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Calculations of monolayer and bilayer lattices of methane on MgO(001) are reported for a spherical
model of the molecule. The observed stability of c(2×2) [also termed (

√
2×

√
2)R45◦] commensurate

square monolayer and bilayer lattices is reproduced with a surface energy corrugation that implies a
large gap in the monolayer phonon density of states of the commensurate CH4. This gap is present
in the incoherent inelastic neutron scattering measurements reported here.
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I. INTRODUCTION

Multilayer films of CH4/MgO(001) and CD4/MgO(001) have been the subject of extensive measurements because
they appeared very suitable for studies of surface-induced melting, as reviewed by Bienfait and Gay.1 The initial
stages of the film growth continue to attract attention in the a priori quantum theory of catalytic processes.2,3 Many
film parameters are known and the first few layers are commensurate square solid lattices.
The stability of the square monolayer and bilayer lattices also is intrinsically interesting. There is six-fold coordi-

nation in a monolayer triangular lattice but only four-fold coordination in the monolayer square lattice. While the
original observation of the methane commensurate square lattice4 was not considered to be very remarkable, because
the nearest-neighbor separation Lnn in the monolayer was only 1% different from that in the ground state of the
three-dimensional (3D) solid, the energetics imply an unusual physical adsorption system. To balance the difference
in lateral cohesive energy arising from the smaller coordination, the corrugation energy arising from the substrate
must be larger than the attractive potential energy of a pair of the molecules. The only other physical adsorption
system for which such a large corrugation is known to occur is5 H2/NaCl(001). The large corrugation implies a large
gap in the monolayer phonon density of states which indeed is present in the incoherent inelastic neutron scattering
data reported in Sec.II B.
The square monolayer has an unusual lattice dynamics, because the interactions with next-nearest neighbors cause

the smallest in-plane vibrational frequency to be at the Brillouin zone edge, in contrast to the minimum at the
Brillouin zone center for triangular lattices. The most likely competing commensurate-incommensurate transition in
the monolayer is6 a first order transition from square to compressed triangular lattice, although a continuous transition
to a uniaxially compressed lattice of heavy walls7 is favored at large corrugations.
Because so much is known about the methane/MgO system, it is reasonable to expect that an atomic scale model

calculation will reproduce the remarkable features of the monolayer domain. Complications arise from the molecular
character of the adsorbate and from the significant role of quantum zero-point energies in the low temperature solids.
There is orientational ordering in the very-low-temperature monolayer solid.8 However, over much of the monolayer
phase diagram the molecule is in a state of nearly free rotation and a spherical molecule approximation is sufficient to
reproduce most of the observations. Quasiharmonic lattice dynamics suffices to evaluate the zero-point energy effects.
The organization of this paper is as follows. Section II contains a summary of the experimental data and III

contains the formulation of the calculations. Results of the calculations are presented in Sec. IV and discussed in
Sec. V. Concluding remarks are presented in Sec. VI. The Appendix describes an extension of the Novaco-McTague
perturbation theory9 to a strongly corrugated monolayer. Supplementary material has been deposited in the EPAPS-
archive.10

II. SUMMARY OF THE EXPERIMENTAL DATA

A. Review of previous data

The degree of rotational ordering of the monolayer solid of CH4/MgO(001) was measured8,11 using quasi-elastic
neutron scattering over a temperature range from 1.5 K to 50 K. The molecule is rotationally ordered below 15 K,
rotationally disordered at 20 K, and essentially has a free rotation above 40 K. The monolayer melts12 near 80 K.
The structure of thin methane films was determined in several diffraction experiments. Early neutron scattering

experiments showed4 the monolayer and bilayer of CD4/MgO(001) form commensurate c(2× 2) square lattices up to
10 K. Later experiments showed that CD4 grows as a commensurate square lattice to 3 layers at8 50 K and to 4 layers
at13,14 77 K. Helium atom scattering15 confirmed that the CH4/MgO(001) monolayer is a commensurate c(2 × 2)
square lattice at 33–36 K, as shown also at 50 K by low energy electron diffraction.16 Adsorption isotherm data12,13

indicate limited wetting of CH4/MgO(001) at lower temperatures and that the fourth layer becomes unstable13 below
40 K.
Integral heats of adsorption qi for condensation of the monolayer and bilayer CH4/MgO(001) are known from

