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We investigate the effects of quenched disorder, in the form of site and bond dilution, on the
physics of the S = 1/2 antiferromagnetic Heisenberg model on even-leg ladders. Site dilution
is found to prune rung singlets and thus create localized moments which interact via a random,
unfrustrated network of effective couplings, realizing a random-exchange Heisenberg model (REHM)
in one spatial dimension. This system exhibits a power-law diverging correlation length as the
temperature decreases. Contrary to previous claims, we observe that the scaling exponent is non-
universal, i.e., doping dependent. This finding can be explained by the discrete nature of the values
taken by the effective exchange couplings in the doped ladder. Bond dilution on even-leg ladders
leads to a more complex evolution with doping of correlations, which are weakly enhanced in 2-leg
ladders, and are even suppressed for low dilution in the case of 4-leg and 6-leg ladders. We clarify
the different aspects of correlation enhancement and suppression due to bond dilution by isolating
the contributions of rung-bond dilution and leg-bond dilution.

PACS numbers: 73.22.-f,73.20.Mf,36.40.Gk,36.40.-c,36.40.Vz

I. INTRODUCTION

Low-dimensional quantum Heisenberg antiferromag-
nets are known to exhibit non-trivial properties due to
quantum fluctuations. A most striking example comes
from spin ladders: interpolating between the chain geom-
etry and the square lattice geometry, they have provided
an interesting new playground to explore the physics
of low-dimensional strongly correlated electron systems1.
Specifically, it has been shown that AF Heisenberg spin-
1/2 ladders with an even number of legs are quantum
spin liquids with purely short-range spin correlations.
Their spin correlations decay exponentially due to a finite
singlet-triplet gap in the energy spectrum. In contrast,
Heisenberg ladders with an odd number of legs display
properties similar to those of single chains at low tem-
perature, namely gapless spin excitations, and power-law
spin correlations. This difference between even-leg and
odd-leg ladders was predicted by theory and confirmed
by experiments in a variety of systems1.

In this paper we focus on disordered spin ladders.
For the case of doping with static non-magnetic impu-
rities, one distinguishes between site and bond disor-
der. Site dilution occurs upon doping the magnetic ions
with non-magnetic ones (as for instance substitution of
Cu2+ with Zn2+). This leads to the formation of lo-
cal moments (LMs) close to the dopant site2–4. Effec-
tive residual interactions between the LMs lead to long-
range antiferromagnetic ordering5–9, experimentally de-
tected in systems such as Sr(Cu1−zZnz)O3 (Ref. 10) and
Bi(Cu1−zZnz)2PO6 (Ref. 11). Bond disorder occurs in-

stead when the dopant ions replace the ions which act
as bridges between the magnetic ions. For instance,
bond disorder can be introduced in IPA-CuCl3 by a par-
tial substitution of non-magnetic Br− for the likewise
non-magnetic Cl−, affecting the bond angles in the Cu-
halogen-halogen-Cu superexchange pathways12–14. The
reduced strength of magnetic interactions on the affected
bonds leads to Bose-glass behavior when a strong mag-
netic field is applied.

From the theory side, a number of studies have ad-
dressed the effects of site and bond disorder on Heisen-
berg ladders. Ref. 15 examined the correlation length of
randomly site-diluted spin-1/2 Heisenberg 2-leg ladders
at weak and intermediate interchain couplings, show-
ing an apparent divergence of the spin correlations at
low temperatures, due to the presence of the impurities.
A related divergence of the staggered susceptibility has
been reported in Ref. 16. This behavior has been re-
lated to that of the random-exchange Heisenberg model
(REHM)17,18, describing the effective random interac-
tions between LMs2,19. In a more recent study, three
of us have investigated bond-diluted 2-leg ladders20,21

and observed enhancement of spin correlations due to
bond dilution. However, a general understanding of the
mechanisms for enhancement of correlations in site- and
bond-diluted Heisenberg ladders is still lacking. It is also
unclear whether such an enhancement of spin correla-
tions generally exists for even-leg ladders with a number
of legs greater than two.

In this paper, we present a study of site- and bond-
diluted spin-1/2 AF Heisenberg ladders with n=2, 4 and
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6 legs. Making use of quantum Monte Carlo simulations,
we can address the correlation length of the system down
to extremely small temperatures at which the asymptotic
T → 0 behavior sets in. Our main findings can be sum-
marized as follows:

1. For site-diluted even-leg ladders, we observe a
strong enhancement of correlations upon doping up
to n = 6 legs. In the specific case of 2-leg ladders,
we find that the system realizes the physics of the
REHM with a discrete distribution of the effective
couplings, leading to a non-universal behavior at
low temperatures; hence the known predictions for
the universal regime of the REHM with a contin-
uous distribution of couplings are expected not to
apply to realistic models of doped spin ladders.

2. For bond-diluted ladders, we find that correlations
are suppressed by a low level of dilution, due to
dilution-induced dimerization. Hence the system
is first driven to a gapless phase with short-range
correlations. The correlation length becomes log-
arithmically divergent for vanishing temperatures
only beyond a critical dilution.

II. MODEL AND QUANTITIES OF INTEREST

We study the Heisenberg model on n-leg ladders

H = Jl

n∑
m=1

L∑
i=1

p
(l)
i,mSi,m · Si+1,m

+ Jr

n−1∑
m=1

L∑
i=1

p
(r)
i,mSi,m · Si,m+1 (1)

where Si,m is the quantum spin operator at site i =
1, ..., L along the m-th leg. The first term in the Hamil-
tonian describes interactions along the legs with coupling
Jl, whereas the second term represents the rung interac-

tion with coupling Jr. The random variables p
(l)
i,m, p

(r)
i,m

express the site or bond dilution: in the case of site dilu-

tion, p
(l)
i,m = εi,mεi+1,m and p

(r)
i,m = εi,mεi,m+1, where εi,m

takes value 1 if the site (i,m) is occupied (with prob-
ability 1 − z) or 0 if it is empty (with probability z).

