
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Band engineering in silicide alloys
Alexander Slepko and Alexander A. Demkov

Phys. Rev. B 85, 035311 — Published 12 January 2012
DOI: 10.1103/PhysRevB.85.035311

http://dx.doi.org/10.1103/PhysRevB.85.035311


1 
 

Band engineering in silicide alloys 
 

Alexander Slepko and Alexander A. Demkov1 
Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA 

 
 
A relatively low conductivity of PtSi is one of the impediments to its application as a 
contact material in semiconductor technology. In this paper we discuss a possible strategy 
to control the conductivity of PtSi by manipulating the density of states at the Fermi level 
through alloying. Using density functional theory, we demonstrate theoretically that 
alloying PtSi with Ti substantially increases the number of conducting electrons, and 
suggest possible ways to increase the Ti solubility limit. We identify a tertiary compound 
with the conducting electron concentration almost three times larger than that of bulk 
PtSi. We analyze the effect of Ti alloying on the work function of PtSi, and its Schottky 
barrier height to Si and we examine the effect of alloy scattering on PtSi conductivity. 
 

I. Introduction 
 
Continuous scaling of complementary metal oxide semiconductor devices drives the 
search for new metal silicide contact materials to the source, drain and gate of a field 
effect transistor [1]. Typically, monosilicides are preferred over higher order silicides, 
such as disilicides, due to a lower Si consumption. Nickel and platinum monosilicides 
have recently attracted significant interest [2,3]. Metal silicides are formed by a heat 
treatment of a metal-semiconductor contact. Owing to the formation mechanism silicide-
silicon interfaces are essentially free of contamination. Contacts formed in this manner 
generally show stable electrical characteristics, such as low line and contact resistance, 
and exhibit excellent mechanical adhesion [4]. Most important, however, is that the use 
of metal silicides allows the formation of self-aligning contacts whereas in metallic 
conductors their precise location usually depends on the fabrication process.  
 
In this paper, using PtSi as an example, we employ first principles calculations to identify 
a strategy of improving electrical properties of silicide alloys via band engineering. The 
electronic structure and elastic constants of PtSi and Pt2Si have been previously 
investigated theoretically using density functional theory (DFT) [5-7]. Our group has 
reported theoretical studies of the surface energy and work function of bulk PtSi [8] and 
the electronic, optical and surface properties of PtSi thin films [9]. PtSi is attractive 
because of its relatively low (0.2 eV) Schottky barrier to the valence band of Si (001) and 
excellent thermal stability [10]. However, as a contact material PtSi suffers from 
relatively low conductivity (e.g. when compared with Pt), which can be traced to the low 
electronic density of states (DOS) at the Fermi level in bulk PtSi. A look at the PtSi 
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density of states (Fig. 1) reveals that the Fermi level “misses” the high density of states 
region corresponding to Pt d-states. A naïve integration of the electronic DOS suggests 
that in a unit cell of bulk PtSi about 7.5 electrons need to be removed in order to shift the 
Fermi level down in energy towards the high DOS region of the spectrum. To achieve 
this we suggest doping PtSi with Ti substitutionally on the Pt site. Both PtSi and TiSi 
monosilicides can be stabilized in a primitive orthorhombic structure with space group 
Pnma (#62 in the International X-Ray Tables) where PtSi crystallizes in a MnP-type 
lattice and TiSi in a FeB-type lattice shown in Figs. 2a) and 2b), respectively. Moreover, 
Ti and Pt atoms are almost equal in size (the atomic radius of Ti of 1.4Å is only 5% 
larger than that of Pt) but Ti contributes only four electrons per atom to the total amount 
of valence electrons, versus ten contributed by Pt. In a primitive unit cell of PtSi this 
means that 1.25 out of four Pt-atoms need to be replaced by titanium. We test this idea by 
the means of first principles DFT calculations.  Our calculations suggest that Ti doping 
may result in a significant increase of the DOS at the Fermi level followed by an increase 
in the number of conducting electrons (those in the interval FBFB ETkEETk +≤≤+− ). 
We predict an increase of up to 2.7 times in the number of conducting electrons 
compared to bulk PtSi.  Importantly, we find that on average the Schottky barrier to Si is 
rather insensitive to Ti doping. Using a simple ideal mixture theory to estimate the 
entropic effect of mixing, we find the solubility limit of Ti in bulk PtSi (on the Pt-site) at 
500K to be ~0.5%. Unfortunately, this is not sufficient to realize the gains in the electron 
density in practice. To circumvent this problem, we find that additional alloying with 
gallium or aluminum can significantly increase the solubility limit of Ti in PtSi. We also 
estimate the effect of alloy scattering on the conductivity. 
 
The rest of the paper is organized as follows. First, we summarize computational details 
in section II. In section III we discuss the electronic structure of TixPt1-xSi alloys, estimate 
the carrier density and analyze the effect of Ti doping on the work function and Schottky 
barrier height with Si (001). Using the Boltzmann transport formalism we calculate the 
change in conductivity due to the introduced Ti impurity scattering. In Section IV we 
discuss the solubility limit of Ti in bulk PtSi, and consider possible routes to increase the 
solubility limit of Ti via stabilizing TixPt1-xSi alloys by additional doping with boron, 
carbon, gallium and aluminum. 
 

