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Abstract

We investigate the crossed Andreev reflection (CAR) in a zigzag graphene nanorib-

bon/superconductor/nanoribbon junction. It is shown that when the zigzag chain number of the

ribbon is even and only the zero-energy mode is involved in transport, either the elastic cotunneling

or the local Andreev reflection could be entirely suppressed by using a gate voltage whereas a size-

able CAR is achieved. When one of the ribbon leads is magnetized, not only the CAR is exclusive

but also the spin state of the CAR transmission is nonlocally controllable. The physical origin is

the peculiar valley selection rule in the even zigzag graphene nanoribbon. The ideal Cooper-pair

splitting in the proposed device holds for all applied bias in the superconducting energy gap.

PACS numbers: 74.45.+c; 73.23.-b; 74.78.Na
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I. INTRODUCTION

The quantum entanglement,1 describing a physical scenario that the two objects of a

quantum state separated in space are strongly correlated, has been attracting much at-

tentions of researchers, not only because it has fundamental research interests in quan-

tum physics, but also it has great application potentials in quantum processes and

communications.2–6 Presently, the realization of the charge or spin entanglement of two

electrons remains a major challenge in the solid state physics, even though the polarization

entanglement of photons has been implemented in experiment.7

A superconductor (S) may be a natural source of Einstein Podolasky Rosen pairs of

electrons, as a Cooper pair consists of two electrons that are both spin- and momentum-

entangled.2,8 To split a Cooper pair spatially, the crossed Andreev reflection (CAR) at the

normal metal/superconductor interface is indispensable, i.e., an electron (hole) in one of the

normal metals is incident into the attached S lead and reflected as a hole (electron) in the

other metal. However, the CAR process could be often completely masked by a competing

process known as elastic cotunneling (EC) that occurs in the same hybrid S junction, and

these two processes have the same transmission coefficients in terms of the lowest-order

perturbation approximation,9 thus necessitating the usage of noise measurement to find

fingerprints of the CAR process.10–13

Recently, several proposals14–19 were put forward to find an exclusive CAR by suppressing

both the EC and local AR processes. Veldhorst et al.16 have predicted that a 100% fraction of

the CAR is possible in a n-type semiconductor/S/p-type semiconductor hybrid junction by

making use of the band structure imposed energy filtering; however, the optimal operation

requires that the Fermi level is fixed at the bottom of the left conduction band and the
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vertex of the right valence band, Ec = Ev. Graphene-based devices have also been studied

to generate an exclusive CAR by Cayssol17 and Linder et al.18, and they utilized mainly the

zero density of state at the Dirac point to suppress both the EC and local AR. Therefore, a

precise bias or gate voltage is needed to modulate the local Fermi energy at the Dirac point.

However, it is questionable because any energy fluctuation or spacial density fluctuation

could enable the transport to deviate from the Dirac point and the Klein-Gorden paradox20

or residual conductance makes the EC transmission sizeable.

To avoid fixing precisely a unique parameter to enhance the fraction of the CAR, we

propose in this work a perfect CAR device based on the zigzag graphene nanoribbon (ZR)

as schematically shown in Fig. 1(a), which can work in a large range of parameters such

as bias and gate voltage. The wavefunctions of the electron-like and hole-like particles in

the ZR have a definite pseudoparity,21–26 and they are exactly opposite to each other when

the zigzag chain number is even as shown in Fig. 1(b). Accordingly, for an undoped ZR/S

junction, the local AR should vanish due to opposite pseudoparities of the incident electron

(hole) and reflected hole (electron);25 however, when a gate voltage (vg) is applied on the

ribbon to shift the site energy, only the electron-like or hole-like zero-energy mode is involved

in transport so that the AR will be allowed as long as evg > ∆ with ∆ the pair potential

strength. Therefore, it is possible to split a Cooper pair spatially in a ZR/S/ZR junction by

using a gate voltage. Besides, we further observe that the local AR is also prohibited for a

magnetized ZR (MZR) as shown in Fig. 1(c), where the spin-up (down) electron band and

spin-down (up) hole band are exactly overlapped to each other with opposite pseudoparities.