In the case of bond dilution, p
(r)
i,m = p

(l)
i,m/2 take values

0 with probability z/3 if the bond is not occupied, and
take values 1 otherwise. The simulations are performed
using the Stochastic Series Expansion (SSE) quantum
Monte Carlo (QMC) method based on the directed loop
algorithm23. Periodic boundary conditions (PBC) along
the leg direction are used. To access the regime of very
low temperatures, at which the asymptotic low-T behav-
ior of the correlation length sets in, we have made use
a β-doubling scheme24, allowing us to efficiently access
inverse temperatures up to β = 4096.

The main objective of this paper is to study the corre-
lation length along the leg direction, which is calculated

via the disorder-averaged second-moment estimator:25:

ξ =
L

2π

√
[S(π, π)]av

[S(π + 2π/L, π)]av
− 1. (2)

Here S(q) is the time-averaged structure factor

S(q) =
1

Nβ

∑
ij

e−iq·(ri−rj)

∫ β

0

dτ 〈Szi (τ)Szj (0)〉, (3)

with N = n × L corresponding to the total number of
sites. [...]av denotes the disorder average, which is per-
formed over 300-600 disorder realizations.

III. CORRELATION LENGTH OF
SITE-DILUTED LADDERS

A. Effective Interactions among Localized
Moments

Antiferromagnetic even-leg ladders without doping dis-
play a rung-singlet ground state1 with a finite gap ∆ to
triplet excitations. In this state, the n spins on the same
rung preferentially form a singlet state, and therefore ef-
fectively decouple from the rest of the ladder. This leads
to exponentially decaying correlations in the direction of
the legs, characterized by a finite correlation length ξ0.

At low enough concentration of dopants, the main ef-
fect of site dilution on an even-leg ladder is that of turn-
ing the number of spins on a rung from even to odd: in
this situation, the state on the rung turns from a singlet
into a doublet, which corresponds to an effective S = 1/2
localized moment (LM). This S = 1/2 moment remains
exponentially localized (over a characteristic length ξ0)
close to the impurity site3,26, but its finite overlap with
other LMs leads to an effective interaction which generi-
cally decreases exponentially with the distance. In the
case of dominant rung interactions, Jr � Jl, the in-
teraction between LMs is appropriately described within
second-order perturbation theory (in Jl/Jr) as resulting
from the exchange of virtual massive triplets between two
LMs2. In the case of a 2-leg ladder, in which we can iden-
tify the location of a LM with a spin site next to a miss-
ing rung partner (dangling spin), the effective coupling
between LMs has the form of a SU(2)-invariant Heisen-
berg interaction, and at large separation between LMs,
|ri − rj | � 1, the coupling strength takes the form2

J
(eff)
ij ∼ (−1)i+j+1 J2

l

∆

exp(−|ri − rj |/ξ0)√
|ri − rj |/ξ0

, (4)

where the staggering factor takes value −1 if the two LMs
belong to the same sublattice and +1 otherwise.

Eq. (4) holds strictly speaking only in the case in
which Jl � ∆, but a similar exponential decay of the
effective LM coupling (without the square-root denomi-
nator) has been observed numerically in the case of much
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stronger leg interaction26, as e.g. for Jl = Jr, for which
∆ ≈ 0.53Jl. Moreover the above expression is numeri-
cally found to account for the decay of the effective cou-
plings already for moderate distances, |ri − rj | & ξ0.
Hence, towards an effective model of the site-diluted lad-
ders, we will assume in the following that the exponen-
tial decay of LM couplings with decay rate ξ0 remains
valid even when perturbation theory is no longer appli-
cable – which is the case of interest. In this paper, we
deliberately choose Jr ≤ Jl to have a sizable correla-
tion length ξ0, for reasons which will become clear in
the following. Our assumption then implies that non-
perturbative effects only affect the prefactor to the expo-
nential in Eq. (4). In addition, we will assume that the
exponential decay present in Eq. (4) sets in for distances
between LMs of the order of ξ0.

In the case of n-leg ladders with n > 2 a detailed
theory of effective LM couplings is not available to our
knowledge, but for widely spaced vacancies, the extended
structure of the localized doublet becomes irrelevant, and
for Jl � Jr a perturbation approach analogous to that
of 2-leg ladders should be applicable, leading to effec-
tive staggering couplings between LMs with exponential
dependence on the distance.

