
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Charge injection and transport in low-mobility mixed
ionic/electronic conducting systems: Regimes of behavior

and limiting cases
Thomas J. Mills and Mark C. Lonergan

Phys. Rev. B 85, 035203 — Published 12 January 2012
DOI: 10.1103/PhysRevB.85.035203

http://dx.doi.org/10.1103/PhysRevB.85.035203
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Department of Chemistry, The Materials Science Institute, University of Oregon

A comprehensive analysis of a model describing charge carrier injection and transport in light-
emitting electrochemical cells (LECs) and related mixed ionic electronic conductors (MIECs) is
given. Ions are treated using a modified drift-diffusion transport equation that accounts for volume
exclusion effects, and electronic injection is treated using a spatially dependent tunneling mech-
anism that explicitly accounts for both forward and backward fluxes. Systems containing both
one and two mobile ionic species are treated and compared. The unique physics of LECs stem
from ionic polarization processes that can lead to field screening and narrowed injection barriers,
producing increased electrode exchange currents via tunneling. The latter process promotes the
establishment of electronic quasi-equilibrium throughout the double-layer regions and hence pro-
motes bulk-limited conduction. Explicit expressions are given describing the conditions necessary
to assume field screening and bulk-limited conduction, which determine the applicability of either
traditional semiconductor device models such as Fowler-Nordheim or electrochemical models such
as the Nernst equation. Having established these conditions, several distinct regimes of bulk-limited
LEC behavior are described. Explicit formulae for the biases delineating these regimes are given
as well as formulae for the current in each regime. At low biases, the current generally increases
exponentially with bias; the bulk remains field-free, and the transport is predominantly unipolar and
diffusive. At high biases the current rises much less rapidly, and bulk transport is bipolar, occurring
through a combination of drift and diffusion. The nature of the bulk region in the high-bias regime
is markedly different in systems with one and two mobile ionic species. At intermediate biases, space
charge effects preferentially drive injection of the minority carrier causing a transition from unipolar
to bipolar injection. It is demonstrated that many of the models proposed to describe LECs exist
upon a common continuum, and that the major factor separating them is simply the magnitude of
the applied bias. This work allows one to estimate at what biases an idealized LEC with particular
equilibrium concentrations of ionic and electronic carriers will transition from one mechanism to
another. It also aids in conceptually mapping mechanisms and internal details of the system onto
each regime of behavior.

PACS numbers: 72.60.+g, 72.80.Le, 73.30.+y , 82.35.Cd, 82.45.-h
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I. INTRODUCTION

A number of models have been proposed to explain the underlying physics of light-emitting electrochemical cells
(LECs) and related mixed ionic/electronic conductors (MIECs),1–7 but a broad consensus has not been reached.8–11

The long-standing debate about which model most accurately describes the steady-state behavior of these devices
is very well known in the literature.12–15 Much of the debate has centered on the electrostatic potential profile.16–19

However, the potential profile can be difficult to measure and particularly to interpret, due in part to an incomplete
appreciation of the full range of behavior exhibited by the basic drift-diffusion/Poisson transport system. A number
of papers exploring simulations of special cases of this system have appeared,1–7 but they have not had sufficient
scope to clearly demonstrate the conditions under which each is valid. This problem is compounded by the general
lack of analytical results regarding this system in the literature, for without these it can be difficult to make definitive
statements.

We aim to assist in rectifying this situation by showing that the existing models are essentially various limiting cases
upon a continuum of device behaviors. This notion has been suggested by Smith2 and deMello7 and more recently by
Pingree et al.16 and Reenen et al.,19 but it has not been fully quantified. We identify some of these limiting cases and
under what conditions they are valid. We show how to obtain approximate expressions for the current as a function
of bias and other system parameters, the biases at which each limiting regime transitions into another, and that the
expressions obtained are consistent with simulations. By showing how previous models are interrelated, and that
they all grow out of the same physics and the same basic set of equations, we hope that one result of this work will
be to direct attention to the question of what is missing from the basic set of “parent” equations that is needed to
completely explain the experimental data.

We analyze steady-state MIECs with ion-blocking electrodes using a physical and mathematical formulation which
is mostly consistent with previous simulation and analytical work,1–7 and it appears to be generally agreed upon
that the basic drift-diffusion/Poisson equations are at least an acceptable approximation of reality. Results are
reported for systems with one mobile ionic species, as might represent a conjugated polyelectrolyte or ionomer,20–22

and two mobile ionic species, as might represent a semiconductor-salt blend.1,23 The possibility that there exists
a maximum saturation value for the ion concentration is also considered, as would arise from simple finite volume
constraints.37 The inclusion of systems with only one mobile ionic species and constraints on the ion concentrations
leads to saturation and depletion effects that are not apparent in more widely studied systems with two mobile ionic
species and unconstrained ion concentrations.

Though it may form a good basis for understanding, we emphasize that we do not present the model herein as a
complete, definitive description of MIEC physics. In particular, one would expect the high degree of disorder present in
many of these systems to have a strong effect on both electronic and ionic transport. The disorder affects the electronic
densities of states leading to effectively concentration and field dependent mobilities/diffusion coefficients,24,25 and
the randomly obstructed nature of the bulk material makes the ion transport effectively a percolation problem rather
than simple drift-diffusion.26,27 While one can to some extent include these effects in the model, that is not only
beyond the scope of this work, but it is also a subject which we believe is more appropriately addressed after the
basic drift-diffusion model is more fully understood.

It is important to address the question of exactly in what sense the results we present can be considered “correct.”
We consider our results to be correct only in the sense that one can show that they follow from the model as given;
the question of how accurately this model describes real LECs and related MIEC systems remains open. We believe
this is important because previous simulation and modeling work has been based on models similar to ours, so a more
complete description of its consequences sheds light on previous results, how they are related to each other, and how
well the model can describe real devices.

We proceed by presenting our model followed by separate analyses of the ionic, electronic, and mixed ionic/electronic
systems. Simulation results are used to illustrate important aspects of the carrier and potential profiles, of the
electronic current, and to verify analytical results.

II. MODEL

The model describes an idealized, intrinsic (undoped), semiconducting MIEC sandwiched between ion-blocking
metal electrodes. Systems containing both mobile anions and cations as well as those containing only one mobile ionic
species are treated. These are referred to as two-ion and one-ion systems, respectively.
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A. Notation and basic equations

It is convenient to use a reduced variable system. The physical (unreduced) values of the variables are marked
with a superscript ∗. The symbols n∗, ψ∗, µ∗, D∗, and F ∗ represent the particle density, quasi-Fermi level, mobility,
diffusion coefficient, and particle flux. These symbols are used both generally and with the subscripts a, c, h, e
indicating quantities associated with anions, cations, holes, and electrons, respectively; occasionally for clarity we
will use the subscript s to indicate a specific species. The symbols φ∗, V ∗, x∗, and L∗ represent the electrostatic
potential, applied bias, position coordinate, and thickness of the MIEC. The quantities k, h̄, q, m, ε, ε0, and T are the
Boltzmann constant, the reduced Planck’s constant, the magnitude of the elementary charge, the effective electronic
carrier mass, the relative dielectric constant, the permittivity of free space, and the absolute temperature.

The reduction scheme is

x =
x∗

λ
φ =

φ∗

VT
Fs =

λF ∗s
VTµ∗sñ

∗
s

ns =
n∗s
ñ∗s

(1)

where VT = kT/q is the thermal voltage and λ =
√
kTεε0/q2ñ∗ion is the ionic Debye length, where ñ∗ion is the

equilibrium ionic density in the isolated MIEC. For the ions, ñ∗s = ñ∗ion, and for the electronic carriers ñ∗s is the
equilibrium density of the carrier at the electrode where it is injected. As with φ, V is scaled by the thermal voltage,
and ψ by the thermal energy kT . We will use the notation f ′ ≡ ∂f/∂x.

The model consists of Poisson’s equation,

φ′′ = na − nc + (ñ∗e/ñ
∗
ion)ne − (ñ∗h/ñ

∗
ion)nh (2)

coupled to continuity and flux equations for each species. Generally, because of material disorder, the mobilities and
diffusion coefficients may be functions of n, φ, and their derivatives,24,28 but in this work we will assume constant
values for both and assume the Einstein relation; in the system of reduced variables this means that µ = D. For ions,
the continuity and flux equations are

∂n

∂t
= −F ′ (3)

F = −zφ′n(1− n/n̂)− n′ (4)

Here, z = ±1 is the sign of the charge on the ion, and n̂ is its maximum density. The form of the flux equation used
here is an extension of the simple drift-diffusion model that takes into consideration the geometric constraint on the
number of particles allowable in a given volume, due to finite particle size (see Appendix A 1).

The analogous equations for the electronic species are

∂n

∂t
= −F ′ − ζ ′ (5)

F = −zφ′n− n′ + τ (6)

The function ζ ′ is the recombination term, and the function τ(x) gives the tunneling flux passing between the
electrode and the material through any given location x. In some treatments, the tunneling flux is implemented
as a boundary condition,19,29 but in this work, we explicitly treat the spatial dependence of the tunneling process
throughout the interfacial regions.

The boundary conditions introduce two parameters: the applied bias V and the active layer thickness L. The
electrodes are located at x = 0 and x = L. The boundary conditions are implemented by requiring that the Fermi
levels of the electrodes differ by V , and by setting the boundary fluxes F (0) and F (L). We define the electrode
at x = 0 as the cathode and V ≡ ψe(anode) − ψe(cathode); hence V > 0. The electrodes are considered to be
ion-blocking, so F (0) = F (L) = 0 for the ions; the boundary fluxes for the electronic species will be defined later.
We assume that the action of applying a bias across the two electrodes gives rise to thin charged layers on the inner
surfaces of the electrodes; these produce fields at the boundaries that are consistent with the voltage difference V .
We assume that these charged layers do not affect our calculations in any other way.

Throughout this work we will show figures displaying simulated data for specific systems. To reduce the parameter
space somewhat, we will take T = 25◦C, ε = 5, and L∗ = 100 nm.



4

B. The electronic model

We assume that the MIEC behaves as an ideal intrinsic semiconductor; specifically, a nearly-free electron model
is employed. Image-charge effects are neglected. In this section we derive flux expressions that serve as boundary
conditions for the electronic carriers and provide the tunneling terms τ . For clarity, we present these expressions for
electron transfer at the cathode/MIEC interface. In our presentation and discussion of the electronic model, we take
φ(0) = 0. Each flux expression involves two terms: one for ingoing (i.e. from electrode to MIEC) carriers (injection)
and another for outgoing carriers (ejection).

Defining ∆e to be the magnitude of the difference between the electrode Fermi level and the conduction band edge
energy at the electrode interface, we have ñ∗e = NCe

−∆e , where NC is the effective density of states in the conduction

band. We define δ ≡ ψ̃e(anode) − ψ̃e(cathode) where ψ̃e indicates the Fermi levels of the isolated electrodes. Upon
contacting the isolated electrodes to the MIEC, the interchange of charge that occurs in order to bring the system to
equilibrium requires that φ(L)− φ(0) = V + δ. The quasi-Fermi level inside the MIEC is defined as ψe = −φ+ lnne,
which is equal to 0 at equilibrium.