II. Computational details 
 
All calculations are done using density functional theory within the local density 
approximation and ultra-soft pseudopotentials [12] as included in the VASP code [13-
17].  We use the valence configurations (3d3, 4s1) for titanium, (6s1, 5d9) for platinum, 
and (3s2, 3p2) for silicon. The 300 eV kinetic energy cut-off yields 1 meV/cell 
convergence for bulk PtSi.  To investigate the effects of doping with Ti on the DOS and 
number of carriers at the Fermi level for different Ti concentrations, we consider 2×2×6, 
2×2×3, 2×2×2, 2×1×2, 1×2×2 supercells and the primitive cell. For the Brillouin zone 
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integration of these cells we use the following Monkhorst-Pack [18] k-point meshes: 
4×4×2, 4×4×4, 4×4×6, 8×14×12, 14×8×12 and 13×13×17. All structures are optimized 
with respect to the ionic positions, cell shape and volume until the forces on all atoms are 
less than 20meV/Å. The energy is converged to 10-3 meV/cell. The relaxation is not 
constrained by symmetry. 
 
We consider TixPt1-xSi and TixPtSi1-x alloys with 0.52%, 1.04%, 1.56%, 3.13%, 6.25% 
and 12.5% (atomic percent) Ti substitution. For the two lowest concentrations we use the 
2×2×6 and 2×2×3 supercells of PtSi (in each case we replace only one Pt atom by Ti). 
We use a 2×2×2 supercell of PtSi for the Ti concentrations 1.56% and 3.13% where one 
and two out of the 32 Pt atoms are substituted by Ti. We analyze all 31 different 
possibilities to substitute two Pt atoms by Ti (3.13%). Alloys with 6.25% Ti can be 
realized using 2×2×2 supercells of PtSi where four Pt atoms are substituted by Ti. That 
yields 465 possibilities to arrange the Ti atoms in the cell. In the case of 12.5% Ti (eight 
atoms in a 2×2×2 supercell) there are 2629575 different possibilities. As such a large 
number of different calculations is not realizable, in the case of 6.25% of Ti we analyze 
smaller 2×1×2 and 1×2×2 supercells. In each case that yields 15 structures with the Ti 
concentration of 6.25% (including symmetrically equivalent structures). In alloys with 
12.5% Ti we limit our studies to a primitive cell of PtSi and replace one Pt atom by Ti 
resulting in only one possible structure. For this high concentration one in principle, 
could use a bigger simulation cell with a quasi-random distribution of Ti, however, as it 
turns out the solubility limit makes this case difficult to realize in practice. To calculate 
the work function and Schottky barrier height, we use slab geometry with simulation cells 
of the size ~10Å×~10Å×~45Å (the side lengths vary slightly depending on the used 
models as is described later) along with a 4×4×2 Monkhorst-Pack k-point mesh for the 
Brillouin zone integration. 
 

III. Electronic and thermodynamic properties of TixPt1-xSi alloys  
 
Influence of Ti doping on the density of states 
 
The high density of states at the Fermi level and is one of the main requirements for 
having high electrical conductivity. By integrating the DOS within the 2kBT energy 
window around the Fermi level (e.g. at T=300K) the carrier density n can be determined. 
To analyze the effect of Ti doping on the DOS and n we consider Ti concentration of 
0.52%, 1.04%, 1.56%, 3.13%, 6.25% and 12.5%. For concentrations of 3.13% and 6.25% 
we consider sixty one possible Pt substitutions in total. However, here we only focus on 
the most stable configurations. Our results for the DOS at the Fermi level and the carrier 
density n are summarized in Table 1.  For comparison, we have included the results for Ti 
substitution of Si. As expected, in this case the effect on the carrier concentration is 
minimal. In Figure 3 we show the DOS of TixPt1-xSi for the Ti concentrations 1.56%, 
3.13%, 6.25% and 12.5%. Contrary to our original intention to shift the Fermi level 
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towards the region of high density of Pt d-states we find that it actually moves very little, 
yet producing a noticeable change in the number of states at the Fermi level! Figure 4 
(the partial DOS of the alloy with 12.5% Ti) shows that the increase is due to the 
introduction of Ti d-states that appear right above the d-states of Pt in energy (the energy 
difference of the atomic d-levels is ETi-d-EPt-d ≈ 5.42eV [19]), rather than to a shift of the 
Fermi energy. Therefore, though the “rigid band” assumption has proven to be an 
oversimplification, we find that doping with Ti indeed increases the number of carriers in 
PtSi. We also find that substituting Si by Ti does not affect the carrier concentration. 
Later we shall analyze the thermodynamic stability of Si-substituted and Pt-substituted 
TiPtSi alloys. 
 