B. Statistical properties of the couplings for 2-leg
ladders

In the case of low doping, z � 1, the probability distri-
bution of having two nearest-neighboring LMs at a dis-
tance d along the leg direction in a 2-leg ladder is given
by

P (d) = 2z exp(−2zd) (5)

with a corresponding average 〈d〉 = 1/(2z). As found nu-
merically in Ref. 26, the effective coupling has the form
J (eff)(d) ≈ J0 exp(−d/ξ0) for d & ξ0. As an approxima-
tion, one may assume that the same exponential behavior
survives for d . ξ0. Then the probability distribution for
the strength of the couplings between nearest neighbor-
ing LMs reads

P
(
J (eff)

nn

)
=

∞∑
d=0

P (d) δ[J (eff)
nn − J0 exp(−d/ξ0)]. (6)

This result suggests the possibility of extracting analyt-

ically the probability distribution for J
(eff)
nn , as done in

Ref. 2. To this end, one may further take the continuum
approximation, namely, approximate the summation in
Eq. (6) by an integral:

P
(
J (eff)

nn

)
≈
∫
dl P (l) δ[J (eff)

nn − J0 exp(−l/ξ0)] .(7)

This allows then to write

P
(
J (eff)

nn

)
≈ 1− γ

2J0

(
J0

J
(eff)
nn

)γ
, (8)

FIG. 1: (color online). Probability distribution (P ) and cu-

mulative distribution (E) of the effective couplings J(eff) be-
tween nearest-neighbor localized moments in site-diluted 2-leg
ladders, with parameters z = 2%, ξ0 = 7.5 (upper panels),
and z = 2.5%, ξ0 = 15.3 (lower panels). The red dashed lines
show the probability distributions in the continuum approxi-
mation according to Eq. (8).

where γ = 1 − 2zξ0. Hence, within the continuum ap-
proximation the n.n. couplings obey a simple power-law
distribution.2 The average absolute value of the coupling
between neighboring LMs takes then the form2:

[|J (eff)
nn |]av =

1− γ
2− γ

J0 =
2zξ0

1 + 2zξ0
J0. (9)

However, a critical analysis of the above derivation
shows that the continuum approximation is problematic.
In fact, it requires that the distances d giving a signifi-
cant contribution to the sum in Eq. (6) be d� 1, which
is in contradiction with the fact that P (d) decreases
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exponentially with d; the characteristic decay length is
〈d〉 = (2z)−1, which for z ∼ 2% takes values ∼ 20.

Fig. 1 shows the distribution P (J
(eff)
nn ) determined nu-

merically according to Eq. (6), i.e., by sampling the dis-
crete distribution lengths P (d), for z = 2%, ξ0 = 7.5
(corresponding to Jr/Jl = 1/2, and giving γ = 0.7), and
z = 2.5%, ξ0 = 15.3 (corresponding to Jr/Jl = 1/4, and
giving γ = 0.235) – these parameter sets will be relevant
for our study of correlations in the following. We notice
that the distribution shown in Fig. 1 is only quantita-
tively correct when d & ξ0, namely for Jeff/J0 . 1/e,
while it is only an approximation otherwise.

It is clear that for d & ξ0, the distribution of n.n. cou-
plings obtained numerically deviates strongly from the
prediction of Eq. (8). Over most of its support, the dis-
tribution of n.n. couplings has a fundamentally discrete

structure, due to the fact that the largest values of J
(eff)
nn ,

which also take the largest probabilities, are associated
with short separations d among n.n. LMs. These prob-
abilities grow as a power law of the absolute value of
the coupling, opposed to what predicted by Eq. (8) for
γ > 0. Obviously a coarse graining on the δ-peaks of the
exact distribution would gradually reconstruct the shape
of Eq. (8), but given the finite separation between the δ-
peaks even in the thermodynamic limit, this coarse grain-

ing is not justified over a large range of J
(eff)
nn . In fact the

δ-peaks become dense only in the limit J
(eff)
nn → 0, which

corresponds to larger and larger separations among the
LMs, and hence to lesser and lesser probabilities. Only
in that limit the continuum approximation appears le-
gitimate (in fact numerically we recover the analytical

prediction for J
(eff)
nn . 10−4J0 due to the finite width of

our bins, J
(eff)
nn = 10−5J0).

In conclusion, for z & 1% and ξ0 ∼ 10, P (J
(eff)
nn ) has a

remarkable structure: it assigns the largest probability to

the range in which J
(eff)
nn is a discrete variable, prevent-

ing a straightforward approximation of the distribution
with a continuous function. This will have significant
consequences on the analysis of doped ladder systems in
relation with models of randomly coupled spins.

C. Correlations as a function of doping

In both cases of n = 2 and n > 2 the unfrustrated effec-
tive couplings between LMs can lead to the formation of a
gapless ground state with algebraically decaying correla-
tions between the sites, and hence an infinite correlation
length. When looking at a fixed finite temperature T the
correlation length is necessarily finite for one-dimensional
SU(2) invariant systems with short-range interactions,
but it is expected to increase because the average cou-
pling between LMs increases with z, as in Eq. (9), so that

the effective temperature T/[|J (eff)
nn |]av decreases.

Despite the increase of correlations due to disorder,
the range of correlations is fatally bounded by the fact
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FIG. 2: (color online). Correlation length ξ of site-diluted
ladders with L = 128 and Jl = Jr = J . Upper panel: com-
parison between 2-leg, 4-leg and 6-leg ladders at inverse tem-
perature βJ = 1024. Lower panel: correlation length of the
2-leg ladder at different temperatures.

that any finite amount of site dilution will break an in-
finite n-leg ladders into finite segments, of characteristic
length 〈l〉 ≈ z−n (corresponding to the inverse linear den-
sity of rungs which are fully removed by doping). When
considering doped ladders at finite temperatures no geo-
metric bound on the correlation length (neither coming
from finite-size effects nor from ladder fragmentation) is
present as long as the correlation length satisfies the con-
dition

ξ(T )� L� 〈l〉. (10)

It is clear that such a condition can only be satisfied when
the doping is sufficiently weak. Hence, for any fixed tem-
perature, upon increasing the doping concentration the
correlation length ξ(T ; z) will cross over from a growing
behavior at low doping z � 1 to a decreasing behavior
for z & 0.1, hence going through a maximum for a given
optimal doping value z∗ = z∗(Jr/Jl;n), which is quite
stable at sufficiently low temperatures. This is indeed
seen in Fig. 2(a), in which we observe38 that, for Jr = Jl,
z∗ ∼ 0.06 for n = 2, 4, and 6.