adsorption isotherms, mostly for the temperature range 70 to 95 K. For the monolayer condensation, Freitag and
Larese report12 q1 = 1385 ± 7 K and cite Madih17 for q1 = 1590 ± 50 K. For the bilayer condensation they report
q2 = 1212± 2 K and cite Madih for q2 = 1219 ± 6 K. For comparison, the latent heat of sublimation of 3D CH4 at
very low temperatures is18 1126 K.
The results of a direct determination of chemical potential differences at fixed temperature are used here for

comparison to calculated stability margins. Freitag and Larese give ∆µ12 ≡ µ2 − µ1 = 260− 280 K and µ3D − µ1 =
350− 370 K for isotherms at 70 – 87 K, where µ1, µ2, and µ3D are the chemical potentials at monolayer, bilayer, and
3D solid condensation. The difference ∆µ12 ≃ 270 K is much smaller than the value19 ∆µ12 ≃ 650 K for triangular
monolayer and bilayer lattices of CH4/graphite.
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B. Incoherent inelastic neutron scattering

In order to examine the dynamics of the methane monolayer solid, incoherent inelastic neutron scattering (INS)
experiments were performed using the H5 triple axis spectrometer at the Brookhaven National Laboratory’s HFBR
neutron source. INS offers unrivaled sensitivity for investigating the microscopic dynamics of condensed matter,
especially molecular systems containing hydrogen. The spectrometer was configured in an energy-loss, fixed-final
energy (Ef = 14.7 meV) mode using a Ge(111) monochromator and a PG(002) analyzer which resulted in an energy
resolution (FWHM) of 0.6 meV at the elastic position. The cylindrical, thin-walled, aluminum sample cell was filled
with ∼10 g of MgO powder. The MgO is comprised of uniform cubic particles ∼250 nm in size (edge length) and
essentially single facet (100) exposure produced using a patented process developed by Kunnmann and Larese.20 The
powder-averaged INS spectrum shown in Fig. 1 was recorded at 9.0 K at a wave vector transfer Q = 2.35 Å−1.
The spectra shown in the figure have the response of the MgO substrate (no film adsorbed) subtracted away. As
noted above, monolayer methane forms a commensurate c(2 × 2) phase and the methane coverage investigated here
corresponds to 95% of the completed monolayer (100-cm3 STP).
Figure 1 shows that there are essentially no excitations that involve the phonon density of states below about 2.5

meV. The free rotor transition of the molecule at about 1.15 meV is present at higher temperatures but disappears
completely below 5 K in INS measurements for monolayer CH4/MgO(001), Fig.3 of Ref.21 and Fig.3 of Ref.22 at 1.5
and 4 K.
We summarize some comparisons of the lattice dynamics for adsorption on MgO and on graphite. The nearly-

dispersionless perpendicular frequency is15 ω⊥ = 7.5 meV for CH4/MgO(001) and is23 ω⊥ = 12.5 meV for
CH4/graphite. For the in-plane phonon motions, the zone-center frequency gap is24 ω0,‖ = 1.25 meV for com-
mensurate CD4/graphite and the lower edge of the density of states is estimated from Fig. 1 to be ωmin,‖ = 2.5 meV
for CH4/MgO(001).

III. INTERACTION MODELS AND THEORY

The interaction models used here for the stability determinations are empirically based. It is useful to note, though,
the status of a priori calculations of the molecule-substrate, CH4 – MgO(001), interactions. Drummond et al.2

evaluated the relative energies of methane configurations and concluded that the dipod-down configuration is the
most stable, in agreement with the results of rotational tunneling measurements for temperatures below 15 K. Tosoni
and Sauer3 calculated a monolayer adsorption energy of 13.3 kJ mol−1 [ = 138 meV = 1600 K] in good agreement
with experimental estimates12,26 of 120–126 meV. However, the calculated vibration frequencies are25 about twice
the experimental CH4 results (i.e., a factor of 4 in the force constant) for the perpendicular vibration ω⊥ obtained
from inelastic helium atom scattering15 and for the lower edge of the in-plane vibration spectrum ωmin,‖ reported in
Sec.II B. For the present work, parameters of the CH4 – MgO(001) interaction are based on experimental data for
molecules in the monolayer and from an estimate of the London – van der Waals energy for molecules in the second
layer of the bilayer solid.
The force constant for perpendicular vibrations is derived from the frequency ω⊥ = 7.5 meV measured by helium

scattering15 for CH4/MgO(001), which scales to 6.7 meV for CD4/MgO(001). The interaction of the first-layer
molecules with the square substrate lattice is taken to be determined by two parameters V0 and Vg0