Influence of Ti doping on the work function and Schottky barrier height 
 
One of the key characteristics of any contact material is its Schottky barrier height (SBH) 
to Si. Thus it is important to understand how Ti doping may affect the barrier height. We 
start by considering the effect of doping on the work function (WF) φm of PtSi which is 
defined as a difference between the vacuum energy in the immediate vicinity of its 
surface and the Fermi level. To simulate the silicide surface we use slab geometry. The 
thickness of the TixPt1-xSi slab is approximately 25Å and it is followed by 15Å of 
vacuum to minimize the slab-slab interaction introduced through the periodic boundary 
conditions. We calculate the local electrostatic potential of the cell, and average it over 
the x-y plane along the z axis (direction normal to the surface). A typical plot of this 
planar averaged local potential is shown in Fig. 5 a). We approximate the vacuum energy 
level with the value of the electrostatic potential in the vacuum region of the simulation 
cell.  The WF is then easily extracted. We compare the WF of TixPt1-xSi with 3.13% Ti 
(Ti on Pt-site) to bulk PtSi for the surface orientations (001), (010), (100), (101), (011) 
and (110). We consider three different surface terminations (Pt, Si and Ti termination) as 
depicted in Figure 6 for the (100) surface. For the (001) orientation a stoichiometric 
surface is constructed as cleaving in this direction always yields a surface with an equal 
amount of Pt and Si in the surface plane rather than Pt or Si rumpling out of it (as is the 
case for all other orientations). Our results are summarized in Table 3 and plotted in Fig. 
7. Firstly, we note that with the exception of the Si-terminated (010) surface, Ti slightly 
increases the WF compared to equivalent PtSi surfaces. Secondly, with the exception of 
the (101) orientation, Ti-terminated surfaces always have a lower WF than PtSi surfaces 
with the same orientation and any termination. The highest difference of 0.45eV is found 
for the (010) surface when comparing the Ti-terminated TixPt1-xSi with Pt-terminated 
PtSi. This can be traced to Ti 3d states being higher in energy than the d states of Pt. 
Within the Schottky model, these changes in the WF should greatly influence the barrier 
height between the metal’s Fermi level and the semiconductor’s valence or conduction 
bands. In the following we analyze two theoretical silicide/Si interface models to gain 
insight in the dependence of the SBH on Ti doping. 
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The Schottky barrier height (SBH) of a metal to a p-type semiconductor is defined as the 
energy difference between the top of the valence band of the semiconductor and the 
Fermi level of the metal: 

mVBp E ϕϕ −= , (1) 

where EVB is the energy of the semiconductor’s valence band top with respect to the 
vacuum level, and φm is the metal WF. Conversely, the n-type SBH is the energy 
difference between the Fermi level of the metal and the bottom of the conduction band of 
the semiconductor. 
 
To estimate the effect of Ti doping on the SBH we construct two model interfaces 
Si(001)/TixPt1-xSi(001) and Si(001)/TixPt1-xSi(110) using superlattice geometry. We 
calculate the SBH for 0% and 3.13% Ti, while substituting Ti at the interface directly as 
that yields the largest change in the WF. The ~35Å thick Si slab is used as a substrate, i.e. 
the silicide layers are laterally lattice matched to it. The silicide is ~15Å thick. The 
substrate and metal are initially separated by 1.8Å (determined by a quadric fit of the 
binding energy). The lateral dimensions are 11.5Å×11.5Å and 7.6Å×15.3Å in our 
(001)/(001) and (110)/(001) models, respectively. We apply 3.0%×-2.9% and 6.2%×-
5.9% lateral strain to the metal layers to match them with the Si substrate and completely 
relax the ionic positions while keeping the lattice constants and simulation cell shape 
constant. After relaxation the residual stress is less than 0.6GPa in the (001)/(001) model 
and less than 1GPa in the (001)/(110) model. 
 
We extract the p-type SBH from the calculated local electrostatic potential. Again, the 
potential is averaged over the x-y plane for each z value. A typical plot of the planar 
averaged local potential is shown in Fig. 5 b). Deep inside the Si and metal regions we 
expect to find bulk-like conditions in both materials. Within the bulk regions the planar 
averaged microscopic potential is also macroscopically averaged along the z-axis. The 
top of the valence band of Si in the bulk region is placed with respect to the averaged 
potential in the Si slab using a separate bulk calculation. The SBH is then easily extracted 
as shown in Fig. 5 b). Our results are summarized in Table 4. For our (001)/(001) model 
we find a SBH of 0.13eV for both PtSi and TixPt1-xSi. For our (110)/(001) model we find 
0.11eV and 0.08eV for PtSi and TixPt1-xSi contacts, respectively. The calculated barrier 
heights for PtSi contacts are in fair agreement with our previously reported value 0.16eV 
for the PtSi(001)/Si(001) interface [8], where a smaller cell (higher stress) was used to 
reduce the computational time. It is somewhat smaller than the experimental value of 0.2 
eV [10]. 
 
Equation (1) suggests a linear increase in the SBH for decreasing WF. Although, in the 
previous section we found that Ti doping reduces the WF of PtSi by approximately 0.1eV 
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for the (001) and (110) Ti-terminated surfaces, our calculated barrier heights are rather 
insensitive to this change. To gain more insight we apply the metal induced gap states 
(MIGS) theory [20] for SBHs and compare with our results: 

 ( ) ( )χϕϕϕϕ −−−⋅−= CNLCNLmgp SE . (2) 

Here Eg is the band gap of the semiconductor (1.1eV for Si), φm the metal WF, φCNL is the 
charge neutrality level (CNL) of the semiconductor, and χ its electron affinity. The 
pinning parameter S is believed to be an intrinsic property of the semiconductor surface. 
In the Schottky limit (S=1, i.e. no Fermi level pinning), equation (2) gives the “maximum 
dependence” on the WF. In the Bardeen limit (S=0, i.e. strong Fermi level pinning), the 
SBH does not depend on the metal WF at all. Equation (2) is a linear interpolation 
between the Schottky and Bardeen limits. In practice S, can be approximated by [21]: 

