, the graphene-

graphane interface remains atomically-flat (〈u2〉/a20 ≤ 1)
over distances

L1 ≈ 100 a0. (29)

Note that the estimated values of σ0 and, consequently,
L1 will be larger if one takes into account the contribution
to the interface tension due to the difference between
lattice constants in graphene and graphane.

VI. CONCLUSION

We mapped the model of hydrogen atoms adsorbed on
graphene on a Falicov-Kimball-like model. We demon-
strated that this system has a strong tendency to phase
separate. The thermodynamically stable state is inho-
mogeneous: all adatoms cluster together, forming two
phases: hydrogen-saturated graphane and hydrogen-free
graphene. The interface between these phases has fi-
nite and positive interface tension, which means that the
boundary is stable and flat (if the number of hydrogen
adatoms is not small). The estimated value of the in-
terface tension is high and, at room temperature, the
interface remains atomically flat over distances of about
102 lattice constants. This result may be of interest for
fabricating graphene mesoscopic devices with weak edge
scattering.
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14 M. M. Maśka and K. Czajka, Physica Stat. Solidi (b) 242,



7

479 (2005).
15 K. I. Kugel, A. L. Rakhmanov, and A. O. Sboychakov,

Phys. Rev. Lett. 95, 267210 (2005).
16 A. O. Sboychakov, K. I. Kugel, and A. L. Rakhmanov,

Phys. Rev. B 76, 195113 (2007).
17 J. Hubbard, Proc. Roy. Soc. London, Ser. A 276, 238

(1963), ibid. 281, 401 (1964).
18 J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev.

B 75, 153401 (2007).
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