For any finite value of doping and at arbitrarily low
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z=2.0% (Jr=0.25, α=0.199, L=384)

z=2.6% (Jr=0.25, α=0.204, L=512)

z=2.0% (Jr=0.5, α=0.165, L=256)

z=3.9% (Jr=0.5, α=0.176, L=384)

z=6.4% (Jr=0.5, α=0.158, L=256)

FIG. 3: (color online). Temperature dependence of the cor-
relation length of site-diluted 2-leg ladders with Jl = 1, and
power-law fits at low temperature.

temperatures, the correlation length is upper bounded
by the average length of the ladder segments, 〈l〉. Yet,
as shown in Fig. 2(b), at low enough doping the upper
bound is reached extremely slowly in temperature - in
fact, for the 2-leg ladder at T = Jl/1024 and Jl = Jr, the
correlation length is still not saturated to its finite T = 0
value for z . 0.25. It is easy to understand that this

occurs because the average effective coupling [|J (eff)
nn |]av

decreases as z decreases, leading to exceedingly weak cor-
relations even at extremely low temperatures.

This means that for sufficiently low doping, the condi-
tion ξ(T ) � 〈l〉 is actually satisfied over all numerically
accessible low temperatures (and quite possibly also over
all experimentally accessible temperatures), so that the
segmented nature of the doped ladders become in fact
irrelevant. In the following we will focus our discussion
on this regime.

D. Doped 2-leg ladders and the random-exchange
Heisenberg model

As discussed in section III B, from the statistical point
of view the system of interacting LMs randomly dis-
tributed on the bipartite 2-leg ladder can be approxi-
mated by a system of S = 1/2 spins interacting with
randomly distributed couplings, following an intrinsically
discrete distribution. In general terms, a doped 2-leg
ladder represents a physical realization of the so-called
random-exchange Heisenberg model (REHM)18,27 , but
with a special structure of the coupling distribution.

Numerical real-space renormalization group
studies18,27 show that the REHM colorred for a
continuous distribution of couplings P (J̃) has two
regimes:

• Universal regime: if the distribution is not singu-
lar, or has a power-law singularity P (J̃) ∼ J−γ

with γ < γc (where 0.65 . γc . 0.75), the
low-temperature thermodynamics of the REHM is
dominated by a unique fixed point; the correlation
length diverges as T → 0 with a universal scaling
exponent, ξ ∼ T−2α with α = 0.22± 0.01. This re-
sult has been confirmed by quantum Monte Carlo28

for a non-singular distribution (square box, γ = 0).

• Non-universal regime: for a more strongly singular
distribution γ > γc the renormalization group flows
to a non-universal fixed point, which depends on
the initial coupling distribution. Studies on doped
coupled spin-Peierls chains using Real Space Renor-
malization Group and SSE QMC in this regime also
confirm that the exponent α depends on the doping
concentration29.

As discussed in Sec. III B, the distribution of couplings
between LMs in a doped 2-leg ladder is intrinsically dis-
crete, approximating a continuous distribution only for
vanishing couplings. It is therefore interesting to ask
whether the doped 2-leg ladder reproduces the known
physics of the REHM model with a continuous distri-
bution of couplings. If a continuous approximation to
the coupling distribution is in order, as in Eq. (8), the
system should exhibit a universal REHM behavior for
2zξ0 > 1 − γc, and a non-universal behavior for 2zξ0 <
1 − γc. In other words, ladders with sufficiently strong
doping z or sufficiently large correlation length ξ0 in the
undoped limit should exhibit universal scaling properties
at low temperature. To our knowledge the only numeri-
cal study of correlations in site-diluted ladders is Ref. 15,
which, making use of quantum Monte Carlo, investigates
ladders with Jr/Jl = 1/2 and dopings z = 0.01, 0.04 and
0.1. Given that ξ0 ≈ 7.5 in this case15, for z = 0.04
and 0.1 one obtains 1−2zξ0 = 0.4 and −0.5 respectively,
which appear to be both safely on the universal side of
the REHM with continuous couplings. Indeed a fit to
the low-temperature behavior of the correlation length
to the scaling law ξ = A(z) +B(z) T−2α(z) gives an esti-
mate of α = 0.2±0.025 (independent of z) which appears
consistent with the predictions of Refs. 18,27.

E. Low-temperature scaling of the correlation
length

We have performed QMC simulations to extensively
study the low-temperature behavior of the correlations
in site-diluted 2-leg ladders. Our QMC results, however,
do not support the conclusion in Ref. 15 about a uni-
versal REHM behavior of diluted 2-leg ladders. We in-
vestigate doped ladders at similar concentrations with
respect to those of Ref. 15, down to significantly lower
temperatures - Ref. 15 stops at T = Jl/500, while we de-
scend down to T = Jl/2048. A collection of our results
is shown in Fig. 3. In qualitative agreement with what
expected from the theory of the REHM model, we also
observe the clear onset of a low-temperature power law
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FIG. 4: (color online). Comparison of our data with those
by Ref. 15. Our data refer to ladders with L = 384, and
Jl = 2Jr = 1.

scaling of the type T−2α. Yet our central observation is
that this power-law scaling exhibits a non-universal, dop-
ing dependent exponent α = α(z). For all the parameter
sets we considered, a fit of the low-temperature correla-
tion length provides values of α which are systematically
below the one exhibited by the universal regime of the
REHM with continuous couplings.