Vs(x, y) = V0 + 2Vg0 [cos g0x+ cos g0y] , (1)

where g0 = 2π/ℓ with ℓ = 2.98 Å for MgO(001). The fourier amplitude Vg0 determines the energy parameter Ω,

Ω = ~g0

√

2|Vg0|/m , (2)

(particles of mass m). Ω is equal to Brillouin zone center frequency gap ω0‖ when the ground state lattice is the
c(2 × 2) commensurate square lattice with one molecule per unit cell. For square lattices ω0‖ is distinct from the
minimum in-plane frequency in the Brillouin zone, ωmin,‖, which determines the gap in a measured density-of-states
spectrum. The two values differ by 10–20% in these calculations for CH4/MgO(001) and the distinction probably is
much larger6 for a commensurate square lattice of Kr/NaCl(001).
The parameters V0 and Vg0, specific to CH4 adsorption on MgO(001), are set by requiring that the monolayer

condenses as a square lattice, rather than a triangular lattice, and that the square bilayer lattice condenses before the
chemical potential is increased to the point that a monolayer triangular lattice forms. The model calculations were
guided by the estimate ωmin,‖ ≃ 2.5 meV inferred from the incoherent inelastic neutron scattering data.
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The molecules are approximated as spheres, which is a fair leading approximation for temperatures above 20 K
where they are rotationally disordered. The venerable Lennard-Jones (12,6) functional form is used for the molecule-
molecule pair potential

φ(r) = 4ǫ[(σ/r)12 − (σ/r)6] = ǫ[(Rmin/r)
12 − 2(Rmin/r)

6] (3)

with two sets of parameters: ǫ = 137 K and σ = 3.6814 Å, used by Phillips27 (JMP) in many calculations for
CH4/graphite, and ǫ = 148.9 K and σ = 3.783 Å, used by Lynden-Bell28 (RLB) in a simulation of CH4/MgO(001)
multilayers and based on a fit29 to a range of 3D gas phase data. Given the large σ-difference of 0.1 Å, it is surprising
that the results of the two sets for the dense phase conditions of the monolayer do not lead to large differences in the
inferred values of V0 and Vg0. This may be because the intrinsic length scales of the two models span the range of
physical separations that dominate the present applications, see Table I. The JMP set reproduces properties of the
monolayer and bilayer solids somewhat better.
The MgO substrate is the source of a molecule-substrate van der Waals potential VvdW ≃ −C3/z

3, C3 = 0.313 au,
and of a substrate-mediated molecule-molecule interaction. The substrate-mediated interaction in the monolayer is
taken to be the McLachlan energy30 with coefficients Cs1 = 47.6;Cs2 = 19.0 (atomic units) and an effective distance to
the substrate (image plane) Lov = 2.25 Å derived from the empirical CH4–MgO distance2,3,31 3.30 Å. The McLachlan
energy is used only for the monolayer molecules and the van der Waals potential is used for the molecules in the upper
layer of the bilayer.
Zero-point energy causes a 2% dilation of the ground state lattice constants of the intrinsic monolayer triangular

lattice and the 3D solid and is included in all the results presented here. The 3D solid is significantly dilated by the
triple-dipole (3-molecule, non-pair-additive) dispersion energy32 as shown in Table I. Since the goal of the calculations
is to determine relative stability of film structures, the emphasis is on relative energies and some of the defects of the
models in giving total energies may be offset in the differences.
The structures that are treated are: (1) the commensurate c(2 × 2) monolayer, (2) the commensurate c(2 × 2)

bilayer, (3) the modulated triangular incommensurate monolayer both at the minimum energy lattice constant (Lu)
and under compression, and (4) the heavy wall (HW) uniaxially incommensurate monolayer7 obtained by compression
of the c(2×2) monolayer. Structures (1) and (2) are analogous to the (1×1) lattices treated6 for Kr/NaCl(001), while
(3) is approximated as described in the Appendix. (4) is a structure that may be accessed7 for CH4/MgO(001) but
does not arise for Kr/NaCl(001). The transitions (1) → (2) and (1) → (3) are first order transitions while (1) → (4)
is continuous.
The stability determinations use the grand potential Φ of N molecules adsorbed on an area A at temperature T

and chemical potential µ:

Φ = N(f − µ) , (4)

where f is the Helmholtz free energy per molecule. Φ plays the role of a generalized pressure for commensurate lattices.
In the static lattice approximation, f reduces to the potential energy; when there are significant zero-point energies,
the zero temperature theory replaces f by the ground state energy. If the monolayer solid is a commensurate square
lattice, the chemical potential at monolayer condensation is µ1 = E1(�). The chemical potential at condensation of
a commensurate square bilayer solid is

µ2 = 2E2(�)− E1(�) , (5)

and the difference is

∆µ12 = µ2 − µ1 = 2[E2(�)− E1(�)] . (6)

The question of whether the c(2 × 2) monolayer lattice is compressed to a triangular monolayer lattice, with
area/molecule ax = x(2ℓ2), before the bilayer forms is governed by

µ(x)− µ1 =
1

1− x
[E1(x) − E1(�)] . (7)

The threshold value ∆µ(△) ≡ µ1(△) − µ1(�) is the minimum of Eq.(7) as a function of x; the energy E1(x) is
evaluated as described in Appendix A using a generalization of the Novaco-McTague perturbation theory9 for the
modulation energy arising from the substrate corrugation. The threshold ∆µ(HW) = µ1(HW) − µ1(�) is evaluated
from the slope with misfit of the energy E1(HW) of a series of uniaxially incommensurate heavy wall (HW) lattices7

at misfits less than 1%.
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The energies that are first formed in the calculations do not include the average first layer molecule-substrate energy
V0. These are denoted Ẽ1(�), Ẽ2(�), Ẽ1(△) and Ẽ1(HW) and are related to the energies that enter in Eqs.(5) - (7)
by

E1(�) = Ẽ1(�) + V0 , (8)

E2(�) = Ẽ2(�) +
1

2
V0 , (9)

E1(△) = Ẽ1(△) + V0, E1(HW) = Ẽ1(HW) + V0 . (10)

Hence ∆µ(△) and ∆µ(HW) do not depend on V0 but ∆µ12 does. It is significant that the chemical potential µ2 does
not depend explicitly on V0:

µ2 = 2Ẽ2(�)− Ẽ1(�) . (11)

Eq.(11) expresses the fact that the chemical potential at bilayer condensation is insensitive to the binding of the
monolayer to the substrate. This has been noted33 for the bilayer condensation of xenon on several substrates (the
C3 term, though, does depend on the substrate). For the commensurate square lattices, the classical registry energy
of 4Vg0 for first layer molecules also cancels from µ2, but Vg0 does affect the zero-point energy in µ2.

IV. COMPUTATIONS

The zero-point energy and free energy of the monolayer and bilayer lattices are evaluated with quasiharmonic lattice
dynamics.30,34 Calculations27 for methane/graphite suggest this accurately includes thermal effects at temperatures

below 30 K. The pair potentials are summed over 7 neighbor shells in-plane (Rc = Lnn

√
10) and 5 shells between

planes for the square lattices and 5 shells in-plane (Rc = 3Lnn) for the triangular lattice. For the methane 3D fcc
lattice results in Table I, the lattice sums are cut off at a distance Rc = 3.5Lnn and the Brillouin zone sums are
evaluated with the Chadi-Cohen35 special point set.
Results for the monolayer and bilayer solids of CH4 and CD4 are presented in Table II for the Phillips (JMP)

and Lynden-Bell (RLB) parameters. More extensive data, for several other values of Ω and for models that do not
include the McLachlan interaction, are given in the supplementary material.10 These are zero temperature results
that include zero-point energies. For comparison, the lattice constant that minimizes the total potential energy for a
2D triangular lattice with LJ(12,6) pair potentials is Lnn/σ = 1.111, or 4.09 Å for the JMP parameters [with -463
K cohesive energy] and 4.20 Å [with -504 K cohesive energy] for the RLB parameters. The entries for Lu in Table I,
with zero-point energy but without the McLachlan energy, are 2% larger.
The entries in Table II are as follows: The frequencies ωmin and ωmax are the minimum and maximum in-plane