1. Flux equation

Charge injection is treated using a standard model of a form that has been widely employed in developing classical
semiconductor30,31 and electrochemical theories.32 In our notation the expression for flux transferred between the
electrode and the material is

Ftr(εc) =
e∆e

λF

∫ ∞
εc

κe(εx)

∫ ∞
εx

f1(ε)− f2(ε) dε dεx (7)

where ε is the total electronic kinetic energy, εx is the x-component of the electronic kinetic energy, εc = ∆e − φ is
the potential energy of the electrons at the conduction band edge, λF = µ∗e

√
2πmkT/qλ is the effective mean free

path, κe is the tunneling probability function, f1 is the electron energy distribution function for the electrode, and f2

is the distribution for the MIEC. In full generality, these are Fermi-Dirac distributions; however, we will take f2 to
be a Boltzmann distribution.

Here, Ftr(εc) represents the flux of electrons whose energies are greater than or equal to εc transferred between the
electrode and the material. If εc is taken to be the band edge energy at a position well inside the material where the
tunneling flux is effectively zero, then Ftr(εc) becomes the total injected electronic flux Fe(0), which is the total flux
passing through the electrode/MIEC interface at x = 0; this therefore serves as the electronic boundary condition.
Because some portion of this flux is due to the thermal emission process at the interface and the rest is due to the
spatially dependent tunneling process, it is written with two contributions, Fe(0) = FTE + τe(0).

2. Thermal emission

The classical thermal emission model for transfer between metal and semiconductor33 can be derived easily from
the flux equation by assuming that transfer occurs between all particles exceeding the band edge energy strictly at
x = 0; this implies that κe = 1 and εc = ∆e (i.e., FTE = Ftr(∆e)). Applying Boltzmann statistics one obtains

FTE =
e∆e

λF

∫ ∞
∆e

∫ ∞
εx

e−ε − e−ε+ψe(0) dε dεx =
1− ne(0)

λF
(8)

where we have used ne(0) = eψe(0). This gives the thermal emission contribution to the boundary condition for Fe(0).
By the same considerations, the thermal emission flux at the other electrode is (ne(L)− 1)/λF .

3. Tunneling

We take the tunneling probability function to be

κe = exp

[
−λ−1

ν

∫ x

0

√
φ(x)− φ(y) dy

]
(9)
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which is the WKB approximation giving the probability of tunneling through a given potential barrier, where λν
= h̄/λ

√
2mkT is a reduced de Broglie wavelength.34 We evaluate the supply functions, and we will write β(εx) =

e∆e
∫∞
εx
f1(ε) dε for the electrode supply function in order to preserve generality (so that one may use a Fermi-Dirac

distribution if necessary). The tunneling flux then becomes

τe(εc) = λ−1
F

∫ ∆e

εc

κe(εx)
(
β(εx)− e∆e+ψe−εx

)
dεx (10)

An unclear aspect of the flux expression to this point is that it incorporates both energy and position-dependent
quantities, yet it is phrased as an integral over energy. The approach here is to note that tunneling is inherently a
spatially dependent process due to the fact that an electron cannot emerge in a region in which it would have negative
kinetic energy. We hereby assume that all electrons capable of emerging at a particular location do so; that is, all
particles of energy εx emerge at the location where εx = εc. We then rewrite the integral in terms of the spatial
coordinate x, where the integration variable x is taken to be the location at which εx = εc, and hence the location
at which all electrons with energy εx emerge into the system (or, equivalently, from which they are expelled from the
system back into the electrode).

By these considerations, upon noting that dεx = dεc = −dφ = −φ′ dx and that we must have τe ∼ 0 far from the
electrode, the tunneling flux may be written explicitly as a function of x,

τe(x) = λ−1
F

∫ x1

x

φ′κe (β(φ)− ne) dx (11)

where the integrand is negligibly small at x1. This is the x-dependent tunneling flux function that appears in the
transport equation (6). A conceptual illustration of Eq. (11) is shown in Fig.1.

4. Recombination

Recombination depends strongly on the charge density profiles. This work investigates only a simple second-order
(Langevin) model,35

ζ ′s = ksnenh (12)

The variable reduction scheme we have chosen requires that ks = (λ2/VTµ
∗
s)(ñ

∗
eñ
∗
h/ñ

∗
sñ
∗
ion)k∗, where k∗ is the elec-

tron/hole recombination constant. Note that, with low mobilities, ks becomes large, reflecting the fact that the lower
rate of transport increases the likelihood of recombination. If we define ζe(0) = ζh(L) = 0, then the function ζs(x)
represents the total density of recombining particles per unit time between x and the injection electrode.

ǫ

x0 dx 2dx

FIG. 1. A conceptual illustration of the electronic injection mechanism. In each slice of width dx, the solid lines represent the
energy distributions f , the dash-dotted lines represent the (quasi-) Fermi levels ψe, the dashed lines represent the potential
energy −φ, the shaded regions represent the supply functions, and the arrows represent the bidirectional flux between the
electrode (shown to the left of x = 0) and each slice. These fluxes are proportional to the difference in the shaded areas, each
weighted by the factor κe/λF . Transfer between the electrode and the first slice represents the thermal emission boundary
condition, and transfer further into the device represents the spatially-dependent tunneling process.
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FIG. 2. Ion profiles for (a) one-ion (mobile anions) and (b) two-ion systems, where V ∗ = 1 V, L∗ = 100 nm, n̂∗
a = n̂∗

c = 1027m−3

and ñ∗
ion = 1, 2.5, 5, 7.5, 9 · 1026m−3 (n̂ = 10, 4, 2, 4/3, 10/9), with na shown in green and nc in purple. This figure shows the

depletion and saturation behavior and the symmetry between systems capped at n̂ and those at n̂/(n̂ − 1). Note the thinner
double layers in the two-ion system.

C. Simulations

The model presented thus far forms the basis for our simulations, which are constructed using finite-difference
approximations to the Poisson, transport, tunneling flux, and recombination equations (Eqs. (2)-(6), (11), and (12)),
using thermal emission (Eq. (8)) and tunneling (Eq. (11)) as boundary conditions. To obtain steady-state results,
the simulations were run until there was a negligible change in the system variables. A more detailed description of
the simulation methods can be found in the supporting information.36

The simulations were very useful as a guide to understanding qualitative system behavior and quantitative verifi-
cation of analytical results.

III. IONIC SUBSYSTEM

In this work, we investigate MIEC systems with relatively large densities of ions. In such systems, the ions play
a central role in determining the electrostatic potential and hence the details of electronic carrier injection and
transport. Therefore, in order to understand the electronic behavior of these systems, it is imperative to have a good
understanding of the behavior of the ions. To this end, we begin by analyzing the steady-state properties of purely
ionic systems.

In this section, we first give the ion distributions in terms of the electrostatic potential φ. Next, we delineate the
conditions under which the ions will screen the electric fields induced by the electrodes. Finally, we provide expressions
for the potential drops across the ionic layers and the boundary fields in screened systems. These quantities will later
be related to the electronic charge densities and fluxes in Sec. V.

The results in this section are derived from Eqs. (2) – (4) with ne = nh = 0 and Fs(0) = Fs(L) = 0 for s = a, c. In
analyzing purely ionic systems, we let δ = 0, so that φ(L) − φ(0) = V . Steady-state analytical results are obtained
by setting ∂n/∂t = 0.

There exists a certain symmetry between systems with n̂ > 2 and those with n̂ < 2. For analytical simplicity,
we will hereafter assume that n̂ > 2, but the results for n̂ < 2 can be obtained by exploiting the symmetry of the
system. This symmetry allows the problem to be recast in terms of ion ”holes” through the use of the transformations
n← (n̂−n)/(n̂−1), n̂← n̂/(n̂−1), x← L−x, F ← F/(n̂−1), z ← −z, which leave the transport equation unmodified.
This shows that ion holes behave in the same way as do ions of opposite charge, reflected about the axes x = L/2
and n = n̂/2.

The results in this section rely on a method of integrating Poisson’s equation. See Appendix A 2 for details.

A. Ion distributions

The results of steady-state simulations of both one- and two-ion systems with different values of ñ∗ion are shown in
Figures 2 and 3. Qualitatively, the behavior of the mobile ions is relatively straightforward; ions move away from one
electrode, forming the depletion region, and towards the other electrode, forming the accumulation region. Both of
these are called double layers. The symmetry about n̂ = 2 is readily apparent in Fig. 2. In the two-ion system, the
accumulation region for one sign of ion will overlap with the depletion region of the other sign of ion. Provided the
length of the device is sufficiently large, there exists a bulk region between the depletion and accumulation regions in
which n is nearly constant.
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FIG. 3. Ion profiles for (a) one-ion (mobile anions) and (b) two-ion systems with ñ∗
ion = 1026, 1025, 1024, 1023, and 1022 m−3

(other parameters are the same as in Fig. 2), with na shown in green and nc in purple. As the ion content is decreased, the
depletion and accumulation regions become wider until all of the ions are pushed into the accumulation layers. In two-ion
systems, the bulk becomes depleted of ions.

In general, the depletion and accumulation regions may contain two parts: a compact region in which the con-
centration approaches 0 (fully depleted) or n̂ (saturated), and a diffuse region in which the concentration transitions
from its bulk value either to that in the compact layer - if it exists - or to the concentration at the electrode surface.
If the accumulation region contains a compact region, the device is said to be in the saturation limit ; if its diffuse
region extends to the electrode, the device is said to be in the diffuse limit. In section III C, we show that for one-ion
systems, the saturation limit occurs when V > n̂ and for two-ion systems, it occurs when V > 2 ln n̂.

Eqs. (3) and (4) can be solved to yield

n =
n̂

1 + (n̂/nB − 1)ez(φ−φB)
(13)

This solution is referenced to the bulk concentration nB and potential φB , defined as the concentration and potential
at the location where na = nc.

Note that the distribution (13) arises as the equilibrium solution to the transport equation (4). This distribution
is the same as given, e.g., by Eq. (3-2) in Eigen and Wicke,37 and is based on the same physical considerations. As
n̂→∞, it degenerates to the Boltzmann distribution n = nBe

−z(φ−φB).38

Eq. (13) gives the ion concentration as a function of φ; Poisson’s equation must then be solved to obtain φ(x) and
hence n(x). Only the diffuse limit of the two-ion system can be solved exactly. Some analytical approximations can
be made. For instance, φ(x) will be approximately quadratic in any fully depleted or saturated region because the
excess charge density in these regions is nearly constant, and it decays exponentially into the bulk region. We will
use a quadratic approximation for φ later, for example, when deriving the conditions for electronic quasi-equilibrium
in Sec. V A.

B. Field screening

An important property of an ionic system is whether or not it is screened. This property can be defined by the
existence of a bulk region that is practically free of an electric field. If there are “enough” ions available to polarize
at the electrodes, they will “screen” the fields induced there by the applied bias. We write φ′B for the bulk field;
specifically, φ′B is the value of φ′ at the location where na = nc. The field is said to be screened when φ′B is sufficiently
small. Prior analyses have shown that the screening condition is violated particularly when decreasing the ion content;
essentially, the system will be screened if the device is long enough relative to the Debye length.9,39 Here we make
this heuristic quantitative in the context of the present model by showing how many Debye lengths is “long enough.”