The data shown in Fig. 3 refer to 2-leg ladders with
Jr/Jl = 1/4 and z = 2.0% and 2.6%, with corresponding
γ ≈ 0.39 and 0.235 respectively (here we use ξ0 = 15.3,
which we estimate independently with QMC); and 2-leg
ladders with Jr/Jl = 1/2 (as in Ref. 15) and z = 2.0%,
3.9%, and 6.4%, corresponding to γ ≈ 0.7, 0.415, and
0.04 respectively. Although all the values of γ fall be-
low the critical value γc, as shown in Fig. 3, in fact, all
the corresponding data sets for the correlation length dis-
play a non-universal power-law scaling. In particular, we
observe that data sets with close values of the parame-
ter γ (e.g. Jr/Jl = 1/4, z = 2.0% with γ ≈ 0.39, and
Jr/Jl = 1/2, z = 3.9%, with γ ≈ 0.415) show a clearly
different scaling. We also critically revisit the parame-
ter sets explored in Ref. 15. A comparison to our data,
as done in Fig. 4, shows that in the data of Ref. 15 the
significant scattering due to the statistical uncertainty
is masking the correct asymptotic scaling regime at low
temperature.

A comprehensive summary of our results on the low-
temperature scaling of the correlation length is provided
in Fig. 5, where we report the values of the α exponent
obtained for different doping values and Jr/Jl ratios. The
values of doping concentrations and ratios were chosen
such that the average distance between LMs 〈d〉 is at least
larger than ξ0. The LMs, therefore, are not overlapping
on average and can be described by an effective REHM
with couplings obeying Eq. (4). Furthermore, for all the
points shown in Fig. 5, γ < γc, we do not observe a
universal α value. Indeed, it is found that α depends not
only on the doping concentration but also on the ratio

0 0.01 0.02 0.03 0.04 0.05
z

0

0.2

0.4

0.6

J r/J
l

0.175

0.142

0.196 0.204

0.199

0.176

0.164

0.154

0.145

0.185

0.167

0.186

0.113

FIG. 5: (color online). Values of the α exponent extracted
from the low-temperature behavior of site-diluted 2-leg lad-
ders.

of couplings Jr/Jl. And an α exponent close to that of
the universal REHM regime is only observed in a narrow
region around Jr/Jl ∼ 1/4 and z ∼ 2%.

F. Discussion

The above results lead us to conclude that doped 2-leg
ladders do not realize in general the universal physics of
the REHM with a continuous coupling distribution. In
fact, the coupling distribution for the LMs in doped 2-leg
ladders has a fundamentally discrete structure, approx-
imating a continuous one only for vanishing couplings.
The weight assigned by the distribution to strong dis-
crete couplings is dominant over that of weak, quasi-
continuous couplings in the case of sizable doping z (sup-
pressing the probability of large separation between the
LMs) and of large correlation length ξ0 � 1 (increasing
the strength of the couplings between LMs, the distance
being fixed). Nonetheless, this is the regime in which the
parameter γ = 1− 2zξ0 is small, and in which one would
expect the universal REHM physics to be manifested in
the continuum approximation. On the other hand, the
quasi-continuous part of the distribution (corresponding
to very small couplings) acquires a bigger weight for small
z and ξ0, which determine a small average coupling ac-
cording to Eq. (9) and hence increase the probability of
the small values of the coupling. In this regime γ is closer
to 1, which leads to too strong a singularity in the proba-
bility distribution for the universal regime of the REHM
with continuous couplings to be manifested.

As a consequence, we generally observe a low-
temperature power-law scaling of the correlation length
with doping-dependent exponents. As far as the nu-
merical results are concerned, this scaling appears to be
the asymptotic one for T → 0, given that it sets in for
temperatures well below the average LM coupling. On
the other hand, according to a real-space renormaliza-
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tion group (RSRG) approach18, the system at a lower
temperature is increasingly sensitive to the part of the
distribution related to the weaker couplings; given that
this part is the one which best approximates a continuous
distribution, one could naturally expect that at very low
temperatures the physics of the REHM with continuous
couplings be reproduced by the doped 2-leg ladders. This
argument would then suggest that, when lowering the
temperature, the system will sooner or later attain the
universal regime of the REHM with continuous couplings
if γ < γc. Nonetheless one can argue that in a doped 2-leg
ladder the RSRG flow has to be necessarily stopped at a
finite length, corresponding roughly to the average seg-
ment length 〈l〉. In practice this imposes an upper bound
to the correlation length and a lower bound to the tem-
perature through the condition Eq. (10); these bounds
might prevent one from attaining the low-temperature
regime at which universal REHM physics would mani-
fest itself.

Finally, our study leaves one open question concerning
the role of discreteness of the initial coupling distribution
for the physics of the REHM. The numerical RG study
of Ref. 27 only addresses initial continuous distributions;
a systematic RG study of the flow starting from realis-
tic distributions stemming from the doped-ladder physics
would be highly desirable.

IV. BOND-DILUTED LADDERS

In the following, we consider the doping- and tem-
perature dependence of correlations in bond-diluted lad-
ders, which show a marked difference with respect to
site dilution. This is due to a fundamental geometric
aspect which distinguishes site and bond dilution: dilut-
ing a site leaves a single unpaired spin, giving rise to a
LM, while eliminating a bond leaves always two unpaired
spins, located on different sublattices. The corresponding
LMs are therefore interacting with an effective antiferro-
magnetic coupling, mediated by the the shortest path of
bonds connecting them. In the following, we will focus
for simplicity on the case Jl = Jr = J .