Hence, in a MZR/S/ZR or ZR/S/MZR junction, not only a 100% fraction of CAR can be

achieved with vanishing EC and local AR, but also the spin state of the CAR transmission

could be controlled entirely by the magnetization of the MZR.
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II. FORMULISM

We start from the schematic ZR/S/ZR junction shown in Fig. 1(a), where an S metal

deposited on the ZR is grounded, the left ZR and the right ZR are respectively biased VL

and VR, the width of the ribbon is denoted by the zigzag chain number N , and the length

of the S region is La with a the lattice constant. The following Hamiltonian is adopted to

describe the system

H =
∑

lσ

UjC
†
lσClσ −

∑

<lm>σ

t(C†
lσCmσ + c.c.) +

∑

kσ

(εk − µ)b†kσbkσ +

∑

k

(∆b†k↑b
†
−k↓ + c.c.) +

∑

<li>σ

(tliC
†
lσbiσ + c.c.), (2.1)

where the 1st and 2nd term describe the ZR, C†
lσ(Clσ) is the creation (annihilation) operator

at site l with spin σ (σ = ± =↑↓), 〈lm〉 denotes the summation over the nearest neighbor

sites, t = 2.8 eV is the hopping integral,27 Uj stands for the lattice site energies of the left

(j = L), right (j = R), and S (j = S) ribbon region; the 3rd and 4th terms describe the

S metal lead, µ is the chemical potential, and ∆ is the superconducting pair potential; the

last term is the coupling between the S lead and the ribbon with tli denoting the hopping

energy, biσ is the lattice version of the operator bkσ in the S lead.

The device in Fig. 1 can be regarded as a three-terminal device that the left ZR, the right

ZR, and the S metal leads are connected to the S ribbon region. The current flowing in the

left ZR lead can be evaluated from the standard Keldysh formalism

IL =
e

h

∫

dE Tr[Hi,i+1G
<
i+1,i(E)−G<

i,i+1(E)Hi+1,i]ee, (2.2)

where Hi,i+1 is the hopping matrix between two neighboring slices of the ZR with i a unit
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slice index, G< is the lesser Green’s function defined as

G<
lm,σ(t, t

′) = i









〈C+
mσ(t

′)Clσ(t)〉 〈Cmσ̄(t
′)Clσ(t)〉

〈C+
mσ(t

′)C+
lσ̄(t)〉 〈Cmσ̄(t

′)C+
lσ̄(t)〉









(2.3)

with σ̄ = −σ, Hi,i+1 and G< are 8N × 8N matrices by taking both the spin and Nambu

spaces into account. The trace is carried out over the transverse site and spin space, and

the subscript ee stands for the electron component of the Nambu space. According to the

Keldysh formula, G< = GrΣ<Ga, where Gr(a) is the retarded (advanced) Green’s function

and Σ< is the lesser self-energy, the current is reduced to

IL =
e

h

∫

dE Tr{ΓL
eeG

r
eeΓ

R
eeG

a
ee(fL − fR) + ΓL

eeG
r
ehΓ

L
hhG

a
he(fL − f̄L) +

ΓL
eeG

r
ehΓ

R
hhG

a
he(fL − f̄R) + ΓL

eeG
rΓSGa(fL − fS)}, (2.4)

where the first term denotes the EC process, the second term describes the local AR process,

the 3rd term stands for the CAR, and the last one is the quasiparticle’s tunneling term which

occurs mainly out of the superconducting energy gap; fj (j = L,R, S) is the Fermi-Dirac

distribution function in the jth lead, fL(R) = f(E + eVL(R)) and f̄L(R) = f(E − eVL(R));

Γj = i(Σjr −Σja) represents the linewidth function of the jth lead, Σr = [Σa]† is self-energy

and the Green’s function of the S region is given by

Gr = [EÎ −Hs − ΣL − ΣR − ΣS]−1, (2.5)

where Hs is the Hamiltonian of the S ribbon region in the Nambu space and Î is a unit

matrix. The left and right self-energies ΣLr,Rr can be evaluated from the semi-infinite ideal

ZR leads, while that of the S lead is given by ΣS =
∑

ia,ib
tl,iag

r
S(ia, ib)t

∗
ib,m

, where grS(ia, ib)

is the surface Green’s function of the S lead connecting the ZR, and it can be transformed

from the bulk S Green’s function,26 grS(ia, ib) =
∑

k e
ik(ia−ib)grS(k), ia,b, same as indices l
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and m, denote the ZR lattice site. Note for a conventional s-wave S, the bulk S Green’s

function is equal to its surface Green’s function.28 For further simplicity, we assume each

ZR site in the S region connects independently a 1D S lead as adopted in Ref. 19, it is

equivalent to grS(ia, ib) = grS(ia, ia)δ(ia − ib), thus the self-energy can be analytically obtained

as ΣS = −igS(EÎ + ∆σ̂x)/2Ω, with Ω =
√
E2 −∆2 at |E| > ∆ and Ω = i

√
∆2 − E2 at

|E| < ∆. Such approximation of the self-energy of the S lead does not cause a qualitative

change to our following numerical results.