A fairly tight upper bound on φ′B can be obtained directly from Poisson’s equation. Eq. (2) can be rewritten to
relate L and the ion distributions to φ′B ,∫ φ(L)

φ(0)

dφ√
φ′2B + 2

∫ φ
φB
na(Φ)− nc(Φ) dΦ

= L (14)

As detailed in Appendix A 3, an upper bound on Eq. (14), with mobile ion distribution(s) given by Eq. (13), is found
by defining the boundaries of the compact, diffuse, and bulk regions, and then bounding the integrand separately in
each region. The inequality obtained from bounding Eq. (14) is then solved for φ′B ,

φ′B < e−
1
2

√
n̄(L−wcp−wdf−ξ)

(√
n̄+

2

L− wcp − ξ

)
(15)
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where n̄ is a concentration parameter, n̂ < 106, and ξ is a small parameter necessary to maintain the upper bound.
Note that the length occurring in the exponent is the effective width of the bulk region.

For one mobile ionic species, nB = 1, n̄ = 1− 1/n̂, ξ < 0.77, and when the accumulation region is saturated,

wcp = n̄−1
√

2
√
n̄V − ln(n̂− 1) + n̂ ln n̄ (16)

wdf = n̄−1/2 ln(4(n̂− 1) ln n̄−1 ln n̂) (17)

If the accumulation region is not saturated, wcp <
√

2V and wdf < 4.
The exponential in Eq. (15) will be small as long as the width of the bulk region is appreciable. However, φ′B will

begin to increase rapidly as this width approaches 0, marking the loss of screening. By comparing the dominant term
of Eq. (16) to L, it is then easy to obtain the approximate screening condition for saturated systems

V <
n̄

2
L2 (18)

where n̄ is replaced with 1 in the diffuse limit.
The situation for two-ion systems is more complicated because the bulk may become partially depleted of ions (see

Fig. 3) while remaining electroneutral; the bulk concentration nB will decrease with increasing bias. In the diffuse
limit, it is possible to solve Poisson’s equation exactly. With this solution one can show (see Appendix A 4) that a
two-ion system will reach saturation before loss of field screening as long as n̂ � L4; this inequality is expected to
hold for most realistic systems.

We therefore continue with the saturation limit. Here, we have n̄ = nB(2−nB/n̂a−nB/n̂c), ξ = ln(n̂an̂c/n
2
B)/49 <

V/49, and

wcp =
√

2
√

(n̂−1
a + n̂−1

c ) (V − ln(n̂an̂c/n2
B)) (19)

wdf = n̄−1/2 ln(4 ln(n̂a/nB) ln(n̂c/nB)) (20)

If nB , and hence n̄, is not close to zero, the exponential of Eq. (15) will be small as long as the bulk region is
appreciable. However, when nB becomes on the order of 1/L2, the terms in the exponent will all become small except
for the diffuse layer term

√
n̄wdf/2, which continues to rise with increasing bias, marking the loss of screening. This

shows that there are two mechanisms that can cause the loss of field screening: the compact layer widths can approach
L while nB is not small, and the decrease of nB can cause the diffuse layers to become very wide. In both cases, as
with one mobile ionic species, the loss of screening occurs when the effective bulk width approaches zero.

To estimate when nB becomes small, we neglect the diffuse layers (abrupt-layer approximation) and apply conser-
vation of ionic charge to get

nB ≈
L− n̂an̂c

n̂a+n̂c
wcp

L− wcp
(21)

Setting this expression to zero and using the dominant term of Eq. (19) gives the approximate condition V ≈
(L2/2)(1/n̂a + 1/n̂c) for when nB becomes small. Comparing L to wcp in a similar way shows that the compact
layers overtake the device length when V ≈ (L2/2)(1/n̂a + 1/n̂c)

−1. From this, we see that the bulk will become
depleted before the compact layers get too large (unless n̂a = n̂c = 2, in which case these occur in concert). Hence,
an approximate screening condition for the two-ion case is

V <
1

2

(
1

n̂a
+

1

n̂c

)
L2 (22)

It is apparent from comparing Eqs. (18) and (22) that two-ion systems cannot screen the electrode fields as
effectively as one-ion systems because of the depletion of ions from the bulk. The onset of this depletion with voltage
is tempered by ion saturation. Systems that can accommodate greater concentrations of ions in their saturation layers
lose field screening at lower voltages. Also recall that L is given in units of λ, and hence, the voltage at which field
screening is lost increases with increasing ñ∗ion in both one- and two-ion systems. The compact and diffuse layers are
shown in Fig. 4.

The remainder of this work will provide results for systems that satisfy the ionic screening condition. We will
assume for two-ion screened systems that nB ≈ 1.
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FIG. 4. Simulated electrostatic potential profiles for a one-ion system with V ∗ = 1 V, n̂ = 10, 4, 2, and ñ∗
ion = 1026 m−3 (solid

lines), ñ∗
ion = 1025 m−3 (dashed lines). Note the dependence of the double-layer potential drops on n̂; their values at the two

electrodes are equal for n̂ = 2, whereas a larger fraction of the applied bias drops at the depletion layer side extending from
x = 0 as n̂ increases. Note also the larger double-layer widths with fewer ions. The effective edges of the compact and diffuse
layers are marked with cp and df, respectively, and calculated according to the considerations of Sec III B. Note that the diffuse
layers are larger in the accumulation regions.

C. Double Layer Potential Drops and Boundary Fields

Figure 4 shows representative electrostatic potential profiles for screened one-ion systems obtained from simulations.
Though the model does not in general admit an explicit solution for φ(x), we will derive expressions for the potential
drops across the double layers and for the boundary field φ′0 in screened systems. This will become important later
because the electronic behavior depends critically on these values, but it is not particularly sensitive to the precise
form of φ(x). Note also that φ′0 is equal to the total excess charge stored in each double layer. We define x− and x+

to be the locations of the edges of the ionic double layers on the cathode and anode side, ∆φ− = φ(x−)− φ(0) to be
the potential drop across the double layer on the cathode side, and ∆φ+ = φ(L) − φ(x+) to be the potential drop
on the anode side. Because the system is screened, φ(x−) = φ(x+) = φB , and since there is no excess charge in the
system, φ′0 ≡ φ′(0) = φ′(L). The potential drops and boundary fields are obtained from Poisson’s equation and Eq.
(13) (see Appendix A 5).

1. One-ion systems

Under bias, a region depleted of ions forms at the electrode with the same sign of charge as the ions. We will label
the potential drop across this region ∆φdep. The ions also accumulate at the other electrode, where there is a drop
of ∆φacc. Hence, for mobile anions we have ∆φ− = ∆φdep, and for mobile cations, ∆φ− = ∆φacc. We only give the
results for ∆φdep because ∆φacc can be obtained by using ∆φdep + ∆φacc = V .

For screened systems, there is an exact solution,

∆φdep = ln

[
e(1−1/n̂)V − 1

(n̂− 1)(1− e−V/n̂)

]
(23)

φ′0 =
√

2

√
n̂ ln

[
1 +

e−∆φdep − 1

n̂

]
+ ∆φdep (24)

We take limits of these expressions to more clearly demonstrate the forms of the potential drops and boundary fields.
In the saturation limit,

∆φdep = (1− 1/n̂)V − ln(n̂− 1) +O
(
e−V/n̂

)
(25)

φ′0 =
√

2
√

(1− 1/n̂)V − ln(n̂− 1) + n̂ ln(1− 1/n̂)

+O
(
e−V/n̂/

√
V
) (26)
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and in the diffuse limit,

∆φdep = V − lnV +O
(
e−V + V/n̂

)
(27)

φ′0 =
√

2
√
V − lnV − 1 +O

(√
V e−V +

√
V /n̂

)
(28)

As can be seen from these expressions and their error terms, the ratio V/n̂ determines whether or not the system
is saturated. This can be understood readily by investigating the ionic concentration at the accumulation electrode
surface. Using Eq. (13) and ∆φacc ≈ lnV , the surface concentration in the diffuse limit is approximately e∆φacc ≈ V .
From this, one can see that the system will approach saturation when V approaches n̂.

Note that, in order to conserve the ions, an equal amount of excess charge must be stored in the accumulation
layer as in the depletion layer. In the limit of n̂ = 2, the system is symmetric about x = L/2, and the excess charge
is stored in double layers of equal width. As n̂ increases, the charge in the accumulation layer is stored in a region
of increasingly narrower width. This results in a smaller potential drop across the accumulation layer (see Fig. 4),
which is approximately V/n̂ in the saturation limit; in the diffuse limit, this potential drop approaches the relatively
small value of lnV .

2. Two-ion systems

In the diffuse limit, or if n̂a = n̂c, then because of the spatial symmetry of the system, the potential drops will
be ∆φ− = ∆φ+ = V/2. Before the system becomes saturated, its behavior is very different from the one-ion case
because there is no region fully depleted of mobile ions. Instead, both ionic species accumulate in very thin and steep
layers near the electrodes. The concentrations at the electrode surfaces are approximately eV/2, and hence the ions
approach saturation near V ≈ 2 ln n̂. Note that saturation occurs at much lower biases in the two-ion case because of
the exponential rise of the accumulating ions with bias, rather than the linear behavior observed in the one-ion case.
We consider further only the saturation limit because the bias at which the system approaches saturation is not at
all large for any realistic degree of ion loading.

In the saturation limit, we have

∆φ− =
n̂aV − n̂a ln(n̂a − 1) + n̂c ln(n̂c − 1)

n̂a + n̂c

+O

(
e
− n̂a
n̂a+n̂c

V
+ e
− n̂c
n̂a+n̂c

V
)

(29)

φ′0 =
√

2/(n̂a + n̂c) [n̂an̂c(V − ln(n̂an̂c))

+n̂2
a ln(1− 1/n̂a) + n̂2

c ln(1− 1/n̂c)
]1/2

+O

(
1√
V

[
e
− n̂a
n̂a+n̂c

V
+ e
− n̂c
n̂a+n̂c

V
])

(30)

Note that, if one uses the expressions above and employs an abrupt junction approximation to obtain effective
double-layer widths (the effective width of a layer is φ′0/ρ, where ρ is the magnitude of the excess charge density in
the layer), then requiring that L is greater than the sum of these widths gives a screening condition very similar to
that found in Sec. III B.

IV. ELECTRONIC SUBSYSTEM

As one of the main goals of this work is to analyze electronic conduction in low-mobility MIEC systems, we require
a framework for describing injection and transport in general electronic systems. Of particular importance are the
concepts of injection- and transport-limited conduction. We describe the characteristics of and conditions necessary
for these limits, emphasizing their dependence on the electronic mobility, the role of tunneling, and the concept of
quasi-equilibrium. In the process, we develop some basic tools for describing carrier profiles and fluxes that we will use
later to analyze full MIEC systems. The analysis of this section is conceptually similar to that of metal/semiconductor
junctions, such as the combined thermionic-emission/diffusion theory of Crowell and Sze.40 In this section we will
again provide results for electron transfer only.
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A. Injection mechanisms and the notion of quasi-equilibrium

Recall the thermal emission flux formula Fe = (1 − ne(0))/λF . Written in this form, it becomes clear that this
mechanism can be understood essentially as basic diffusion across an interface. Note that the limiting form as
ne(0) → 0, Fe ∼ λ−1

F , is equivalent to the ideal backwards-biased Schottky saturation current (this can be seen by
moving back to physical variables, i.e. F ∗e = VTµ

∗
eñ
∗
e/λλF = AT 2NCe

−∆e where A = 4πqmk2/h3 is the Richardson
constant); here the flux is determined entirely by the injection process.