frequencies of the c(2 × 2) monolayer. Lu and Ẽu denote the average nearest-neighbor spacing and energy of the

minimum energy modulated incommensurate triangular lattice. Ẽ1(�) and Ẽ2(�) denote the energy per molecule
of the c(2 × 2) monolayer and bilayer solids. ∆µ(△) is obtained using Eq.(7) while ∆µ(HW) uses data for the HW
lattice at small misfit, as described there. When ∆µ(HW) < ∆µ(△), as occurs for the larger values of Ω, the heavy
wall lattice is more stable than the triangular incommensurate monolayer. The values V0 and µ1 are obtained from
the empirical ∆µ12 = 270 K, using Eqs.(6), (8) and (9).
An attempt was made to estimate the role of thermal effects at higher temperatures, because most of the data on

adsorption energies is taken at relatively high temperatures, 70–90 K. This is not routine to do with the quasiharmonic
theory because, as found in other monolayer and bilayer calculations, the quasiharmonic approximation leads to supra-
linear thermal expansion for CH4 at temperatures above 40 K as well as a large increase of the interplanar spacing
of the bilayer. Quantum corrected cell model calculations of the unconstrained thermal expansion and ∆µ(△) are
stable up to about T = 50 K and indicate that the thermal effects may reduce the values of ∆µ(△) relative to the
T = 0 K values in the Tables by 20–30 K for the temperature range T = 30− 60 K. This is not large enough to cause
qualitative changes in the stability tests.

V. DISCUSSION

Requiring that the minimum in-plane phonon energy of CH4 be ωmin,‖ ≃ 2.5 meV sets Ω ≈ 2.8 meV for the Phillips
model and Ω ≈ 3.0 meV for the Lynden-Bell model. Both give values of ∆µ(HW) and ∆µ(△) that are much larger
than the value ∆µ12 set for the monolayer square to bilayer square transition. The calculations for CD4, with the
same value of Vg0, show the square monolayer is succeeded by the square bilayer too. A separate calculation that the
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bilayer square be stable relative to the bilayer triangular lattice increases the requirement on Ω to the range 3.0-3.1
meV.
As in the modeling6 of p(1× 1)Kr/NaCl(001), the c(2× 2) square commensurate lattice at small corrugations Vg0 is

dynamically unstable relative to a deformation to a square commensurate Bravais lattice with 4 molecules in the unit
cell and then Ω 6= ω0‖. The threshold corrugation to make the potential energy of the 1-molecule unit cell lower than
that of the 4-molecule CH4 cell is 2|Vgo| ≃ 15 K, i.e., Ω ≃ 1.2 meV for the JMP parameters. For the RLB parameters,
the values are 2|Vgo| ≃ 33 K and Ω ≃ 1.8 meV. Hence the 4-molecule unit cell is excluded by the datum ωmin,‖ ≃ 2.5
meV.
To make the energy of the square c(2×2) CH4 monolayer lower than that of a modulated triangle, E1(�)−Eu(△) <

0, requires Ω ≥ 2.25 meV and that is satisfied by the fit to ωmin,‖. The most severe constraint is that the chemical
potential increment ∆µ for compression from the monolayer square to other monolayer lattices (△ and HW) be larger
than 270 K and that requires Ω > 2.75 meV. With Ω ≃ 3.0 meV, the calculated gap is ωmin,‖ ≃ 2.4 − 2.7 meV and
compression of the c(2× 2) monolayer leads to the bilayer solid and not to an incommensurate monolayer solid.
The larger core radius σ in the RLB set leads to stronger repulsive forces in the dynamics of the monolayer square

lattice. The width of the in-plane phonon density of states ωmax − ωmin for CH4 is about 4 meV for the JMP set
and is close to 6 meV for the RLB set. The latter width is closer to what is shown in Fig. 1. A reservation on the
significance of this comparison is that the models do not treat the librational degrees of freedom of the molecule and
thus the calculation omits some higher frequency motions that may be accessed in the experiments. Also, Fig.2, the
overall shape of the calculated incoherent inelastic spectrum for the RLB set is further from the experimental data
than that of the JMP set.
The calculated powder-averaged incoherent inelastic neutron scattering spectrum from c(2 × 2)CH4/MgO(001) is

shown in Fig.2 for the JMP and RLB parameter sets, both with Ω = 3.0 meV. The 1-phonon inelastic double-
differential cross-section36 is evaluated for initial wavenumber ki = 2.958 Å−1, wavenumber transfer Q = 2.35 Å−1,
target temperature 9.0 K, and a gaussian instrumental resolution function with FWHM = 0.6 meV. The quantity
shown is D(E), an average density of states related to the partial differential cross-section and the incoherent 1-phonon
spectral density Sincoh,1 by