III. RESULTS AND DISCUSSIONS

Owing to the valley selection rule,21–24 the local AR should be prohibited at the interface of

the undoped ZR/S junction,25,26 since the electron-like and hole-like zero-energy states have

opposite pseudoparities for an even ZR as shown in the left panel of Fig. 1(b). Nevertheless,

the AR can be released by shifting the local Fermi energy of the ZR from the Dirac point,

which enables only the electron-like or hole-like zero-energy state contributing to the current.

Accordingly, it is possible to split spatially Cooper pairs in a ZR/S/ZR junction by a gate

voltage. As shown in the right panel of Fig. 1(b), a positive gate voltage applied on the ZR

results in the energy-dispersion shifting downwards, and only the electron-like zero-energy

state is involved in transport, so the local AR is allowed now since the electron (e) and hole

(h) have the same pseudoparities.

Figure 2 shows numerically obtained EC, AR, and CAR probabilities as a function of

the left bias eVL. In calculations, the zero temperature is considered T = 0 K, the pair

potential is set as ∆ = 1 meV, the linewidth constant of the S lead is set as gS = 2∆

while ΓL(R) can be calculated directly from a semi-infinite ZR. In Fig. 2(a), the local AR

is thoroughly suppressed due to UL = 0, i.e., the Fermi energy in the left ZR is actually
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locating at the Dirac point and the injected quasiparticles have an opposite pseudoparity to

that of retroflection-quasiparticles, as shown in the left panel of Fig. 1(b). At the right ZR,

UR = −5∆ is set and only the electron-like zero-energy mode is involved in transport, thus

the CAR is allowed TCAR 6= 0. Therefore, in such device, the suppression of the local AR

and permission of the CAR make it possible to split a Cooper pair in space. For eVL < 0

in Fig. 2(a), all quantities, TEC , TAR, and TCAR, are vanishing because US = −10∆ in the

S ribbon region, and the system resembles a pnn junction and then the intervalley selection

rule blocks the current flowing.21–23

Although the local AR in the left lead is prohibited (TAR = 0) and the CAR in the right

one is allowed (TCAR 6= 0) in Fig. 2(a), the EC is also allowed (dot line). In an opposite

gate-voltage scheme, UL = −5∆ and UR = 0, one can entirely separate the EC and CAR

as shown in Fig. 2(b), where at bias eVL < 0, the CAR is allowed (TCAR 6= 0) but the

EC is prohibited (TEC = 0), while the situation is reversed at eVL > 0 that the CAR is

zero but the EC is nonzero. Since UL < 0, the left and right ZRs consist a np junction for

quasiparticles with E < 0, so that the EC process would be blocked at eVL < 0 due to the

valley selection rule. For eVL > 0, the electrons in both left and right ZRs have the same

’+’ pseudoparity so the EC can not be blocked, TEC > 0, but the hole band in the right ZR

has the ’-’ pseudoparity and thus TCAR = 0. It is noted that there is no symmetry between

the EC and CAR in magnitude with respect to the bias eVL whereas the local AR is an even

function of eVL as shown in Fig. 2(b).

The EC and CAR processes can be separated as shown in Fig. 2(b) by setting UL = −5∆

and UR = 0, but the local AR is allowed accompanying the CAR, too. So this scheme is also

unfavorable to split a Cooper pair. In order to suppress both the EC and AR simultaneously

and leave the CAR alone, a magnetized ZR, MZR, shall be introduced to replace either the
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left or right ZR lead. Due to the spin splitting, only the electron-like or hole-like zero-energy

state will be involved in the AR process as long as the magnetization strength h > ∆, so

the TEC and TCAR can be separated as above. Meanwhile, the electron and hole bands of

the MZR are exactly overlapped with opposite pseudoparities as shown in Fig. 1(c), thus

making the local AR impossible.

The magnetization h in ZR can be obtained through a magnetic proximity effect and h is

about 5 meV estimated in Ref. 28. In calculations, the spin exchange term h ·σ replaces the

site energy UL(R) in Eq. (1). Figure 3 shows the spin-resolved scattering probabilities, T σ
EC,

T σ
AR, and T σ

CAR in the MZR/S/ZR junction. At eVL < 0 in Fig. 3(a), both the EC and local

AR are vanishing and only the CAR is nonzero. Meanwhile, the quasiparticles via the CAR

process are fully spin-polarized because T ↓
CAR = 0; similarly, the EC particles are also fully

spin-polarized (T ↓
EC = 0) at eVL > 0. The reason is that the site energy US in the S region

(|US| > h > ∆) must prohibit one spin-species band of the MZR contributing to current

thanks to the valley selection rule. In other words, when US is reversed, the spin states of

the CAR and EC transmissions are also reversed as well as the applied voltage eVL, which

is shown in Fig. 3(b).