If λF becomes infinitesimal (i.e., when the mobility is very small), then in order for the thermal emission flux
to remain finite, the difference 1 − ne(0) must become infinitesimal as well. This limit, ne(0) ∼ 1, is equivalent to
ψe(0) ∼ 0, or what is the same, the establishment of local quasi-equilibrium between the electrode and the inner
material surface. Here, the flux depends on the infinitesimal deviation of ne(0) from its equilibrium value, and
therefore it depends entirely on the transport process.

Similarly, recall the tunneling flux formula τe(x) = λ−1
F

∫ x1

x
φ′κe(β(φ) − ne) dx. As was the case with thermal

emission, it is easy to identify the injection-limited regime, in which ne is considered negligible throughout the entire
injection region (0 < x < x1). The tunneling flux formula in this limit (ne → 0) gives rise to such models as the
Fowler-Nordheim formula. The use of this limit, however, is a drastic assumption because it ignores all coupling
of the electrode to the transport processes by ignoring ne throughout the injection region, consequently ignoring
all back-flux. Expressions derived from this limit are therefore not valid when there is a large amount of coupling,
as there is when the carrier mobility is small. The importance of back-flux and its effect on carrier injection in
organic semiconductors with low carrier mobility has been recognized, but prior treatments have been primarily
phenomenological and without the level of rigor afforded to the forward flux.29,41 It is important to note that we have
treated the forward and backward flux equivalently, using the same physics, and in a way that is thermodynamically
consistent.

To investigate the low-mobility limit, we may apply the same argument to the tunneling flux τe(x) as we did to
the thermal emission flux. If λF → 0, then we must have φ′κe(β − ne) → 0 for τe to remain finite. In other words,
in any region where λ−1

F φ′κe is not negligibly small, ne must approach β. Consequently, as we have assumed ne to
be governed by Boltzmann statistics, then β must be in the Boltzmann limit as well, and hence β ∼ eφ, which in
turn implies ne ∼ eφ in this region. We call this the quasi-equilibrium region that has been formed by the tunneling
mechanism. The forward and backward carrier fluxes nearly balance in this region as suggested by Fig. 1 imagined
with a constant quasi-Fermi level. When a device is well within the low-mobility limit, the quasi-equilibrium region
becomes of primary importance because the potential drop across it determines the carrier density at the edge of the
region, while the assumptions necessary for the validity of injection-limited (e.g. Fowler-Nordheim) models no longer
hold. In this limit, the flux is determined both by the transport process and the carrier density at the edge of the
quasi-equilibrium region.

B. Solving the transport equation

A quantitative description of the carrier profiles and fluxes is obtained from the electronic continuity and transport
equations (5) and (6). The presence of the tunneling flux and recombination terms complicates the solution of these
equations. Due to recombination, the quantity Fe will not be spatially constant at steady state. The related quantity
F inj
e ≡ Fe + ζe, however, is constant at steady state. Physically, F inj

e represents the total number of electrons being
injected into the device per unit time. We now define the function θe,

θe ≡
Fe − τe
F inj
e

= 1− τe + ζe

F inj
e

(31)

because this allows us to write the transport equation (6) in the form F inj
e θe = φ′ne − n′e, whose solution is

ne(x) = eφ
(
ne(0)− F inj

e

∫ x

0

θee
−φ dx

)
(32)

This is convenient because all of the effects of tunneling and recombination are parameterized via the occurence of θe
in the integral. The meaning of θe can be understood by noting that it is very nearly 1 in any region where neither
tunneling or recombination are significant, and is very nearly 0 wherever tunneling is the main contribution to the
injected flux or wherever most of the electrons have recombined. Combining Eq. (32) evaluated at x = L with the
boundary conditions ne(0) = 1− λFF inj

e and ne(L) = 1 + λFF
inj
e gives

F inj
e =

1− e−V

θe(0)λF +
∫ L

0
θee−φ dx+ e−V−δθe(L)λF

(33)
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The numerator of this expression represents the amount of charge that can flow between two electrodes whose
potentials differ by V . The denominator represents the “effective resistance” of the device, which is in the form of
three series resistances: an injection electrode resistance, an interior or transport resistance, and an ejection electrode
resistance. From Eq. (33), one may immediately derive three important limiting behaviors of the system, in which
the flux is dominated by the largest resistance. The injection-limited flux is λ−1

F (1−e−V )+τe(0) (sum of a thermionic

emission and a tunneling injection term), and the ejection-limited flux is eδλ−1
F (eV − 1) + τe(L) + ζe(L) (sum of an

”ideal diode” term, tunneling ejection term, and an additional term including all the electrons that recombined on

their way to the ejection electrode). The transport-limited flux is (1−e−V )[
∫ L

0
θee
−φ dx]−1, which cannot be described

without detailed knowledge of φ and θe. However, in low-mobility systems, λF will typically be small enough that
the flux will be transport limited.

Tunneling plays an important role in determining device behavior because of the electronic quasi-equilibrium it
establishes throughout some portion of the device. This manifests itself through the occurrence of θe in the resistance
integral; specifically, the tunneling process acts to decrease the resistance by causing θe to become small throughout a
region of the device near the electrode. Low mobilities tend to facilitate the formation of the quasi-equilibrium region
by making λF small. We obtain the asymptotic (λF → 0) solution for θe in the tunneling region (0 < x < x1) and in
the absence of recombination by combining Eqs. (5), (6) and (32) (see Appendix C),

θe ∼ exp

(
−
∫ x1

x

√
φ′κe
λF

dx

)
(34)

It is important to have an explicit expression for θe in order to be able to describe the charge densities, such as
when calculating the quasi-equilibrium condition in section V A. The effective edge of the quasi-equilibrium region
established by tunneling, xτ , is defined as the inflection point of θe. Conceptually it is helpful to imagine θe as a step
function whose step is located at xτ . By comparing to simulations we have found that this forms a good basis for
approximating the integrals, so that e.g.

∫ x1

0
θee
−φ dx ≈

∫ x1

xτ
e−φ dx.

V. MIXED IONIC/ELECTRONIC SYSTEM

In this section we analyze the behavior of mixed ionic/electronic systems in the transport-limited regime, corre-
sponding to the low-mobility (small λF ) limit.

We have seen that the ionic polarization process produces double layers near the electrodes where the potential
is rapidly changing along with a wider bulk region in which the potential is nearly constant. Each of these regions
contribute to the transport resistance. Because of the very different nature of the double layer and bulk regions, we
treat the effective resistances of these regions separately by splitting the integral in Eq. (33) into double layer and
bulk contributions, ∫ L

0

θee
−φ dx =

(∫ x−

0

+

∫ x+

x−

+

∫ L

x+

)
θee
−φ dx (35)

In a manner analogous to the limits discussed in the previous section, the transport-limited flux itself will be limited
by the largest integral. If one of the double layer integrals is larger than the bulk integral, then the flux is double-layer
limited. If the bulk integral is larger, the flux is bulk limited.

Below we give a method for determining which limit a given system is in. Using this we will establish that low-
mobility systems tend to be bulk limited, so we then analyze in detail the behavior of bulk-limited systems. By doing
so, we provide a description of the continuum of current-voltage behavior expected for widely studied LECs in which
the electronic carrier mobility is generally low.

A. Electronic quasi-equilibrium in the double layers and the criteria for bulk-limited conduction

Electronic injection in LECs5,6 and related electrochemical systems42 is frequently treated by assuming that the
quasi-Fermi levels are constant (carrier concentrations are at quasi-equilibrium) throughout the double layers, leading
to bulk-limited conduction. This assumption is equivalent to using the Nernst equation as a boundary condition. In
this section, we present results that can be used to determine the validity of the quasi-equilibrium assumption and
hence of bulk-limited conduction; as before, we give results for electrons.

The basis for determining the extent of the quasi-equilibrium region is the injected flux Eq. (33). In the transport-
limited regime, ne(0) ≈ 1. One can then see from Eq. (32) that ne ≈ eφ – i.e., is at quasi-equilibrium – throughout the
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FIG. 5. Approximate double-layer potential drops at which the system begins to deviate from bulk-limited behavior, indicated
as curves labeled in thermal volts, as a function of equilibrium ion density and electronic mobility (Eq. (36)). The solid lines
are for injection into a one-ion depletion region (ρ = 1), and the dotted curves are for injection into a saturation region with
ρ = 10.

region where the integral
∫ x

0
θee
−φ dx is much smaller than 1/F inj

e ; the location at which these quantities approach

each other is effectively the edge of the quasi-equilibrium region. Since in the transport-limited regime 1/F inj
e ≈∫ L

0
θee
−φ dx, this edge can be defined as the point xeq where

∫ xeq

0
θee
−φ dx =

∫ L
xeq

θee
−φ dx. The electrons will be

at quasi-equilibrium throughout the double layer (the quasi-equilibrium condition) if xeq > x− or equivalently if∫ x−
0

θee
−φ dx <

∫ L
x−
θee
−φ dx.

We will evaluate the quasi-equilibrium condition for a quadratic potential in the double layer (as in a fully depleted
or saturated layer). Neglecting recombination in the double layer,

∫ x−
0

θee
−φ dx ≈

∫ x−
xτ

e−φ dx (see discussion following

Eq. (34)). Assuming large ke, the carriers will recombine abruptly at a point xζ , causing θe to approach 0; we therefore

approximate θe as a step function so that
∫ L
x−
θee
−φ dx ≈

∫ xζ
x−
e−φ dx. Evaluating and comparing these two integrals

(see Appendix C) gives the quasi-equilibrium condition

λF <
4 exp

[
−
√
ρ/8λ2

ν

(
wi
√
w2
i − w2

τ − rw2
τ

)]
wτ (1/

√
ρw2

τ + r/
√

2λν)2
(36)

where ρ is the absolute value of the excess charge density in the layer, wi =
√

2∆φ−/ρ is the width of the ionic compact

region, wτ =
√

2/ρ erfi−1(wD
√

2ρ/π) ≈
√

ln(ρw2
D ln(ρw2

D))/ρ, r = ln(wi/wτ +
√

(wi/wτ )2 − 1), and wD = xζ − x−
is the width of the bulk diffusion region.

Fig. 5 is a contour plot of the quasi-equilibrium condition in terms of the ionic density and electronic carrier
mobility, indicating the transition into bulk-limited conduction. The contours represent the potential drops across the
double layers (not the applied bias); these potential drops generally do not exceed the band gap. This result shows
that the presence of a large amount of ions greatly assists in the formation of a quasi-equilibrium region. Even systems
that lie outside of the bulk-limited regime on this diagram may not deviate much from quasi-equilibrium behavior;
in particular, even larger mobilities are required to reach injection- or ejection-limited regimes such as those found in
typical nonionic crystalline semiconductors. This analysis shows that the assumption of quasi-equilibrium throughout
the double layers is valid for a wide range of conditions in systems with high ion content and low electronic mobilities,
and for this reason we focus on the bulk-limited regime for the remainder of this work.