D(E) = 〈 d2σ

dωdE′
/(σi/4π)〉 = 〈(kf/ki)Sincoh,1(Q,∆E)〉 (12)

where σi is the neutron-molecule incoherent scattering cross section. The calculated spectra have two peaks, at energy
transfers close to ωmin,‖ and ω⊥, and are in qualitative agreement with the experimental spectrum, Fig.1. The ratio
of the lower energy peak intensity to that at the higher energy is about 1.5 in the experimental spectrum, about 1 for
the JMP parameters, and about 0.5 for the RLB parameters.
Combining µ2 from Eq.(11) and the ∆µ12 ≃ 270 K fitted to the Freitag-Larese data12 leads to values for the

monolayer condensation chemical potential at T = 0 K of µ1 = −1256 K for the JMP set (methane/graphite) and
µ1 = −1348 K for the RLB set (methane/MgO multilayers). The offset from the 3D solid ground state energy
(including triple dipole energies) then is µ1 − µ3D ≃ −350 K for the former and µ1 − µ3D ≃ −320 K for the latter.
Both values are in remarkable agreement with the estimate µ1 − µ3D ≃ −350 to − 370 K from the Freitag-Larese
isotherms at higher temperatures. Without the triple dipole energy in the 3D calculation, the calculated differences
would have shifted by about 100 K.
The calculations10 show that µ1 for CH4 varies by only 1 K as Ω is changed from 2.25 to 3.25 meV for the JMP

parameters (from 2.5 to 3.25 meV for the RLB parameters). Thus, µ1 is insensitive to the value of Ω and to whether
the McLachlan energy term is included, in accord with the discussion of Eq.(11).
The monolayer registry energy at Ω = 3.0 meV is −4|Vg0| = −180 K. This also is the barrier to motion on the

surface in a 2D model. It is smaller than an activation energy ∆E ≃ 660 K fitted to the diffusion coefficient of a
dense monolayer fluid of CH4/MgO(001) measured37 by quasielastic neutron scattering for temperatures of 88 to 97
K. However it does offset the reduction of lateral energy in the square lattice, which is approximately the ǫ = 137−149
K of the Lennard-Jones (12,6) potential. The a priori calculations of relative site energies by Drummond et al.2 give
energy differences on this scale, but also show the complexity of the full molecular problem. The energy difference
for the dipod orientation (edge down) at the O2− and Mg2+ sites is 6.5 meV (75 K) with a height difference of 0.5 Å.
The energy difference for the tripod down configuration is 14.2 meV (165 K) with a height difference of 0.3 Å. The
energy barrier for translational motions must be an average of these increments that arises from coupled orientational
and out-of-plane motions of the molecule. The a priori calculations have not evaluated this yet.
The negative dispersion of the in-plane shear mode frequency from Brillouin zone center to the zone boundary is a

characteristic of the square lattice. The net shift for atomic/molecular massm is given in terms of the nearest-neighbor
force and the dipole-dipole and dipole-quadrupole dispersion energy coefficients38 C6 and C8 by:

m[ω2
min,‖ − ω2

0,‖] =
8

r

dφ

dr
|r=Lnn

− 4C6

L8
nn

[
9

4
+

312

3125
]− 4C8

L10
nn

[2 +
560

15625
] , (13)
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where the first term in each square bracket on the right-hand-side is the contribution of the next-nearest-neighbors at
distance Lnn

√
2 and the second term is the contribution of farther neighbors at separations out to Lnn

√
5 . Eq.(13)

can be used to interpret the lattice dynamics calculation of the dispersion. For Kr/NaCl(001), the first term on
the right-hand-side is well-determined from dimer spectroscopy and accurate values are available for the dispersion
force coefficients C6 and C8 that give the dominant contributions from farther neighbors. For CH4/MgO(001) the C6

coefficient is believed to be known to 5%, while the accuracy of C8 is at the 10-15% level and the nearest-neighbor
term is an estimate based on spherical molecule approximations. For the Kr case,6 with Lnn < Rmin, all terms are of
the same sign and the net reduction may be as large as 50% of ω0‖. For CH4 with the JMP parameters, the first term
on the right-hand-side is positive (Lnn > Rmin) and there is an offsetting effect. For CH4 with the RLB parameters,
the first term on the right-hand-side is negative (Lnn < Rmin) and the net reduction is larger.39