A. 2-leg ladders

1. Evolution of correlations with doping

Fig. 6 shows the evolution of the correlation length at a
fixed, low temperature T = J/1024. A striking difference
with respect to the case of site dilution, shown in Fig. 6, is
that the correlation length does not increase immediately
with doping: it remains essentially constant for n = 2,
while it even decreases for n > 2.

In the case of a 2-leg ladder, we can understand qual-
itatively the behavior of correlations by considering that
bond dilution has two fundamentally different effects
(sketched in Fig. 7(b)):

0 0.1 0.2 0.3 0.4 0.5
z

1

10

100

ξ

2-leg ladder
4-leg ladder
6-leg ladder

FIG. 6: (color online). Correlation length of bond-diluted
2-, 4-, and 6-leg ladders with L = 128, Jl = Jr = J , and
temperature T = J/1024

• if a rung bond is diluted, two LMs are liberated but
still interact antiferromagnetically, so that they can
screen each other to form a rung singlet at a lower
energy J (eff)

rung
(corresponding to the effective cou-

pling between LMs which are rung neighbors). This
screening is very effective at low dilution because in
that case the J (eff)

rung
interaction is largely dominant

over the interaction between two LMs belonging to
different rungs, due to the large spacing of two di-
luted rung bonds – this spacing is 3/z (given that
only one bond in three is a rung bond);

• if a leg bond is diluted, the rung-singlet state on the
two adjacent rungs is further reinforced because its
connectivity to the other rungs is lowered.

The dilution of rung bonds has therefore the effect of
lowering locally the gap over the ground state, whereas
the dilution of leg bonds has the effect of increasing it30.
The fact that there are twice as many leg bonds as rung
bonds suggests that the second effect dominates over the
first. Therefore the spin gap of the undoped ladder is lo-
cally preserved or even enhanced, leading to short-range
correlations even in presence of bond dilution. Nonethe-
less, standard consideration on rare-event physics lead
to conclude that even a very weak bond dilution leads
the system to a gapless, Griffiths-like phase. In fact, the
gap can close locally if rare regions appear in which only
rung bonds are diluted – the limiting case being that
of the formation of local strands made of two uncou-
pled S = 1/2 chains. These exponentially rare regions
lead to the closing of the spin gap in the thermodynamic
limit; yet global correlations remain short ranged, due
to the localized nature of the rare, locally gapless re-
gions. This Griffiths phase is reminiscent of what has
been observed by some of us in the Heisenberg model on
the inhomogeneously bond-diluted square lattice20,21. In
that case, the predominance of correlation-suppressing
dilution was guaranteed by the inhomogeneity of doping
probabilities (favoring the appearance of ladder-like or
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FIG. 7: (color online). Sketch of the bond dilution effects
on 2-leg ladders. a) pure ladder; b) ladder at low dilution:
enhancement of rung singlets by leg-bond dilution, and low-
energy singlets formed between LMs after rung-bond dilution;
c) ladder at stronger dilution: couplings between LMs belong-
ing to different diluted rungs.

0 0.1 0.2 0.3 0.4 0.5
z
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n=2: random dilution
n=4: random dilution
n=2: rung bond dilution
n=4: outer-rung bond dilution
n=2: geometric length
n=4: geometric length

0.227

0.219

FIG. 8: (color online). Correlation length for 2-leg and 4-
leg ladders with dilution of (center-)rung bonds. The average
length of ladders segments 〈l〉 is obtained upon homogeneous
dilution.

dimer-like structures).

For a sufficiently large bond dilution z > z∗ (0.07 .
z∗ . 0.09), the correlation length starts increasing with
increasing z. This implies necessarily that the liberated
LMs belonging to different rungs begin to correlate with
each other (Fig. 7(c), see also Refs. 21,22). Such corre-
lations appear because the spacing between diluted rung
bonds decreases, and hence the couplings between LMs
belonging to different rungs become of the same order
of J (eff)

rung
. We have isolated the effect of enhancement of

correlations through rung-bond dilution by considering

uniquely this form of dilution, namely by taking p
(r)
i,m = 0

with probability z, while p
(l)
i,m = 1 with probability 1.

The resulting correlations ξr(z) (r = rung) as a function
of z for 2- and 4-leg ladders are shown in Fig. 8, and they
are seen to increase quite fast with dilution (following the
approximate form ξr(z) ≈ ξ0 exp(az) for sufficiently low
dilution). Yet in the original system the correlations in-
duced by rung-bond dilution are upper-bounded by the
characteristic length of the ladder segments 〈l〉, which
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FIG. 9: (color online). (a) Correlation length of bond-diluted
2-leg ladders with L = 128 and Jl = Jr = J at various tem-
peratures. (b) Temperature dependence of the correlation
length of above system. The curves with z > 22% are omitted
due to ξ is limited by the geometric length. (c) and (d) Fitting
parameters of correlation length ξ ≈ A(z) + B(z)| log(T/J)|,
as a function of bond dilution.

we have estimated by generalizing an efficient algorithm
recently developed for homogeneous percolation31,32. It
is found that at finite z, 〈l〉 ≈ a/z2. It follows the
same asymptotic behavior as from the naive estimate
〈l〉 ∼ 1/z2, but with a renormalized factor a < 1. Hence
the enhancement of correlations due to rung-bond dilu-
tion competes with this geometrical restriction on corre-
lations for sufficiently strong doping. Quite remarkably,
we observe that the optimal doping for the enhancement
of correlations in the homogeneously doped 2-leg ladder
coincides with the value of dilution (z ≈ 22%) at which
the correlation length of the rung-only diluted ladder
equals the average length of ladder segments 〈l〉. There-
fore we can conclude that the non-monotonic behavior of
the correlation length at intermediate dilution values is
completely determined by the competition between the
correlation enhancement through rung-bond dilution and
the correlation suppression due to ladder fragmentation.