It is also noted that, within the bulk-limited regime, the precise forms of the potential profiles and carrier distribu-
tions within the ionic double layers are not important to the overall device flux, because the flux is only determined
by the potential drops across these layers. Indeed, certain treatments essentially neglect the double layers5,6,42 by
taking their edges to be the boundaries of the MIEC and relating the carrier concentrations there to the electrode
quasi-Fermi levels by the Nernst equation.38 When the quasi-equilibrium condition holds, the concentration at the
edge of the double layer is ne(x−) = e∆φ− .
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h ) as a function of bias. Curves A and B show one-ion systems (mobile
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e = µ∗

h = 10−10 m2/Vs, ñ∗
ion = 1026 m−3, n̂∗

a = 1027 m−3, ñ∗
e = 1016 m−3, and

ñ∗
h = 1016 m−3 (A), ñ∗

h = 1012 m−3 (B). Curve C shows a two-ion system with the same parameters as curve B and n̂∗
c = n̂∗

a,
µ∗
h = 2 · 10−10 m2/Vs. Curve D shows the same system as in curve B except with ñ∗

ion = 1025 m−3, n̂∗
a = 1026 m−3. Curves

E and F illustrate loss of quasi-equilibrium, showing the same system as curve D but with µ∗
e = µ∗

h = 10−4 m2/Vs and
µ∗
e = µ∗

h = 1 m2/Vs, respectively; curves E and F are scaled down by the ratios of their mobilities to that of curve D. Curve G
shows the system from curve A with ñ∗

ion = 1023 m−3.

B. Regimes of operation with bulk-limited conduction

In this section, we synthesize all of the previous results to obtain quantitative descriptions of bulk-limited MIEC
systems. We restrict the analysis in this section to δ = 0 because systems with nonzero δ introduce additional
complications that are beyond the scope of this work to address.

Figure 6 shows simulations of current density (J∗)-voltage curves for a variety of systems, illustrating both bulk-
limited conduction and deviation from it as the quasi-equilibrium condition becomes violated. Curves A, B and D are
results for bulk-limited one-ion systems showing how they change with ñ∗e, ñ

∗
h, and ñ∗ion. Curve C shows a bulk-limited

two-ion system, which has a similar shape to the one-ion systems. Experimental curves similar in shape to the the
bulk-limited curves of Fig. 6 have been reported in the literature.6,43–46 The simulations also show that changing µ∗e
and µ∗h while leaving their ratio unchanged (provided they do not become too large) only alters the magnitude of J∗

and not the shape of the current-voltage curve. At sufficiently high mobilities, however, transport will no longer be
bulk limited. For instance, the contour plot of Fig 5 and Eq. (25) predict the loss of quasi-equilibrium at V ∗ ≈ 0.5 V
for the relatively high-mobility system of curve E (ñ∗ion = 1025 and µ∗ = 10−4 m2/V s), and indeed this curve begins
to deviate from the lower mobility, bulk-limited system (Curve D) at this voltage. The mobilities required to observe
the loss of quasi-equilibrium at reasonable ion loadings are much larger than those found in typical LEC systems
(approaching those of crystalline inorganic semiconductors). The mobilities and ion loadings found in typical LEC
systems place them in the quasi-equilibrium regime. Note that quasi-equilibrium is lost even for low-mobility systems
when the ion concentration is sufficiently low (curve G).

For the remainder of this section, we specifically investigate bulk-limited conduction by assuming that the quasi-
equilibrium condition holds. We focus on the results for large ks because of our emphasis on low-mobility systems.
We also assume that the width of the bulk region is much larger than that of the double layers.

There are four clearly distinguishable regimes of behavior. In Fig. 7, we show a representative current density-
voltage curve obtained from simulations, in which each of these regimes can be observed. Fig. 7 also shows the
recombination current, which is approximately proportional to the light output of an LEC (neglecting for instance
quenching by the electrodes).

Below we will provide approximate expressions for the biases at which a given system transitions between each
regime and the device fluxes in each regime. Fig. 7 compares the expressions for the transition voltages (V1, V2,
and V3) and device fluxes (solid lines) to full numerical simulations of a representative one-ion system. We will also
provide simulation data depicting the charge densities and electrostatic potential to provide a physical picture of the
underlying mechanisms. The device fluxes are given in physical units, and the device flux is defined as F ∗dev ≡ F ∗e −F ∗h ,
as this is the physically measurable flux.
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the transition biases. The low injection regime uses Eq (37) combined with (27) for V ∗ < 0.3 (pre-saturation) and (25) for
V ∗ > 0.3 (post-saturation). The remaining regimes use Eqs. (39), (41), and (43). In the high injection regime, Eq. (43) does
not become valid until the ions have completely polarized, at a bias slightly beyond V ∗

3 . The dotted line shows the simulated
total recombination current (proportional to light output). Note that it is orders of magnitude below the device current until
the system approaches the bipolar injection regime, after which it follows the device current.

1. The low-injection limit

In the low-injection limit, there are not enough electronic carriers to affect the potential profile, so φ is determined
entirely by the ions; we can therefore use the results of Sec. III to determine the potential drops and to justify the
field-free bulk assumption. Because the bulk is field-free, the electronic carriers simply diffuse through the bulk and
have a linear profile. A typical example of a system in this regime is shown in Fig. 8.

The following approximation holds independently of recombination (Appendix D 1):

F ∗dev ≈
D∗e ñ

∗
ee
q∆φ∗−/kT

L∗
+
D∗hñ

∗
he
q∆φ∗+/kT

L∗
(37)

Such diffusion flux expressions have been presented by a number of authors investigating MIECs with field-free bulk
regions;4,47,48 indeed, deMello et al. give essentially the same result in terms of carrier concentrations at the double
layer edge.4 By combining Eq. (37) with the results of section III for ∆φ∗− and ∆φ∗+, one can obtain the flux explicitly
in terms of the applied bias.
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FIG. 8. Low-injection regime in the one-ion system from Fig. 7 at V ∗ = 0.4 V, showing the electron density profile (solid
line) and electrostatic potential profile (dashed line). The electrons rise rapidly from their electrode value ñ∗

e to their value at

the double layer edge as determined by quasi-equilibrium, ñ∗
ee
q∆φ∗−/kT . They then diffuse through the field-free bulk with a

characteristic linear profile.
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Because charge injection is in general asymmetric, the recombination zone will be near the electrode where the
minority carriers are injected. In this regime, the total recombination current (and hence light output) is proportional
to the injected minority carriers, which will in general not be proportional to the device flux, as illustrated in Fig. 7.

2. “Space-charge-limited” injection

The mechanism of device behavior in this regime is similar to that of space charge effects in semiconductors, but
it is distinct from the classical space-charge-limited conduction model.49 At the onset of the space-charge-limited
regime, the injected majority charges begin to affect φ in such a way that retards their further injection, the flux
then increasing very slowly with V (see Fig. 7). The transition into this regime occurs when the majority carrier
concentration reaches a certain proportion of the ionic concentration.

In most systems there will be a high enough degree of asymmetry that one of the carriers will dominate in the
low-injection regime. In one-ion systems, the potential drop across the depletion double layer is generally so much
larger than that across the accumulation layer (see Fig. 25) that the carrier injected at the depletion side will tend to
dominate. For example, with mobile anions, if ñh < ñe, the electron concentration will overtake the hole concentration
near the bias V ≈ n̂a/(n̂a − 2) ln(ñh/ñe); as long as the transition into the space-charge-limited regime occurs above
this bias, we can assume that injection at the depletion side dominates. With two-ion systems, the crossover in
dominant carrier occurs at the bias n̂an̂c/(n̂c− n̂a) ln(ñh/ñe). In the special case of n̂a = n̂c and ñe = ñh, this regime
will not occur because the two electronic species are present in equal proportions.

0

2

4

6

8

10

n
∗
(1
02

6
m

−
3
)

0 10 20 30 40 50 60 70 80 90 100
x∗ (nm)

0.2

0.4

0.6

0.8

1

φ
/V

FIG. 9. The space-charge-limited regime for the same system as in Fig. 7, from V ∗ = 0.6 V to 1.0 V in 0.1 V intervals.
The electron (blue) and hole (red) distributions have been multiplied by 100 for comparison with the anions (green, dashed)
and fixed cations (purple, dashed). Note the relatively slow (approximately linear) increase of the majority carriers, and the
appearance of the minority carriers near the upper end of this regime. The electrostatic potential φ normalized by V is also
shown (dash-dotted lines); the applied bias functions mainly to increase the potential drop at the hole-injecting side (right)
until the drops are approximately equal, signaling the onset of the bipolar injection regime.

A one-ion system in the space-charge-limited regime is depicted in Fig. 9. When the majority carrier’s concentration
reaches the magnitude at which space-charge effects become significant, the potential drop at the side where it is
injected will suddenly begin to increase very slowly with V . This causes the majority carrier concentration to increase
much less rapidly than the exponential increase observed in the low-injection regime, and because the extra potential
provided by any additional bias then is dropped mainly at the minority carrier-injecting electrode, it causes the
minority carrier to be injected much more rapidly. Such a shift from predominately increasing the injection rate of
one carrier to that of the other has been noted by deMello et al. as well.4 The transition into the space-charge-limited
regime is characterized by a sudden transition to a much weaker V dependence of the electronic flux (see Fig. 7). By

expanding the potential drops to first order in the total excess charge
∫ L

0
nh − ne dx = φ′L − φ′0, we obtain a simple

approximation to the bias at which this transition occurs (Appendix D 2):

V ∗1 ≈
kT

q

[
An̂ ln

(
λ

L∗
Bn̂ñ

∗
ion

ñ∗maj

)
+ Cn̂

]
(38)

where ñ∗maj is the equilibrium value of the majority carrier. For one-ion systems, An̂ = n̂/(n̂ − 1), Bn̂ = 2n̂(n̂ − 1)

(saturation limit) or Bn̂ = 2 ln2(λ/L∗ñ∗ion) (diffuse limit), and Cn̂ = 0; for two-ion systems, An̂ = (n̂a + n̂c)/n̂maj,
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FIG. 10. The bipolar injection regime for the same system as in Fig. 7, from V ∗ = 1.0 V to 1.4 V in 0.1 V intervals. The
electron (blue) and hole (red) distributions have been multiplied by 100 for comparison with the anion (green, dashed) and
fixed cation (purple, dashed) distributions. The electron and hole populations are now approximately equal.

Bn̂ = 2(n̂a + n̂c)/
√
n̂min, and Cn̂ = ln(n̂maj − 1) − (n̂min/n̂maj) ln(n̂min − 1) where n̂maj and n̂min are the value of

n̂ for the same sign of ion as the majority and minority carriers, respectively. This bias brings the majority carrier
concentration up to approximately n̂/L (one ion) or (n̂a + n̂c)/

√
n̂minL (two ions).