VI. CONCLUSION

Calculated stability margins between candidate dense molecular packings, once the internal parameters are opti-
mized, tend to be a small part of the total energy and one that is hard to match reliably to experiments. However,
the difference in coordination between the square and triangular lattices has large enough effect that the requirements
on the external potential can be estimated rather easily. The conclusion of this paper is that the condensation of
the methane monolayer as a simple commensurate square lattice that is succeeded by a commensurate square bilayer
lattice is understood and consistent with the scattering and isotherm data. The observed frequency gap is large
enough to require a substrate corrugation, with Ω ≈ 3 meV, that suffices to stabilize the observed square lattices. It
is a novel situation to unite the two complementary approaches in a consistent picture.
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Appendix A: Variational approximation to the Novaco-McTague energy

An incommensurate monolayer solid is modulated by the spatially periodic terms in the adatom-substrate potential
energy v(r), i.e., the corrugation energy terms. Novaco and McTague9 found that the corresponding shift ∆E of
the ground state energy often is well-approximated by a second order perturbation theory. When the corrugation is
strong, as for Kr/NaCl(001) and CH4/MgO(001), the second-order perturbation theory for ∆E leads to a divergent
dilation of the lattice because the harmonic adatom-adatom force constants become very small. While this artifact
might be remedied by an expansion that retains higher harmonics (anharmonic perturbation theory), a variational
modification of the perturbation theory is implemented here.
Let the classical potential energy for adatoms at positions {rj} be written as

Φ =
∑

i

v(ri) +
∑

i<j

φ(|ri − rj |) , (A1)

and retain only the leading shell of reciprocal lattice vectors:

v(r) = Vg

∑

g

exp(ıg · r) . (A2)

Second-order perturbation theory for the displacements {uj} from the positions {Rj} in the uniform triangular
incommensurate lattice driven by the v(r) gives

uj = −Vg

∑

g

exp(ıg ·Rj)D
−1(g) · (ıg) , (A3)

D(g) =
∑

j

[1− exp(ıg ·Rj0)]∇∇φ , (A4)

where the tensor D is proportional to the dynamical matrix of harmonic lattice dynamics.
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The variational theory first evaluates the potential energy Eq.(A1) for the positions rj = Rj+fuj without expanding
the functions v and φ. The scale factor f and the angle α that a primitive vector of the triangular lattice makes
with a primitive vector of the square substrate lattice are variational parameters for each choice of uniform triangular
incommensurate lattice {Rj}. The sums in Eq.(A1) are carried over a lattice of 800 × 800 = 640, 000 adatoms.
The potential energy Φ is minimized as a function of f and α. The lattice constant that minimizes the potential
energy plus the harmonic zero point energy of the uniform triangular lattice is denoted Lu(△) in the Tables and the
corresponding total energy is denoted Eu. (The subscript u denotes the “unconstrained” or zero spreading-pressure
lattice.) ∆µ(△) is obtained using the optimized total energy in Eq.(7).
The variational approximation coincides with the second-order perturbation result at small corrugations, and it

eliminates the divergent dilation at large corrugations that was described previously6 for Kr/NaCl(001).
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FIGURE CAPTIONS

1. INS difference plot of S(Q,ω) from 0.95 c(2 × 2) commensurate monolayer of CH4 on the MgO(001) surface
at Q = 2.35 Å−1 using the H5 3-axis spectrometer set in the fixed final energy mode with a resulting energy



10

resolution at the elastic position of 0.6 meV FWHM. T = 9.0 K.