 ( )211.01
1

−⋅+
=

∞ε
S , (3) 

where ε∞ is the high frequency limit of the dielectric constant of Si. Using ε∞=11.7 the 
pinning parameter of Si is 0.08 indicating little dependence of the SBH on the WF. 
According to Bardeen, the CNL is the intrinsic property of the material and is essentially 
the Fermi level at the surface, in the literature theoretical values of the Si CNL vary 
between ~0.3eV and ~0.36eV above the valence band top, somewhat depending on the 
method of calculation [22,23,24]. For the CNL 0.3eV above the valence band top and 
electron affinity of 4.1 eV [25], in the Bardeen or strong pinning limit the SBH is always 
0.30eV. In the Schottky limit the barrier height averaged over our (001)/(001) and 
(110)/(001) models is 0.13eV for PtSi/Si interfaces. For our TixPt1-xSi/Si interfaces it is 
0.21eV, 0.08eV higher than for the PtSi/Si interfaces. This shift reflects the linear 
dependence of the SBH on the change in WF in the Schottky limit. However, our 
calculations indicate the difference between the SBH of TixPt1-xSi/Si and PtSi/Si 
interfaces of only 0.01eV suggesting little dependence of the SBH on the metal work 
function. Thus, our results are in qualitative agreement with the Bardeen model, i.e. the 
change in the WF does not influence the SBH, as is reflected by a small value of the 
pinning parameter S. 
 
Impurity scattering in TixPt1-xSi alloys 
 
Thus far we have demonstrated that doping PtSi with Ti can increase the number of 
carriers without significantly altering the Schottky barrier to Si. However, doping 
typically is accompanied by the increase in scattering that may adversely affect the 
mobility.  To analyze the change in the carrier mobility with increasing Ti concentration 
in bulk PtSi we use the Boltzmann transport formalism [26,27]. Assuming that collisions 
of electrons with substitutional Ti atoms are elastic and spin conserving, we can calculate 
the collision term in the Boltzmann equation, and estimate the change in the carrier 
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mobility of a system due to impurities. Similar calculations have been recently performed 
by Evans et al., who analyzed the channel mobility degradation in a field effect transistor 
caused by interface defects [28]. 
To calculate the probability for an electron in band n with the wave vector k  to scatter 
into band m with the wave vector 'k  we compute the impurity scattering potential ΔV 
and its scattering matrix element:  

 ( ) ',' kmVknkkTmn Δ= , (4) 

where the unperturbed wave functions 'km  and kn  are the Bloch states of undoped 

PtSi normalized to unity, i.e. the absolute square of the wave function integrated over the 
primitive cell equals to one. The impurity scattering potential ΔV is calculated from first 
principles within density functional theory by subtracting the local potentials computed 
for a simulation cell of PtSi and TixPt1-xSi. Due to the metallic nature of PtSi the 
perturbation |ΔV| is short ranged and the integration in (4) can be reduced to an integral 
over the simulation cell provided it is sufficiently large. To ensure that the potential is 
fully contained in the simulation cell we calculate the carrier mobility in a 2×2×2 cell 
with one Ti impurity. In our approach we only relax the ionic positions in the perturbed 
and unperturbed cell, keeping the cell shape and volume fixed. The impurity potential is 
shown in fig. 8 in the form of crossectional contour plots in three orthogonal planes 
containing the impurity site. It ranges between -10eV and 10eV, and is roughly of the 
order of the kinetic energy of the fastest electron whose band velocity is 16 Å/fs (Fig. 9). 
The peak energy values of the potential are contained within a sphere of radius ~3Å 
around the Ti impurity, thus it is well contained in the simulation cell. 
 
Using equation (4) and the Fermi golden rule we calculate the rate of scattering from 
state 'km  to state kn : 

 ( ) ( ) ( ) ( )( )',','
2

2 kEkEkkTVnkk mnmndmn −⋅⋅⋅=Γ δπ , (5) 

Where nd is the impurity density, V is the volume of the simulation cell, and ( )kEn  and 

( )'kEm  are the energy eigenvalues of the unperturbed wave functions kn  and 'km . 

The total rate is then obtained by summing over the first Brillouin zone multiplied by the 
probability for the initial state to be filled and the final state to be empty and subtracting 
the rates of backscattered carriers. The inverse scattering time for a state kn  is then 

given by: 
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 ( ) ( ) ( )( )∑ Θ−Γ=
',

',
cos1,'1

km
kkmn

n

kk
kτ

,  (6) 

where the sum only runs over states within the range TkEEETk BFFB +≤≤+−  as only 
these states contribute to scattering. 
 
In equation (5) the δ-function ensures energy conservation. In practice we replace the δ-
function by a properly normalized window function. Then scattering is only possible for 
states satisfying ( ) ( ) ε<− 'kEkE mn . The width of the window function is 2ε. In our study 

we use the value ε=10meV (the difference to using ε=15meV in the later calculated 
mobility is within 5%). The carrier mobility is given by [27]: 
 

 ( ) ( )[ ] ( )[ ] ( )( )∑ ∂
∂

−=
kn

n
nnn E

kEf
kvkvke

,

0
βααβ τμ . (7) 

In equation (7) the function ( )( )kEf n0  is the equilibrium Fermi-Dirac distribution with 
the chemical potential set to the Fermi energy of the system. The band velocity nv  is the 
derivative of the energy ( )kEn  with respect to k  divided by . Figure 9 shows the 
probability density distribution of the band velocity within ±kBT of the Fermi level. We 
calculate velocity magnitudes and normalize the sum to one.  The distribution peaks at 
2Å/fs. The sum in (7) runs over ten contributing bands at the Fermi level. Using equation 
(7) the conductivity is given by 

 αβαβ μσ en= . (8) 

For the electron density n in equation (8) we use our previously estimated conduction 
electron density within the energy interval TkEEETk BFFB +≤≤+−  (Table 1). 
 