In the space-charge-limited regime, the bulk field remains relatively small, and the flux is still mainly due to diffusion
of the majority carrier across the bulk. An approximation to the flux is (Appendix D 3)

F ∗dev ≈
D∗maj

L∗2

√
Cn̂εε0ñ∗ion/q

∆V ∗√
V ∗

(39)

where ∆V ∗ = V ∗−V ∗1 +(An̂kT/2q) ln(qV ∗/An̂kT ), D∗maj is the diffusion coefficent for the majority electronic carrier,

An̂ is as defined above, and Cn̂ = 2n̂(n̂− 1) for one ion, Cn̂ = 2n̂maj(n̂maj/n̂min + 1) for two ions.
Because the flux is still dominated by the majority carrier, the total recombination rate - and hence the device light

output - will depend on the number of injected minority carriers, since in general all of them will recombine with the
majority carriers within a short distance from the minority carrier-injecting electrode. The recombination zone will
be observed near the contact injecting the minority carriers, and the light output will increase more rapidly than the
device flux (see Fig. 7).

3. Bipolar injection

In the space-charge-limited regime, the minority charge concentration builds up rapidly. At a certain bias, the
concentrations of electrons and holes approach each other, and the injected electron and hole fluxes become equal
because essentially all injected charges recombine in the bulk. This marks the beginning of the bipolar injection
regime.

Figure 10 shows the carrier and ion profiles in the bipolar injection regime. Because there are now roughly equal
proportions of electrons and holes, the space-charge effects act on the injection of both carriers to an equal extent,
effectively cancelling out these effects. This allows both carriers to rise at equal rates, and most of any additional
potential applied in this regime is split evenly between the two double layers (the bulk field is still relatively small).
This results in a sudden increase of the device flux, as what was previously the majority carrier can now be injected
more rapidly than in the space-charge-limited regime. The recombination and light output will now follow the device
flux (see Fig. 7), and the recombination zone will be closer to the electrode injecting the carrier with the smaller
mobility.

A simple calculation (Appendix D 4) shows that the densities of holes and electrons approach each other, and
therefore the second transition occurs, near the bias

V ∗2 ≈
kT

q
ln

(√
µ∗maj

µ∗min

λ2

L∗2
Cn̂ñ

∗2
ion

ñ∗eñ
∗
h

)
(40)

where Cn̂ = 4n̂2 (saturated limit) or Cn̂ = 4 ln4(λ/L∗ñ∗ion) (if the system is in the diffuse limit at V1) for one ion, and
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Cn̂ = 4(n̂a + n̂c)
2/n̂min for two. In this regime the flux is (Appendix D 5)

F ∗dev ≈
D∗effñ

∗
eff

L∗
exp

(
qV ∗

2kT

)
(41)

where ñ∗eff =
√
ñ∗eñ

∗
h and D∗eff =

√
D∗eD

∗
h((D∗e/D

∗
h)1/4 + (D∗h/D

∗
e)1/4). The dependence of V ∗2 on ñe and ñh is clearly

illustrated by comparing curves A and B of Fig. 6.

4. High injection

As the magnitude of the injected charge continues to increase, the ions will be increasingly displaced from the bulk
in order to maintain electroneutrality. Eventually the electronic concentrations will reach the ionic concentrations,
marking the onset of the high-injection regime.

Figures 11 and 12 show the carrier and electrostatic potential profiles in the high-injection regime in one- and two-
ion systems. In this regime most of the additional applied potential beyond the transition bias will develop across the
bulk region; the nature of this region is the primary difference between one- and two-ion systems in the high-injection
regime. The bias at which the transition into the high-injection regime begins to occur is the minimum required to
bring the electronic carrier concentrations up to the ionic concentration,

V ∗3 ≈
E∗G
q
− kT

q
ln
NCNV
ñ∗2ion

(42)

where E∗G is the bandgap and NC , NV are the effective density of states constants in the bands.
Smith has addressed the two-ion high-injection regime,2 obtaining the same transition bias. However, his work

includes an ion association/dissociation mechanism absent from ours. With such a mechanism, when the free ion
concentration is relatively low, the associated salt molecules form a “reservoir” that acts to prevent the junction
region from being depleted of ions, in turn leading to a stronger dependence of the flux on the applied bias. At biases
greater than V ∗3 , however, these salt molecules will soon become depleted, and the system will behave as though the
pairing mechanism is not present.

There are a number of similarities between one- and two-ion systems in the high-injection regime. In both cases,
the device consists essentially of five distinct spatial regions, from left to right: (1) the cathode double layer, (2) a
neutral region containing electrons and cations, (3) a narrow region in which most of the recombination occurs, (4) a
neutral region containing holes and anions, and (5) the anode double layer.

After reaching V ∗3 , the ions will begin to separate completely and move toward the neutral regions until each
electronic carrier is completely compensated by ions of the opposite charge. This compensation is apparent from
comparing the ionic and electronic carrier profiles in Figs. 11 and 12. Note that in the one-ion system of Fig. 11,
the mobile anions compensate both the injected holes and immobile cations on the anode side of the device. The
complete separation of ions requires a small amount of additional potential ξVT beyond V ∗3 , as much of this potential
is dropped across the bulk. Therefore, in the flux expressions that follow, we define ∆V ∗ = V ∗−V ∗3 −ξVT . Numerical
simulation suggested estimates of ξ ≈ 6 for one-ion systems and ξ ≈ 10 for two-ion systems. When ∆V ∗ > 0, the
ions have completely polarized, and the concentrations at the edges of the neutral regions increase slowly with bias.
Unless n̂ is small, these concentrations generally will not reach n̂ under normal operating conditions. In the following
analysis, we have assumed that this is the case; hence, the device fluxes in this regime are independent of n̂. As
before, the recombination current follows the device flux in the high-injection regime (see Fig. 7).

In two-ion systems, the voltage V ∗3 essentially represents the transition between the applicability of the so-called
electrodynamic model,29 in which the bulk field is negligible, and the electrochemical model,1 in which the bulk
contains a junction region depleted of ions and is characterized by a large field. Equation (42) was derived assuming
bulk-limited transport. If electrode limitations are present, the injected carrier concentration will be reduced, and the
transition into the high-injection regime will shift to higher voltages. Reenen and coworkers have conducted simulations
and experiments addressing this point, again illustrating the continuum of behavior between the electrodynamic and
electrochemical models.19 Electrode limitations act to destroy quasi-equilibrium in a manner similar to lowering the
ion content or increasing the electronic carrier mobility of the MIEC, as evidenced by comparing curves F and G in
Fig. 6 to curves D and A.

a. One-ion systems. In this case the majority of any additional applied potential is dropped across the neutral
region containing only the immobile ions, where the field and carrier profiles are approximately constant (see Fig.
11), and the flux is almost entirely due to drift. The carrier concentration on the other side, where the carriers
are compensated by the mobile ions, will increase slowly with bias; this carrier’s flux is driven by both drift and
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FIG. 11. One-ion high-injection regime for the same system as in Fig. 7, showing electron/hole profiles (blue/red solid lines),
anion/cation profiles (green/purple dotted lines), and electrostatic potential profile (dash-dotted) normalized by the applied
voltage, for V ∗ = 1.4 V to 2.0 V in increments of 0.1 V. The applied potential now drops increasingly across the neutral region
depleted of mobile ions.
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FIG. 12. Two-ion high-injection regime for the two-ion system from Fig. 6 (curve C), showing electron/hole profiles (blue/red
solid lines), anion/cation profiles (green/purple dotted lines), and electrostatic potential profile (dash-dotted) normalized by
the applied voltage, for V ∗ = 1.7 V to 2.2 V in increments of 0.1 V. Note the steady increase in the junction potential drop and
the very slow increase of the concentrations and the junction width. The recombination zone is closer to the electrode injecting
the carrier with the smaller mobility (near L∗/(1 +

√
µ∗
h/µ

∗
e) ≈ 41 nm). The potential drop across the anode double-layer is

larger because of the holes’ smaller electrode concentration (ñh/ñe = 10−4).

diffusion throughout the neutral region. The recombination zone will move closer to the electrode that injects carriers
compensated by mobile ions as the bias is increased. The device flux in this regime is approximately (Appendix D 6 a)

F ∗dev ≈
ñ∗ion

L∗

(
2D∗2 + µ∗1∆V ∗ + 2

√
D∗22 +D∗2µ

∗
1∆V ∗

)
(43)

where µ∗1 is the mobility of the carrier with the same sign of charge as the mobile ions and D∗2 is the diffusion coefficient
of the carrier with that of the immobile ions.

b. Two-ion systems. The main characteristic of two-ion systems in this regime is the formation of a “junction”
in the bulk of the device, depleted of ions and possessing a relatively large field, where most of the recombination
occurs. Previous work has described the properties of this kind of junction.2,5

The junction forms when the device flux reaches approximately 4ñ∗ion(
√
D∗e +

√
D∗h)2/L∗, and its location is ap-

proximately L∗/(1 +
√
D∗h/D

∗
e). After the junction is fully formed, most of the additional applied bias will drop

across the junction (see Fig. 12), as has been observed in certain experimental systems.17,19 A small amount of the
bias will act to increase the concentrations at the double-layer edges, which increase very slowly with bias; the near
constancy of these concentrations has been observed experimentally.50 Transport through the neutral regions occurs
via both drift and diffusion.

Solving for the flux using approximations similar to those that led to Eq. (43) requires the solution of a third order
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polynomial (Appendix D 6 b). Here we give a first-order Padé approximant of that solution,

F ∗dev ≈
4ADñ

∗
ion

L∗
1 + 1.529(∆V ∗λ/VTL

∗BD)2/3

1− 1.092(∆V ∗λ/VTL∗BD)2/3
(44)

where AD = (
√
D∗e +

√
D∗h)2 and BD = 2 +

√
D∗e/D

∗
h +

√
D∗h/D

∗
e .

VI. SUMMARY

Our analysis of MIECs is based on an ionic model characterized by a modified drift-diffusion transport equation
that explicitly accounts for volume constraints, and an electronic model distinguished by the inclusion of a spatially
dependent tunneling process that accounts for both forward and backward fluxes, as well as the quasi-equilibrium that
occurs in low-mobility materials. By combining these models and examining their interactions, we have delineated the
major regimes of operation of an idealized MIEC with high ion content and low electronic mobilities, and provided
analytical results consistent with simulations of the basic equations.

The modified ionic transport equation reveals several unique properties and differences between one- and two-ion
systems. Both systems display depletion and accumulation layers near the electrodes which grow into the device as
the bias is increased. In one-ion systems, these layers may meet each other, in which case the ions will no longer be
able to screen the electrode fields. In two-ion systems, the bulk may become depleted of ions, leading to a loss of field
screening; two-ion systems have less of an ability to screen the electrode fields than one-ion systems do. Furthermore,
the relative values of the double layer potential drops in these systems are different because of the different amounts
of charge that can build up in the ionic double layers. This leads to differing dependencies of the electronic current
on bias, especially at small voltages where there is a relatively low level of electronic charge injection.

The electronic injection model incorporates both thermal emission and tunneling, and tunneling is treated in a
spatially-dependent manner. There are two important consequences of this kind of model: (1) if the electronic
mobilities are large, then the injected carrier concentrations may become very small near their injecting electrode,
leading to reverse-biased Schottky contact and Fowler-Nordheim-type flux expressions; (2) if the electronic mobilities
are small, the injected carriers reach quasi-equilibrium throughout some region extending from the electrode, making
Fowler-Nordheim-type expressions invalid and favoring the applicability of the Nernst equation.