2. Evolution of correlations with temperature

As discussed in the previous subsection, for z = z∗ cor-
relations start to increase as a function of bond dilution.
Fig. 9(a) shows the doping dependence of the correlation
length of 2-leg ladders for higher temperatures than those
considered in Fig. 6: here we observe that the correlation
length does not appear to evolve significantly with tem-
perature for doping values z . z∗, whereas it becomes
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FIG. 10: (color online). (a) Temperature dependence of cor-
relation lengths for four cases of rung-bond and random dilu-
tion.

significantly dependent on temperature for z > z∗. More-
over, the low-temperature dependence of the correlation
length, see Fig. 9(b), indicates that in this regime the
correlation length grows logarithmically with decreasing
temperature as

ξ ≈ A(z) +B(z)| log(T/J)| . (11)

The dependence of the coefficients A(z) and B(z) on
bond dilution is shown in Fig. 9(c) and (d). While A(z)
decreases with increasing bond dilution, B(z) increases.
In particular B(z) appears to vanish for z . z∗, and it
seems to suggest that a phase transition occurs at finite
z = z∗ from a phase with correlations converging to a fi-
nite value at low T to a phase with correlations diverging
logarithmically with decreasing temperature. Obviously
the divergent behavior of correlation length only persists
up to lengths of the order 〈l〉, corresponding to the char-
acteristic length of ladder segments, but the exceedingly
slow growth of ξ with decreasing T keeps it safely be-
low 〈l〉 for all the temperatures and doping values we
explored.

To gain a deeper understanding on the above results,
we study the temperature dependence of rung-bond dilu-
tion and random dilution separately. We consider rung-
bond dilution with concentrations zr = z/3 such that
the fraction of diluted rung bonds is the same as for
the cases of random dilution that we have investigated.
This allows us to quantitatively ascertain the separate
effect of leg-bond and rung-bond dilution. In presence of
rung-bond dilution only, the correlation length is seen to
converge to a finite value as T → 0, even at relatively
high concentration. Two examples with concentration
zr = 6.25% and 7.3% are shown in Fig. 10 (data for
higher concentration, not shown here, exhibit a similar
behavior). This implies that the system with rung-bond
dilution only is gapless (because of the unbounded size of
rare regions with e.g. diluted adjacent rung bonds) and it

has a finite correlation length, namely it is in a Griffiths-
like phase. Adding leg-bond dilution (with concentra-
tions 12% and 14.6% respectively), we recover a ran-
domly bond-diluted ladder (with concentrations 18.75%
and 21.9% respectively). For large enough dilution the
correlation is found to grow logarithmically with decreas-
ing temperature, as in Eq. (11), which seems atypical for
a Griffiths-like phase. On the other hand, we observe
that, for dilution zr = z/3, the correlation length for the
rung-bond diluted ladder with concentration zr is an up-
per bound to that of the randomly diluted ladder with
concentration z, a fact which is somewhat intuitive, given
that rung-bond dilution is the main mechanism leading
to the enhancement of correlations. Therefore it is a pri-
ori unclear whether the logarithmic growth of the ran-
domly diluted ladder persists to even lower temperatures
than the ones explored here, because this would eventu-
ally lead the correlation length of the randomly diluted
ladder to exceed that of the rung-bond diluted one.

We can then conclude that the correlation length re-
sults are a priori consistent with two different scenarios
for the randomly diluted 2-leg ladders. In a first scenario
the system transitions from a Griffiths-like phase with a
finite correlations for z < z∗ to a new phase with logarith-
mically diverging correlations, which is reminiscent of the
behavior of a system controlled by an infinite-randomness
fixed point (IRFP) – see the discussion below. In a sec-
ond scenario the correlation length exhibits different tem-
perature dependences at intermediate temperatures for
increasing bond dilution. Yet the correlation length of
the randomly diluted ladders converges always to a fi-
nite value, because it is expected to be upper-bounded
by that of rung-bond diluted ladders, which is seen to
converge to a finite value. In this second scenario the
system is therefore in a Griffiths-like phase for all the
values of bond dilution we explored. In the following we
find that the analysis of the temperature dependence of
the uniform susceptibility helps clarifying which scenario
is the most appropriate.

3. Temperature dependence of the uniform susceptibility

Fig. 11(a) shows the uniform susceptibility of a 2-leg
ladder for various values of bond dilution. In the undoped
system, the susceptibility of 2-leg ladders vanishes expo-
nentially at low temperatures, in agreement with well-
known previous results, and showing the gapped nature
of the spectrum. In contrast, the susceptibility of the
doped system diverges following a Curie law for low tem-
peratures. Furthermore, Fig. 11(b) shows that the Curie
coefficient increases as a function of bond dilution con-
centration following a power law, C(z) ∼ z2.66. One
might expect that Curie paramagnetism comes trivially
from spins which have remained isolated after bond dilu-
tion. Yet the concentration of such spins would scale as
z3 with dilution, given that one needs to dilute at least
3 bonds to decouple one spin from the rest of the ladder.
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FIG. 11: (color online). (a) Low-temperature uniform suscep-
tibility of bond-diluted ladders with L = 256 and Jl = Jr = 1.
(b) The Curie coefficient increases as a power-law function of
the bond dilution concentration C(z) ∼ z2.66.