We calculate the mobility and conductivity tensors of TixPt1-xSi alloys for several Ti 
concentrations. Our calculations show that dense k-point meshes are crucial for accurate 
convergence of the conductivity tensor. We use a 10×10×12 mesh for the 2×2×2 
simulation cell. Our results are listed in Table 5. It is important to note that in this theory 
no electron-phonon or any other types of interactions besides the impurity scattering are 
included. Thus, the result is not the absolute value for the carrier mobility but rather a 
correction to the unperturbed absolute values. The total mobility and conductivity are 
calculated using the following expressions: 
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The subscript “d” denotes the defect contribution calculated in this work whereas “0” 
denotes the absolute values without impurity scattering for which we use the 
experimental value. We use σ0≈3.3·106A/Vm [29] and μ0= σ0/en0≈263.5cm2/Vs. 
 
In Figure 10 we plot μtot and σtot. For μd and σd we use the average of the principle values 
of our calculated tensors. The mobility and conductivity tensors for 1.56%, 3.13%, 6.25% 
and 12.5% Ti are listed in Table 5. Clearly the carrier mobility decreases with the 
increasing number of impurities. Contrary to what happens in doped semiconductors, the 
carrier density rises too slowly to offset the decrease in mobility, and conductivity 
decreases. However, for Ti concentrations below 0.5% the decrease in conductivity is 
less than 50% compared to bulk PtSi. 
 
Thermodynamic stability and solubility limit 
 
The question now arises whether one can incorporate the sufficient amount of Ti on the 
Pt site in PtSi. Multi-component silicides can be produced by depositing layers of metals 
on a Si substrate and subsequent heating until silicidation sets in. Typically, four reaction 
outcomes are distinguished: layer reversal, phase separation, solid solution or ternary 
compound formation. These reactions can occur successively, for further details we refer 
the interested reader to the work by Setton et. al. [30]. Since both Ti and Pt form silicide 
phases, one could in principle, encounter formation of TinSi, PtnSi, PtTin, their mixtures 
or a ternary compound. To simplest approximation the alloy with the lowest formation 
energy would form first, followed by the alloy with the next highest formation energy, 
and so on. We calculate the heat of formation of PtTi, PtSi and TiSi to be ΔHPtTi = 
−1.72eV, ΔHPtSi = −1.43eV and ΔHTiSi = −1.72eV per formula unit, respectively. 
Considering just these three compounds (not including higher order silicides and 
titanides) the heats of formation indicate that upon heating the Ti/Pt/Si system, PtTi or 
TiSi would form first. TiPtn alloys are indeed well known experimentally [31, 32]. The 
formation of PtSi, TixPtySiz or TixPt1-xSi compounds would occur at higher temperature.  
 
The formation energy per formula unit of PtSi is higher than that of TiSi, suggesting that 
the substitution of Pt by Ti in PtSi would result in a stable TixPt1-xSi alloy. By analyzing 
the changes in the internal energy after alloying we identify the energetically preferred 
substitution site. The formation energy can be estimated by 
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 xPtSiPtTixTiPtSi xx
E +⎯→⎯+ −

Δ
1 , (10) 

and 

 xSiPtSiTixTiPtSi xx
E +⎯→⎯+ −

Δ
1  (11) 

for doping on the Pt and Si-site, respectively. The reaction energy in (10) and (11) and 
the cell volume V of the alloys are plotted in Figure 11 as function of Ti concentration. 
The cell volume V will be used later. Doping on a Pt-site we find a stable alloy with 
approximately 0.5% Ti. Above 0.5% the formation energy increases linearly with the Ti 
concentration. Doping on a Si-site becomes energetically favorable over doping on a Pt-
site for more than ~1.8% Ti. We find a linear increase in the cell volume when doping on 
a Si-site. However, mixing up to 2% Ti on a Pt-site “shrinks” the cell. Above 2% its 
volume starts increasing linearly. Interestingly, Ti’s atomic radius is 5% larger than that 
of Pt yet producing a net volume decrease in the cell size compared to PtSi. 
 
To estimate Ti’s solubility limit in PtSi, we calculate the change in free energy after 
alloying:  

 mTSVpEG −Δ+Δ=Δ . (12) 

Here ΔE is the change in internal energy, pΔV is the contribution due to the change in 
volume and TSm accounts for the change in entropy. For ΔE we use the values calculated 
using reactions (10) and (11). The pΔV term is calculated from the change in the volume 
after alloying multiplied by p=1atm. The entropic contribution in (12) is estimated using 
a simple theory of ideal binary mixtures: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−=
!
!!ln 21

total
Bm N

NNkS . (13) 

Assuming Ti is substituted either for Pt or Si, N1 is the number of Ti atoms, 
1/2 NNN SiPt −=  the number of remaining Pt or Si atoms, and 21 NNNtot += . The 

entropic term is stabilizing the alloys above the “critical temperature” when ΔG becomes 
negative. The critical temperature is determined by the condition ΔG=0 in (12): 
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m

crit S
VpET Δ+Δ= , (14) 

where the ΔE, pΔV and Sm terms depend on the Ti-concentration. Therefore, plotting 
equation (14) as a function of the Ti-concentration shows the solubility limit of Ti in PtSi 
at a particular critical temperature. 
 