The substantial increase in electronic current caused by the polarization of ions in MIECs has long been recognized.
We have shown, in low-mobility systems, that this increase is not, as is often posited, simply due to increased tunneling
injection caused by the narrowing of the potential profiles near the electrodes. Instead, it is due to the fact that these
narrowed profiles can allow the electrodes to reach quasi-equilibrium with the electronic carriers at the inner edges of
the double layers - the low mobilities of these carriers actually cause the tunneling injection and ejection (backflow)
currents to be nearly equal, allowing quasi-equilibrium to occur. The high rate of tunneling transfer, while responsible
for the large exchange current that leads to quasi-equilibrium, does not determine the device current. This may seem
like somewhat of a subtle distinction in mechanism, but it does lead to a very different functional form for the
current; indeed, it shows that in a low-mobility system, applying the Nernst equation across the double layers is much
more appropriate than applying a model such as Fowler-Nordheim near the electrode. Eq. (36) provides a means
by which to estimate the presence of quasi-equilibrium in a given system. We reiterate that this condition applies
only to our idealized model, and there will inevitably be additional considerations in a real physical system, such as
imperfect electrodes, material disorder, additional injection barriers, impairment of ion mobility, image-charge effects,
etc. Regardless, the central idea remains that fast injection kinetics (relative to the rate of transport) mainly influence
the device current through the establishment of quasi-equilibrium.

Assuming that quasi-equilibrium holds across the double layers, we have analyzed systems with bulk-limited con-
duction, separating the device behavior into four distinct regimes.

In the first regime, there are small amounts of injected charge, small enough so that the electrostatic potential is
determined almost entirely by the ions. In this regime, current rises exponentially with bias and the bulk remains
field-free, leading to purely diffusive transport. Recombination, and thus light output, does not generally follow the
device flux unless the electrons and holes are injected in roughly equal proportions.

The second regime occurs when the majority carrier concentration becomes sufficiently large that it begins to affect
the electrostatic potential. This causes any further applied bias to be dropped across the double layer near the
electrode where the minority carrier is injected, causing a rapid increase in the minority carrier concentration. In this
regime, the total device flux increases slowly with increasing bias, and light output is proportional to the injected
minority carrier concentration, which is at most ∝ eV . The bias range over which this regime occurs depends on the
imbalance of the majority and minority carrier injection.

The third regime occurs when the increased minority carrier injection causes the minority carrier concentration to
approach that of the majority carrier. In this regime, both carriers increase relatively rapidly and at approximately
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the same rate. Light output is proportional to the device flux in this regime. This regime is fairly narrow however
because both carriers increase approximately as ∝ eV/2.

The fourth regime occurs when the electronic carrier densities approach the ionic densities. A significant bulk
field begins to develop. In one-ion systems, the electronic carriers meet and recombine near the edge of the ionic
accumulation region. In two-ion systems, they meet somewhere in the bulk, forming a “junction” in which there is a
large field; the location of this region is determined by the relative values of the electronic mobilities. In this regime
the light output also follows the device flux, which increases much more slowly with bias than in the previous regimes.

The drift-diffusion/Poisson model of MIECs exhibits a wide range of behavior. The various models that have been
proposed for MIECs appear to lie on a continuum of behavior. Which limiting case is appropriate depends on the
chemical makeup of the MIEC and the applied bias, as we have quantified for an idealized model. Though many
factors may affect the physical functioning of various devices and may cause significant quantitative deviation from
the idealized model, we expect the essential concepts and mechanisms responsible for the different regimes of device
behavior to remain valid.
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Appendix A: Ionic Subsystem

In this section, we define the reference point of the electrostatic potential to be φB = 0 for mathematical convenience.

1. Ionic flux equation

The ionic flux equation is derived from the continuous limit of a discrete random walk model in the same way that
the standard drift-diffusion equation can be. The device is discretized into cubic cells of width ∆x, taken to be the
effective ionic diameter. The cells are then grouped into planes parallel to the electrodes, so that there are L/∆x
planes. In the ith plane there are Ni ions. The ions move with an average drift velocity of zEi - where z is the ionic
species’ charge (±1) and Ei is proportional to the electric field in plane i - and an average thermal velocity of ±H
with equal probability in either direction.

In a small increment of time ∆t, the average number of ions attempting to pass from plane i to plane i + 1 is

N†i→i+1 = (∆t/∆x)Ni(δ
+
i zEi + H/2), where δ+

i = 1 if zEi > 0 and δ+
i = 0 otherwise. However, some of these

ions may be blocked by ions occupying cells in slice i + 1. Assuming that the ions are randomly distributed in each
slice, the probability that an ion will be blocked is Ni+1/N̂ . The actual number of ions that pass from plane i to
plane i + 1, Ni→i+1, is then the number of ions attempting to pass multiplied by the probability that they are not

blocked, i.e. Ni→i+1 = (1 − Ni+1/N̂)N†i→i+1. Similarly, the number of ions passing from plane i + 1 to plane i is

Ni←i+1 = (∆t/∆x)(1−Ni/N̂)(δ−i+1zEi+1 +H/2), where δ−i+1 = 1 if zEi+1 < 0 and δ−i+1 = 0 otherwise.
From these results the discrete analogue of the flux is obtained, (Ni→i+1 − Ni←i+1)/∆t. Allowing ∆x and ∆t to

become infinitesimal gives the flux equation

F = zEn(1− n/n̂)− (H∆x/2)n′ (A1)

which, by comparison to the derivation of the drift-diffusion equation, shows that Ei = µφ′i and H = 2D/∆x. These
substitutions give the ionic flux equation, Eq. (4).

2. Integration of Poisson’s equation for the ionic subsystem

Poisson’s equation for the ionic subsystem is φ′′ = na − nc. Because the ionic fluxes are zero at steady state,
the steady-state ionic distributions explicitly depend only on φ (see Eq. (13)). This permits the use of the identity
f ′′ = (1/2)(d/df)(df/dx)2, which allows one to relate the values of φ and φ′ at two different points,

1

2

(
φ′21 − φ′22

)
=

∫ φ2

φ1

na(φ)− nc(φ) dφ (A2)
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Using Eq. (13), this integral from 0 to φ is

n̂ ln

(
1 +

e−zφ − 1

n̂

)
+ zφ (A3)

n̂a ln

(
1 +

eφ − 1

n̂a/nB

)
+ n̂c ln

(
1 +

e−φ − 1

n̂c/nB

)
(A4)

for one- and two-ion systems, respectively.

3. Field screening

Eq. (A2) with φ1 = 0 and φ2 = φ is integrated using separation of variables to get Eq. (14). For one-ion systems,
considering e.g. anions to be mobile, the integrand of Eq. (14) is approximated as 1/

√−φ+ n̂ ln n̄ as φ → −∞, in
the depletion region. The effective edge of the depletion region is defined as the point where φ = φ− ≡ n̂ ln n̄, which
is the edge of the region where this approximation is defined. As φ → ∞, in the saturation region the integrand is
approximated as 1/

√
(n̂− 1)φ− n̂ ln n̂, and the edge of the region is defined as the point where φ = φ+ ≡ n̄−1 ln n̂.

Both of these approximations are greater than the integrand. Integrating them, substituting φ(L) = φ(0) + V and
maximizing the resultant expression for φ(0) gives wcp (Eq. (16)). In the inner region, the argument of the square

root is expanded to yield the approximation 1/
√
n̄φ2 + φ′2B ; this is not always greater than the integrand but can be

made so by adding 1/6 on the negative side of the integral and 0.0384 on the positive side. The integral from φ− to
φ+ is then bounded by

1√
n̄

[
asinh

(√
n̄|φ−|
φ′B

)
+ asinh

(√
n̄φ+

φ′B

)]
+ ξ (A5)

where ξ = |φ−|/6 + 0.0384φ+ and the first expression represents wdf + wbulk, where wbulk is the width of the bulk
region. There is no unique way to split this into diffuse and bulk terms - it is necessary only to ensure that the
singularity at φ′B = 0 is contained in the bulk term. The final result will be the same regardless of this choice;

mathematically it is most natural to define wdf = n̄−1/2(ln(2|φ−|) + ln(2φ+)). In the diffuse limit there will be no
accumulation layer contribution to wcp, which is then trivially bounded by using −φ0 < V . The diffuse width is
then bounded by numeric integration of the diffuse regions, taking the upper limit in the accumulation region to ∞.
Summing these evaluations gives wdf < 3.76.

We have established the bound L < wcp + wdf + wbulk + ξ. Defining f(φ′B/
√
n̄) =

√
n̄(wdf + wbulk), we then have

φ′B/
√
n̄ < f−1(

√
n̄(L− wcp − ξ)). The function f can be explicitly inverted,

f−1(v) = 2ev/2
√

(|φ−|+ φ+ev)(φ+ + |φ−|ev)
e2v − 1

(A6)

and is then bounded by adding expansions about v =∞ and v = 0,

f−1(v) < e−v/2
(

2
√
|φ−|φ+ +

|φ−|+ φ+

v

)
(A7)

Because 2
√
|φ−|φ+ = e(

√
n̄/2)wdf , it is absorbed into the exponent to yield

φ′B < e−
1
2

√
n̄(L−wcp−wdf−ξ)

(√
n̄+

A

L− wcp − ξ

)
(A8)

where A = (|φ−| + φ+)/(2
√
|φ−|φ+). For n̂ < 106, A < 2, which gives the one-ion result (Eq. (15)). The two-ion

result is derived using the same methods, with ξ = 0.0201(|φ−|+φ+), which is trivially bounded by 0.0201V < V/49.
In this case A = 1 when n̂a = n̂c and only deviates much when the two are very different; even at the extreme of e.g.
n̂a = 106 and n̂c = 2.7 we have A < 2.
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4. Two-ion saturation before screening

To simplify the calculations we let n̂→∞. In this case Poisson’s equation is φ′′ = nB(eφ−e−φ). Using φ(0) = −V/2,
the solution on the cathode side is

φ = −4 atanh
(

tanh(V/8)e−
√

2nBx
)

(A9)

The solution on the anode side is the negative of this, reflected about x = L/2. If these two solutions do not decay
sufficiently at x = L/2, the field will not be screened. We choose nB ≈ 1/L2 as the value which begins to violate field

screening since this will produce a small value in the exponent. The ion conservation condition
∫ L

0
ndx = L is used

to compare nB to 1/L2. Using Eqs. (13) and (A9), this integral can be computed exactly. Assuming V sufficiently
large (greater than a few thermal volts) and neglecting small terms, the result of this computation is that V ≈ 8 lnL
when nB ≈ 1/L2. Because the accumulation boundary concentrations in the n̂ → ∞ limit are eV/2, saturation will
occur near the bias V ≈ 2 ln n̂. Comparing these two results leads to the inequality n̂ < L4 for when the bias at which
saturation occurs is less than that at which loss of field screening occurs in the diffuse limit.