2. Calculated powder average of the double-differential cross-section for incoherent inelastic neutron scattering
from the c(2 × 2) CH4/MgO(001) monolayer, with parameters given in Sec. V and corresponding to the data
in Fig. 1. The density of states function D(E) defined in Eq.(12) is shown as a function of energy transfer E.
The smooth and chain lines are the results for the Phillips and Lynden-Bell parameter sets, respectively, both
using Ω = 3.0 meV.
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TABLE I. Zero temperature properties of CH4 and CD4 lattices in 2D and 3D. LJ(12,6) models augmented with McLachlan
energy (McL) or triple-dipole energy (td) as stated. Ground state energies in K(with 3D zero-point energy) and unconstrained
lattice constants (zero pressure, zero spreading pressure) in Å. ω⊥ = 7.5 meV for CH4/MgO and 6.7 meV for CD4/MgO.
Calculated lengths determined to ±0.005 Å.

species CH4 CH4 CD4 CD4

LJ JMPc RLBd JMP RLB

Lu(2D)(McL) 4.215 4.320 4.205 4.310

E0(△)(McL) -305.4 -348.4 -316.1 -359.3

Lu(2D)(no McL) 4.185 4.295 4.175 4.285

E0(△)(no McL) -350.3 -388.9 -361.3 -400.1

L0 (3D) (no td) 4.095 4.20 4.085 4.195

E0(3D) (no td) -1006 -1104 -1021 -1119

L0 (3D) (td)a 4.15 4.245 4.14 4.235

E0(3D) (td)a -909.5 -1026 -922.6 -1040

L0(3D) (expt)b 4.16 4.14

E0 (3D) (expt)b -1126 -1156

a.) triple dipole strength32 ν = 1680 au.
b.) from data assembled in [30].

c.) Phillips27 parameters, ǫ = 137 K and σ = 3.6814 Å.
d.) Lynden-Bell28,29 parameters, ǫ = 148.9 K and σ = 3.783 Å.

TABLE II. Zero temperature properties of CH4/MgO(001) and CD4 structures, with LJ parameters of Phillips27 (denoted
JMP) and Lynden-Bell28 (denoted RLB). Calculations include the McLachlan energy and the 3D zero-point energies.a

species CH4 CH4 CD4 CD4

LJ JMP RLB JMP RLB

Ωb (meV) 3.00 3.00 2.50 2.50

2 |Vg0| (K) 90.1 90.1 78.3 78.3

ωc
min (meV) 2.73 2.38 2.24 1.89

ωmax 6.65 8.47 5.87 7.51

Lu(△)d (Å) 4.28 4.37 4.25 4.34

Ẽu(△) (K) -324 -364 -330 -371

Ẽ1(�)e (K) -392 -427 -380 -416

Ẽ2(�) (K) -689 -753 -688 -753

µ1(△) − µ1(�)f (K) 470 578 348 424

µ1(HW) − µ1(�)g (K) 418 540 346 406

V h
0 (K) -864 -921 -886 -944

µ1 (K) -1256 -1348 -1266 -1360

a.) Ẽ1, Ẽu without V0, Ẽ2 without V0/2. Eqs.(8)-(10).
b.) Ω in terms of Vg0, Eq.(2).

c.) Minimum and maximum in-plane frequencies of the c(2 × 2) monolayer.
d.) Average nearest neighbor spacing and energy of the minimum energy modulated incommensurate triangle lattice, see

Appendix A.
e.) Ground state energies of the monolayer and bilayer commensurate square lattices, Eq.(5).

f.) Chemical potential increment for compression from square to triangular monolayer lattice, Eq.(7).
g.) Chemical potential increment for compression from square to uniaxially incommensurate heavy wall (HW) lattice, see

discussion at Eq.(7).

h.) V0 = 2(Ẽ2(�) − Ẽ1(�)) − ∆µ12, using the empirical CH4 value ∆µ12 = 270 K for both species.
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FIG. 1. INS difference plot of S(Q,ω) from 0.95 c(2×2) commensurate monolayer of CH4 on the MgO(001) surface at Q = 2.35
Å−1 using the H5 3-axis spectrometer set in the fixed final energy mode with a resulting energy resolution at the elastic position
of 0.6 meV FWHM. T = 9.0 K.
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FIG. 2. Calculated powder average of the double-differential cross-section for incoherent inelastic neutron scattering from the
c(2 × 2) CH4/MgO(001) monolayer, with parameters given in Sec. V and corresponding to the data in Fig. 1. The density of
states function D(E) defined in Eq.(12) is shown as a function of energy transfer E. The smooth and chain lines are the results
for the Phillips and Lynden-Bell parameter sets, respectively, both using Ω = 3.0 meV.