Our results for Tcrit are summarized in Table 1 and Figure 12. Up to approximately 0.7% 
Ti mixes on the Pt-site. Above ~0.7% the solubility limit of Ti increases linearly with 
temperature. At 500K up to ~0.9% Ti can be mixed in PtSi (substituting Pt), while at 
PtSi’s congruential melting temperature 1500K only up to ~2% Ti can be mixed on the 
Pt-site. This can be traced to a chemical difference manifested in the Pt-Si and Ti-Si bond 
lengths. We find that the nearest neighbor distance in TiSi is 2.6Å, while in PtSi it is 2.4 
Å, deviating by 7.5% from each other. Thus, alloying introduces significant local stress. 
On the other hand up to ~3% Ti can be mixed on the Si-site at 500K. We have also 
considered a possibility of Ti clustering, and find that it is not energetically preferable. To 
obtain a notable gain in the carrier density with increasing Ti concentration, 1.8% and 
more Ti should mix on the Pt-site. Thus, in section IV we analyze possible routes to 
increase the Ti solubility limit at low temperature and to stabilize TixPt1-xSi vs. TixPtSi1-x 
alloys. 
 

IV. Co-doping with boron, carbon, gallium and aluminum 
 
One can think of several ways to increase the solubility of Ti in PtSi. The parameters in 
equation (14) controlling the solubility limit are the formation energy ΔE, the cell volume 
and the entropy of mixing. The solubility limit increases when either ΔE or the cell 
volume decrease, the entropy of mixing increases, or if any combination of these three 
possibilities occurs. Our smallest 2×2×2 cell for 1.56% Ti is 2.3Å3 smaller than bulk 
PtSi. Our largest 2×2×2 cell for 3.13% Ti is 6.6Å3 larger than PtSi. Assuming pressure of 
1 atm the pΔV term in (14) ranges between -1.4·10-3meV and 4.1·10-3meV, less than 
0.07% of the smallest energy difference we calculate using (10) and (11). Thus, the pΔV 
contribution is too small on the scale of ΔE to make a significant difference in alloy’s 
stability (equation 14). Instead, we consider co-doping TiPtSi with boron, carbon, 
gallium and aluminum ions (later denoted as “X”) to increase the entropic contribution 
and hopefully reduce ΔE. We use alloys with 3.13% and 6.25% concentration of Ti. Here, 
we at first only consider doping Ti on the Pt-site while co-doping with one of the 
proposed elements. For the energetically preferred co-dopant we later re-evaluate the 
preferred doping site of Ti. 
 
We use a 2×2×2 simulation cell and substitute one X atom on either the Pt or the Si-site. 
Despite the large difference in the atomic radii of our co-dopants and Pt and Si we find 
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that all of the proposed co-dopants prefer to mix substitutionally on the Si-site. The 
formation energy of the TixPt1-xXySi1-y is estimated using the following reactions: 

 SiPtXSiPtTiXTiPtSi E ++⎯→⎯++ Δ 2232 31302 , (15) 

and 

 SiPtXSiPtTiXTiPtSi E ++⎯→⎯++ Δ 4432 31284  (16) 

for 3.13% and 6.25% Ti, respectively. The formation energy for all co-dopants along 
with the carrier density at the Fermi level are summarized in Table 6. In all alloys the 
carrier density at the Fermi level is increased compared to bulk PtSi. While co-doping 
with boron and carbon increases the formation energy of the alloy, gallium or aluminum 
lower the formation energy drastically. We find the largest decrease in formation energy 
when using Al as co-dopant and identify a marginally stable TixPt1-xAlySi1-y alloy with 
3.12% Ti.  
 
For this alloy we also consider introducing Ti on a Si-site to identify the preferences of 
the mixing site. The formation energy is calculated from 

 SiSiAlPtTiAlTiPtSi E 3232 29322 +⎯→⎯++ Δ . (17) 

It is -10meV/atom or 6.5meV/atom smaller than when mixing Ti on the Pt-site. The 
energy difference is very small, suggesting that Ti will occupy both the Pt and the Si sites 
with equal probability. Thus, independent on which site Ti mixes the alloy’s stability can 
be increased through co-doping with Al. 
  
Using the formation energy calculated in (15) and (16) in equation (14) we recalculate the 
solubility limit of titanium. For the entropic contribution we assume that Ti only mixes 
on the Pt-site while the co-dopant X only mixes on the Si-site. The entropy of mixing is 
then 1.3×10-5eV/K and 1.2×10-5eV/K in Ti2Pt30XSi31 (3.13% Ti) and Ti4Pt28XSi31 (6.25% 
Ti), respectively. The critical temperatures are summarized in Table 6, the solubility limit 
of Ti is shown in Figure 12. While B and C don’t improve the solubility, Ga and Al 
increase it significantly when compared to both TixPt1-xSi and TixPtSi1-x. At room 
temperature more than 4% Ti can be mixed in PtSi when co-doping with Al. A linear 
interpolation between Ti2Pt30AlSi31 and Ti4Pt28AlSi31 suggests a 1.5-fold increase in 
carrier density for 4% Ti compared to bulk PtSi. 
 
So far we have only considered reactions between PtSi and other elements. To analyze 
the possible alloy decomposition we consider reactions competing with the formation of 
TixPt1-xXySi1-y. In order to do so, we calculate the reaction energy of two reactions: 
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 TiXTiSiPtSiXSiPtTi E ++⎯→⎯Δ 3031302 , (18) 

and 

 TiXTiSiPtSiXSiPtTi E ++⎯→⎯Δ 32831284 , (19) 

 
for 3.12% and 6.25% Ti, respectively. The energies for the PtSi, TiSi and TiX are 
extracted from the respective bulk calculations. To keep the analysis simple, we do not 
consider reactions with higher order silicides such as PtSi2 or TiSi2. Negative reaction 
energy indicates thermodynamically preferred decomposition. We find negative energy in 
all cases except when co-doping a 3.13% alloy with aluminum. In this case, the reaction 
energy is 8.2meV/atom. Unlike other alloys, this one does not have a thermodynamic 
preference to decompose into a mixture of binary intermetallics PtSi, TiSi and TiAl. 
 