We also plot both T ↑
CAR and T ↑

EC as a function of the S ribbon length L in Fig. 4,

where the probabilities exhibit a fast oscillation that is related to the formation of resonant

transmission levels inside the S region. Since there are two interfaces in the MZR/S/ZR

junction, the electron resonant transmission must give rise to the oscillating behaviors of

both the EC and CAR coefficients with variation of the length L. The TCAR increases at

very short L, then peaks at the superconducting coherence length ξ, and finally decays to

zero at L ≫ ξ. While the EC also exhibits resonant oscillations and decreases monotonously

with increase of L as shown in Fig. 4(b). Such oscillating behaviors were also found in the
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bulk graphene/S/graphene junction studied in Ref. 17 and 18.

The remarkable aspect of the proposed MZR/S/ZR is that the exclusive CAR is allowed

in whole energy gap and meanwhile, both the EC and local AR processes are forbidden

entirely. In other words, we do not resort to fixing precisely the bias or gate voltage at a

single point to obtain the exclusive CAR as done in Ref. 17 and 18. In fact, the results shown

in Fig. 2 and Fig. 3 depend merely on the conditions UL(UR) > ∆ and US > h > ∆, while

it is reasonable for the ∆ takes a maximum energy unit and the local Fermi energy US > h

in the S region is also easily accessible. Only one ZR lead is magnetized so that the spin

entanglement is not destroyed unlike that in the HM/S/HM junction14 (HM: half metal),

where both spin states in two HM leads are fixed to achieve an exclusive CAR. Similarly, the

exclusive CAR is also attainable in the ZR/S/MZR junction, where the local conductance

in the left ZR is fully spin-polarized and can be controlled by nonlocal magnetization of the

right MZR. To implement the proposed CAR device, the prefect even ZR in nanoscale is a

prerequisite, so the first energy-level difference δE ∼ tπ/N of the ZR is large enough to insure

only the zero-energy edge states involved in transport. For a 50 nm ZR in width, δE ∼ 50

meV, which is much larger than the pertained quantities Ui, ∆, and h used in calculations.

Moreover, the nanosize ZR has already been fabricated successfully in experiments.30–32

IV. CONCLUSION

To summarize, we have investigated the nonlocal quantum transport in a ZR/S/ZR hybrid

junction. It is shown that either the EC or local AR can be suppressed with a gate voltage

applied on one ZR lead, and when one of the ZR leads is magnetized, an exclusive CAR is

possible for all applied bias voltages with full suppression of both the EC and AR. The spin

state of the nonlocal conductance dominated merely by the CAR could be modulated by
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the local magnetization. The basic mechanism behind this effect is the peculiar ZR band

structure and the valley selection rule. Finally, since both undoped and magnetized even-ZR

block the local AR thoroughly, the proposed device may serve as a very efficient Andreev

beam splitter.
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FIG. 1: (Color online) (a) An overview of the setting from the top. A normal superconductor lead

(shadow S) on the top of the ZR is grounded and divides the ZR into three regions: the left, S,

and right ZR regions; the left and right ZRs are respectively applied with voltage VL and VR. (b)

Electron and hole energy-dispersions of the edge states in the nonmagnetic even ZR. The hole band

’h’ is obtained as a mirror image of the electron band ’e’ over the Fermi level (horizontal dot line),

’+’ and ’-’ denote respectively the even and odd pseudoparity of the edge states. The left and right

panels stand for the situations without and with a gate voltage applied on the ribbon. (c) Electron

and hole energy-dispersion of a magnetized even ZR. The spin-up (down) electron band overlaps

with spin-down (up) hole band with opposite pseudoparities, and the spin exchange energy causes

to a shift of the Dirac point from the Fermi level.
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FIG. 2: (Color online) Plot of the AR, CAR, and EC transmission coefficients versus the bias

voltage eVL applied on the left ZR. The solid, dash , and dot lines represent the AR, CAR, and

EC processes, respectively. Parameters are eVR = 0, L = 40, US = −10 meV, UL = 0, UR = −5

meV in the upper panel (a), and UL = −5 meV, UR = 0 in the lower panel (b).
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FIG. 3: (Color online) Plot of the spin-resolved AR, CAR, and EC transmission coefficients versus

the bias voltage eVL applied on the left ZR. Only T
↑
CAR and T

↑
EC in (a) and T

↓
CAR and T

↓
EC in (b) are

nonzero while all other quantities are vanishing. Parameters are eVR = 0, L = 40, UL = UR = 0,

h = 5 meV, US = −10 meV in (a), and US = 10 meV in (b).
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FIG. 4: Spin-dependent CAR (a) and EC (b) transmission coefficients versus the S region length

L. Parameters are eVR = 0, UL = UR = 0, h = 5 meV, US = −10 meV, eVL = −0.5∆ in (a) and

eVL = 0.5∆ in (b).
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