5. Double layer potential drops and boundary fields

Eq. (A2) with φ1 = φ(0) and φ2 = φ(L) can be integrated exactly (see Eqs. (A3) and (A4)). Since φ′0 = φ′L, the
left side of Eq. (A2) is set to zero. The relations ∆φ− = −φ(0) and ∆φ− + ∆φ+ = V are then used to solve for the
potential drops. For one-ion systems, the resultant equation can be solved exactly, leading to Eq. (23). The equation
for the boundary field, Eq. (24), results from taking φ1 = 0 and φ2 = φ(0) (or φ2 = φ(L)) in Eq. (A2). The remaining
one-ion results are obtained from straightforward Taylor expansions of the exact results. The two-ion version of Eq.
(A2) cannot be solved exactly; the saturation limit is investigated by assuming eφ(L) � n̂a/nB and e−φ(0) � n̂c/nB
and then taking a Taylor expansion in these variables. The results given in Eqs. (29) and (30) additionally assume
nB ≈ 1.

Appendix B: Asymptotic solution for θ

The steady-state electronic continuity equation, neglecting recombination and assuming β = eφ, is

0 = −F inj
e θ′e + λ−1

F φ′κee
φ

(
1− ne(0) + F inj

e

∫ x

0

θee
−φ dx

)
(B1)

Adding F inj
e θ′e, dividing by F inj

e φ′κee
φ, differentiating, and then multiplying by φ′κee

φ, this becomes

θ′′e −
(
φ′ +

φ′′

φ′
+
κ′e
κe

)
θ′e − λ−1

F φ′κeθe = 0 (B2)

The asymptotic solution is now obtained by letting θe = eΘ/ε, where ε is a small parameter dependent on λF and
Θ = Θ0 + εΘ1 +O(ε2). As ε→ 0 and λF → 0, the above equation becomes

λF
ε2

Θ′20 ∼ φ′κe (B3)

In the limit, in order for the left hand expression to remain nonzero and finite, we must take ε ∝
√
λF . This now

gives

θe = exp

(
− 1√

λF

∫ x1

x

√
φ′κe dx+O(1)

)
(B4)

Computing more terms in the expansion (e.g. Θ1) does not improve the result because the next term will cause
divergence as x approaches x1. Instead, an approximation is formed by requiring that θe = 1 at x = x1, or equivalently
setting the O(1) term to 0, giving Eq. (34).
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Appendix C: The quasi-equilibrium condition

The problem is to phrase the inequality
∫ x−
xτ

e−φ dx <
∫ xζ
x−
e−φ dx in terms of λF . The second integral is approx-

imated by wDe
−∆φ− . The potential is approximated quadratically by writing Poisson’s equation as φ′′ ≈ −ρ and

letting wi be the point where φ′ = 0; this gives φ ≈ (ρ/2)(w2
i − (x− w2

i )) with wi =
√

2∆φ−/ρ. The inequality has

now become
∫ wi
xτ

e(ρ/2)(x−wi)2 dx < L; evaluating this integral leads to

xτ > wi −
√

2/ρ erfi−1
(
wD
√

2ρ/π
)

(C1)

where the right hand side is asymptotic to wi −
√

ln(ρw2
D ln(ρw2

D))/ρ for large wD. The asymptotic approximation

θ ≈ e−
∫wi
x

√
φ′κe/λF dx and the condition θ′′(xτ ) = 0 give an equation that can be solved for λF with some tedious

computation; the above inequality on xτ then leads to the result, Eq. (36).

Appendix D: Mixed ionic/electronic system

In treating the mixed ionic/electronic system, we assume that the double layer widths are negligible so that the
width of the bulk region is approximately L.

1. Low-injection regime flux

If the electronic charges are injected in highly unequal proportions, or if recombination is negligible, the result is
immediate.

Assuming high recombination, the profiles are approximated as linear until the point xζ where they meet, after
which they are assumed to vanish. Then the width of the electron profile will be xζ − x− and the width of the hole
profile will be x+− xζ . Because in this case the fluxes are equal and opposite, we have Fdev = µene(x−)/(xζ − x−) =
µhnh(x+)/(x+ − xζ). The solution to this is

xζ = x− + (x+ − x−)

(
1 +

µhnh(x+)

µene(x−)

)−1

(D1)

Letting x+ − x− ≈ L, invoking quasi-equilibrium across the double layers to get ne(x−) = ñee
∆φ− and nh(x+) =

ñhe
∆φ+ , and substituting into either of the above expressions for Fdev gives the result, Eq. (37). Since this result

holds both in the absence of recombination and in the limit of large recombination, we assume that it is a reasonable
approximation in between as well.

2. Transition bias V1

We define u ≡ φ′L − φ′0 =
∫ L

0
ne − nh dx and find an expansion of the potential drops to first order in u. We define

y ≡ 1

2

(
φ′2L − φ′20

)
=

∫ L

0

na − nc + ne − nh dφ (D2)

It can be shown that
∫ L

0
ne − nh dφ is O(u2) and is therefore neglected. From above y = u(φ′0 + u/2) = uφ̄′0 +O(u2),

where φ̄′0 is the value of φ′0 when u = 0.
Solving Eq. (A2) for ∆φdep and expanding gives

∆φdep = (1− 1/n̂)V − ln(r(n̂− 1))− uφ̄′0/rn̂
+O(u2 + e−(1−1/n̂)V+y/n̂)

(D3)

where r = 1−e−V/n̂. Now discarding the error term and approximating u ≈ (L/2)ñe∆φdep (linear carrier profile), this
equation is solved to yield uφ̄′0/rn̂ ≈W(Lñφ̄′0e

(1−1/n̂)V /2r2ñ(ñ−1)). The transition is then considered to occur when
the argument to this function is equal to 1 because it is near this point that ∆φdep begins to change its behavior. Using
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φ̄′0 =
√

2
√

(1− 1/n̂)V − ln(r(n̂− 1)) + n̂ ln(1− 1/n̂), the bias at which this occurs can be obtained as an expression
containing another W function; taking the asymptotic value W(x) ∼ ln(x) gives

V1 =
1

1− 1/n̂
ln

(
2r2n̂(n̂− 1)

Lñ

)
(D4)

In the saturation limit (V � n̂), r ∼ 1. In the diffuse limit, r ∼ V1/n̂. Rather than solving again for V1 in terms of
W, it is much more convenient to estimate r by taking V1 ≈ ln(1/Lñ).

The calculations for two-ion systems are done in exactly the same way, except that there is no r (since we neglect
the diffuse limit). The final result again follows from taking W ∼ ln.

3. Space-charge regime flux

The flux is dominated by the majority carrier. For one-ion systems this is assumed to be the one injected at
the depletion side; the flux is therefore Fdev ≈ µmajñmaje

∆φdep/L. Eq. (D3) with r = 1 is approximated using
W (x) ∼ lnx − ln lnx (the simpler approximation W (x) ∼ lnx cannot be used because the important terms would

cancel out) and the result substituted into the above approximation for Fdev; finally approximating φ̄′0 ≈
√

(1− 1/n̂)V
(Eq.(26)) yields Eq. (39). Again, the two-ion results follow from applying the same methods.

4. Transition bias V2

The expression for V2 is obtained by approximating ∆φ across the double layer where the majority charges are
injected as being fixed after reaching V1, so that any additional bias beyond V1 drops across the other double layer.
Let ∆φ1 be the majority double layer drop when V = V1 (calculated from Eqs. (25), (29), and (38)). Approximating
the carrier profiles as linear, we then solve for the bias V2 at which the integrals of the carriers are equal. This gives

V2 ≈ 2∆φ1 + ln

(√
µmaj

µmin

ñmaj

ñmin

)
(D5)

Eq. (40) then follows from substituting for ∆φ1.

5. Bipolar regime flux

Equating integrals of linear carrier profiles using Eq. (D1) gives

ne(x−) =

√
µh
µe
nh(x+) (D6)

From this relation and the equalities ne(x−) = ñee
∆φ− , nh(x+) = ñhe

∆φ+ , and ∆φ+ = V − ∆φ− (obtained by
ignoring the bulk field) follows

∆φ− =
V

2
+

1

2
ln

(√
µh
µe

ñh
ñe

)
(D7)

Substituting this into the flux expression and letting wB ≈ L gives Eq. (41). Note also that (D6) implies that

xζ ≈ L/(1 +
√
µh/µe), which is also valid in the high-injection regime.

6. Transition bias V3 and high-injection regime fluxes

V3 is defined as the minimum bias required to bring both the electronic carrier concentrations up to the equilibrium
ionic concentration; hence, V3 = ln(1/ñeñh).

On both sides of a two-ion system, and on the accumulation side of a one-ion system, there will exist neutral layers
in which nh = na and/or ne = nc, where the concentration profiles are approximately linear. We make use of a
simple approximation to calculate the electronic fluxes in these regions. For example, taking ne = nc and rearranging
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the flux equation for nc, we find that −n′e = φ′ne(1 − ne/n̂c). The left hand side is the electronic diffusion flux,
and the right hand side is nearly equal to the electronic drift flux in any region where ne � n̂c. Therefore in such
a region we have Fe ≈ −2n′e; in combination with assuming an approximately linear profile (an assumption well
supported by simulation data), this allows us to calculate the electronic flux without calculating the field by writing
Fe ≈ 2ne(xedge)/we where xedge is the edge of the linear (unsaturated) region and we is its width. In what follows,
we will assume that this linear region extends all the way to the edge of the double layer; simulations show that this
assumption is violated only for small values of n̂.

a. One-ion systems

We will treat mobile anions. The device is split into four regions: the two double layers and two neutral regions. In
the left-hand neutral region, the electrons are compensated by the immobile cations, so that ne = 1 and Fdev = Fe =
µeφ

′
e, where φ′e is the value of φ′ in that region. In the right-hand region, nh ≈ na and the profile is approximately

linear, so Fdev = −Fh ≈ 2µhnh(x+)/wh. We assume that all of the excess potential ∆V drops across the left-hand
region (see Fig. 11); hence ∆V = φ′ewe. Because all of the anions are in the right-hand neutral layer, nh(x+)wh/2 = L.
Finally, let we + wh ≈ L. Eliminating we, wh, nh(x+), and φ′e,

∆V =
Fdev

µe

(
L− 2

√
µhL

Fdev

)
(D8)

Eq. (43) follows from solving this equation for Fdev and identifying µ1 = µe, µ2 = µh.

b. Two-ion systems

In this case we assume that the excess bias ∆V is dropped across the junction region. The junction is assumed to
be symmetric, with only electrons on its left side and only holes on its right. Ignoring diffusion flux in the junction,
Poisson’s equation becomes φ′′ = Fdev/µeφ

′ on the left and φ′′ = Fdev/µhφ
′ on the right. Solving these equations

gives an expression for the junction potential,

∆V =

√
Fdev

3

(
1√
µe

+
1√
µh

)
w

3/2
J (D9)

where wJ is the width of the junction. Now applying ionic charge conservation, ne(x−)we/2 = nh(x+)wh/2 = L, and
combining these with the flux expressions Fdev = 2µene(x−)/we = 2µhnh(x+)/we along with the requirement that
we + wJ + wh = L gives an expression for the junction width,

wJ = L

(
1− 2

√
µe +

√
µh√

LFdev

)
(D10)

Setting wJ = 0 gives the flux at which the junction begins to form. Combining wJ with the above expression for ∆V
permits one to solve for Fdev. While this equation can be solved exactly for Fdev, the solution involves the root of a
cubic polynomial and is therefore too cumbersome to include here. Eq. (44) gives a Padé approximant of the solution
about ∆V = 0.
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