V. Conclusions 
 
We use theoretical band engineering to analyze and find ways to control the electrical 
properties of technologically important contact material PtSi. We find that alloying PtSi 
with Ti may considerably increase the number of carriers. The improvement comes from 
the introduction of titanium d-states near the Fermi level. Moreover, we find that though 
doping with Ti lowers the work function of PtSi by as much as 0.45eV, the Schottky 
barrier height to Si is rather insensitive to this change. Using a combination of density 
functional theory and Boltzmann transport formalism we show that the increase in carrier 
concentration is accompanied by alloy scattering that adversely affects conductivity 
despite a significant increase in the number of carriers. In particular, for the doping 
concentration of 2% we find a 60% decrease in conductivity as compared to bulk PtSi.  
The thermodynamic analysis indicates that under equilibrium conditions at room 
temperature only 0.7% Ti can be mixed in PtSi substituting Pt. The low solubility is 
attributed to strain caused by Ti in the PtSi lattice. To achieve higher doping 
concentrations we suggest co-doping PtSi with gallium or aluminum. While aluminum is 
best, both increase Ti solubility at room temperature to more than 3%.  
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Table 1. DOS at the Fermi level and carrier density in TixPt1-xSi and TixPtSi1-x alloys for 
different Ti concentration. The DOS is given per 2×2×2 cell. For Ti concentration higher 
than 1% we observe an increase in both the DOS and carrier density for doping on either 
site. 

 

at. 
%Ti 

Ti on Pt-site Ti on Si-site 

DOS at EF 
[el./eV×VCell] 

n 
[1020 el./cm3]

Tcrit 
[K] 

DOS at EF 
[el./eV×VCell] 

n 
[1020 el./cm3] 

Tcrit 
[K] 

0.00 14.5 7.9 0 14.5 7.9 0 

0.52 14.9 7.7 0 13.2 6.6 1814 

1.04 15.1 8.6 879 16.6 9.2 1508 

1.56 15.9 9.1 905 14.8 8.6 1337 

3.13 18.0 9.4 1532 13.5 7.6 618 

6.25 17.0 13.8 2809 --- --- --- 

12.50 25.2 21.5 3618 --- --- --- 

 

 

 

Table 2. Experimental and theoretical internal in plane coordinates in orthorhombic Pnma 
cell of PtSi. Pt atoms are located at [uPt, vPt, 1/4], [1/2-uPt, vPt-1/2, 1/4], [1-uPt, 1-vPt, 3/4], 
[1/2+uPt, 3/2-vPt, 3/4] whereas Si atoms are located at [uSi, vSi, 1/4], [3/2- uSi, 1/2+vSi, 1/4], 
[uSi-1/2, 1/2- vSi, 3/4], [1- uSi, 1- vSi, 3/4]. The positions  are given in fractional 
coordinates. 
 

 uPt vPt uSi vSi Ref. 

Exp. 0.1922 0.9956 0.583 0.177 11 

Theory 0.1920 0.9980 0.585 0.178 This work 
 
 



17 
 

 

Table 3. Theoretical work functions for TixPt1-xSi with 3.13 at.% Ti and bulk PtSi. Ti-
terminated surfaces have lower work function compared to the corresponding PtSi 
surfaces with the exception of the (101) orientation.  

(hkl) termination 
φ [eV] 

TixPt1-xSi PtSi 

001 
st. 5.28 5.22 

Ti 5.14 --- 

010 

Pt 5.40 5.39 

Si 5.10 5.24 

Ti 4.94 --- 

100 

Pt 5.11 5.11 

Si 5.02 5.02 

Ti 4.73 --- 

101 
Si 5.15 5.03 

Ti 5.25 --- 

011 

Pt 5.23 5.18 

Si 5.26 5.12 

Ti 5.00 --- 

110 

Pt 5.06 4.96 

Si 5.35 5.29 

Ti 4.88 --- 
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Table 4. Comparison of the SBHs extracted from local potential plots with the MIGS 
theory, and Bardeen and Schottky models. The Ti concentration in the TixPt1-xSi alloys is 
3.13 at.%. 
 
a US pseudopotentials [8] 
 

interface 
(metal/Si) 

VASP SBH [eV] MIGS SBH [eV] BL [eV] SL [eV] 
PtSi TiPtSi PtSi TiPtSi PtSi TiPtSi PtSi TiPtSi 

001/001 0.13 0.13 0.28 0.28 
0.30 

0.00 0.08 
110/001 0.11 0.08 0.30 0.30 0.26 0.34 
001/001a 0.16 --- 0.29 --- --- --- 

 
 
 
 
Table 5: Carrier mobility and conductivity tensors of TixPt1-xSi due to impurity scattering. 
The considered Ti concentrations are 1.56 at.%, 3.13 at.%, 6.25 at.% and 12.5 at.%. For 
comparison, the isotropic conductivity of silver is ~63∙106A/Vm. 
 

at. 
%Ti μd (cm2/Vs) PV 

(cm2/Vs) σd (106 A/Vm) PV’s  
(106 A/Vm) 

12.5 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

3.149.09.1
9.02.106.0

9.16.00.12
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

6.15
9.10
0.10

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

49.003.007.0
03.035.002.0

07.002.041.0
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

53.0
37.0
34.0

 

6.25 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

6.288.19.3
8.15.201.1

9.31.10.24
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2.31
8.21
1.20

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

63.004.009.0
04.045.002.0

09.002.053.0
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

69.0
48.0
44.0

 

3.13 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

1.576.37.7
6.30.412.2

7.72.29.47
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

4.62
5.43
1.40

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

86.005.012.0
05.062.003.0

12.003.072.0
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

94.0
66.0
60.0

 

1.56 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

3.1143.74.15
3.79.815.4
4.155.48.95

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

7.124
1.87
2.80

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

67.111.022.0
11.019.107.0

22.007.040.1
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

82.1
27.1
17.1
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Table 6. Reaction energy, carrier concentration and critical temperature of 31302 XSiPtTi  
(3.13 at.% Ti) and 31284 XSiPtTi  (6.25 at.% Ti) alloys. Negative critical temperature 
indicates stable alloys as the numerator in equation (14) becomes negative. Co-doping 
with Ga and Al yields a large increase in the solubility limit at a given temperature 
compared to pure TixPt1-xSi alloys. 
 

X 
3.13 at.% Ti 6.25 at.% Ti 

ΔE [eV/atom] Tcrit [K] n [1020 cm-3] ΔE [eV/atom] Tcrit [K] n [1020 cm-3] 

---  0.013 1532 9.4 0.021 2809 13.8 
B  0.029 2211 10.0 0.042 3477 11.1 
C  0.051 3933 8.3 0.063 5168 15.1 

Ga  0.003 269 10.9 0.018 1474 11.9 
Al -0.004 0 11.3 0.012 983 12.7 
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Figure 1: DOS of bulk PtSi in a 2×2×2 supercell. The zero of energy is set to the Fermi 
level. The arrow indicates how the Fermi level has to be moved to a hypothetical energy 
(dashed line) in order to provide a large carrier concentration accessible for electrical 
conductivity. 
 
 
Figure 2: 
a) Primitive cell of bulk PtSi. PtSi crystallizes in the primitive orthorhombic structure 
with a MnP-type lattice with space group Pnma (#62 in the International X-Ray Tables). 
The lattice constants are: a = 5.922 Å, b = 5.575 Å, c = 3.586 Å [11]. The smaller balls 
are Pt, and the bigger balls are Si atoms. The exact positions of all atoms are summarized 
in Table 2. 
 
b) Primitive cell of bulk TiSi. TiSi crystallizes in the primitive orthorhombic structure 
with a FeB-type lattice with space group Pnma. The lattice constants are a = 6.544 Å, b = 
4.997 Å, c = 3.638 Å. 
 
 
Figure 3: Top to bottom: DOS of bulk PtSi, TiPt31Si32, Ti2Pt30Si32, Ti4Pt28Si32, Ti8Pt24Si32 
corresponding to 0%, 1.56 at.%,  3.13 at.%, 6.25 at.% and 12.5 at.% Ti. EF is at 0. The 
DOS is calcualted with respect to a 2×2×2 cell of bulk PtSi. 
 
 
Figure 4: Total DOS and d-states of bulk PtSi (top) and Ti8Pt24Si32 (12.5 at.% Ti, 
bottom). The zero of energy is set to the Fermi level. The Ti d-states appear right at the 
Fermi level thus increasing the carrier concentration considerably compared to PtSi. 
 
 
Figure 5: a) Local potential and planar averaged local potential of (100) TixPt1-xSi 
surface. The difference in energy between the vacuum level and the highest occupied 
level in the metal (i.e. the Fermi level) is the work function of the calculated surface. 
b) Local potential and planar averaged potential of a (001)/(110) TixPt1-xSi/Si interface. 
Indicated are also the top of the valence band and the bottom of the conduction band of Si 
bulk. The difference between the top of the valence band and the Fermi level of the 
system is the p-type SBH. 
 
 
Figure 6: Surface models with Si termination (Si on top of the surface), Pt termination 
and a termination with Ti atoms at the surface. All surfaces shown are (100) oriented.” 
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Figure 7: Calculated work functions of PtSi (diamonds) and TixPt1-xSi alloys (squares). 
Except for the (101) orientation the work function of TixPt1-xSi decreases by up to ~0.5eV 
compared to PtSi. 
 
Figure 8: Contour plots of the scattering potential of a Ti impurity in a 2×2×2 cell of bulk 
PtSi. The Ti is placed substitutionally on a Pt-site. The position of the impurity is 
indicated by the cross. The impurity potential varies from -15eV to 15eV. 
 
 
Figure 9: Distribution of band velocities within ±kBT at room temperature around the 
Fermi level. The highest calculated velocity is 16Å/fs. The distribution peaks at 2Å/fs. 
 
 
Figure 10: totμ   and totσ  for Vscm /5.263 2

0 ≈μ  and VmA /103.3 61
0 0

×≈= ρσ  (from ref. 

27). 0μ  is obtained by dividing 0σ  by the elementary charge and carrier density. We find 
a monotonic degradation of conductivity for higher Ti-concentration. 
 
 
Figure 11: Formation energy and cell volume of the TixPt1-xSi and TixPtSi1-x alloys. For 
low Ti concentrations (<1.8 at.%) titanium prefers to be mixed on the Pt-site. Above this 
concentration it tends to mix on the Si-site. 
 
 
Figure 12: Solubility limit of Ti in different alloy compositions with and without co-
doping. While the x-fraction of Ti in the alloy is variable, the y-fraction (co-dopants) is 
fixed to 1/32 (corresponding to 1.56 at.%). The best co-dopant is Al yielding stable alloys 
with up to 4 at.% Ti. 
 






