Therefore the paramagnetism observed in the system has
a collective nature. In fact, two contributions add to the
one of free spins:

• odd-numbered clusters, obtained after fragmenta-
tion of the ladder into two (or more) pieces, have a
doublet ground state, behaving as a collective spin
1/2. In our simulations on systems with an even to-
tal number of sites, three contiguous diluted bonds
lead to an isolated site plus an odd-numbered clus-
ter, so that the latter clusters have a probability
∼ z3. Alternatively odd-numbered clusters can be
obtained by cutting the ladder at two distinct lo-
cations into two odd-numbered extended clusters
(bigger than one single site). Yet one can easily see
that this would require at least 5 diluted bonds at
specific locations, giving rise to a probability ∼ z5,
and consequently to a very small contribution to
the uniform susceptibility. Therefore the contribu-
tion to collective paramagnetism cannot come from
such clusters.

• clusters with an even number of spins, but a non-
equal number of spins on A and B sublattices, can
also contribute to a diverging susceptibility. They
represent therefore a further candidate for collec-
tive paramagnetism.

To isolate the second contribution, we calculate the
uniform susceptibility coming from even-numbered spin
clusters only, χu,c. This quantity is shown in Fig. 12.
We find that even-numbered uniform susceptibility at low
temperatures can be equally well described by two fitting
laws: a logarithmically-corrected Curie behavior:

χu,c =
C

T | log T |β
, (12)

and a power-law corrected Curie behavior:

χu,c =
C ′

T 1−β′ , (13)
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FIG. 12: (color online). (a) Uniform susceptibility of even-
numbered spin clusters of randomly bond-diluted 2-leg lad-
ders. The solid lines are (a) logarithmic fits of the form

χu,c = C/(T | log T |β) and (b) power-law fits χu,c = C′T β
′−1.

In both cases we can conclude that the contribution to
the uniform susceptibility coming from even-numbered
clusters diverges more weakly than for a Curie law, and
therefore that our system exhibits a highly non-trivial
collective paramagnetism. The fitting coefficients C, β,
and C ′, β′ for both cases are shown in Fig. 13. We ob-
serve that all these fitting coefficients evolve smoothly
with z, apparently contradicting the picture of a possible
phase transition suggested by the behavior of the corre-
lation length. In particular the non-universal power-law
dependence of Eq. (13) is typical of Griffiths behavior,
as observed e.g. in anisotropically bond-diluted square
lattices21. Therefore the uniform susceptibility seems to
favor the scenario for which the system is in a Griffiths
phase for all values of the bond dilution we explored. For
completeness we should also mention a third, less likely
scenario, for which the correlation length is diverging log-
arithmically as T → 0 even for infinitesimal doping (but
the prefactor B(z) of the logarithmic divergence becomes
lower than our resolution). Therefore the system would
be controlled by an IRFP for all doping values explored
here; this scenario is somewhat consistent with the fact
that a logarithmically corrected Curie law is consistent
with the susceptibility at all doping values considered in
this section, and that it could be another sign of IRFP
behavior.

4. Comparison with random ladders

As sketched in Fig. 7, the rung LMs in a bond-diluted
ladder realize a ladder with weaker random couplings
which are at once rung, leg and diagonal ones but without
frustration. The rung couplings are randomized by the
variety of different local environments which mediate the
effective interaction between the rung LMs; while the leg
couplings and the diagonal couplings are obviously ran-
domized (in a correlated way) by the positional disorder
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FIG. 13: (color online). Fitting coefficients as a function
of bond dilution. Left panels are fitting coefficients of the
logarithmic function χu,c = C/(T | log T |β). Right panels are

fitting coefficients of the power-law function χu,c = C′T β
′−1.

of the diluted rung bonds.

For ladders with Jl = Jr we cannot easily rely on
perturbation theory to extract accurate expressions for
the effective couplings, and an explicit calculation of the
disorder statistics goes beyond the purpose of this pa-
per. In any instance it is clear that the rung couplings
obey a fundamentally different probability distribution
with respect to the leg and the diagonal couplings: the
rung couplings are always antiferromagnetic and weakly
randomized, while the leg and diagonal couplings always
take opposite signs and can be either ferromagnetic or
antiferromagnetic - they are hence strongly disordered.
To the best of our knowledge, such a peculiar model of a
random ladder has not been investigated before.

In a critical quantum spin system the relationship be-
tween energy scales (∼ ξ) and length scales (∼ T at finite
temperature) is governed by the so-called dynamical crit-
ical exponent z̃, ξ ∼ T−1/z̃. The logarithmic dependence
of the correlation length on temperature, Eq. (11), im-
plies that z̃ = ∞: as mentioned before, this behavior,
together with the logarithmically corrected Curie law in
the susceptibility, could be suggestive of the fact that
the bond-diluted ladder at sufficiently strong disorder is
governed by an IRFP, similarly to what happens to e.g.
random antiferromagnetic S = 1/2 chains33. Nonethe-
less, it is not the same IRFP as in random antiferromag-
netic chains, given that the correlation length and the
susceptibility diverge differently (as ∼ | log(T/J)|2 and
as (T | log T |2)−1 respectively) in the latter. Existing RG
studies of disordered ladder systems focus primarily on
the case of antiferromagnetic ladders, either with nearest

FIG. 14: (color online). Bond-dilution effects on 4-leg lad-
ders: (1) rung-singlet enhancement upon leg-bond dilution;
(2) center-rung dilution leading to the formation of two 2-
spin rung singlets; (3) outer-rung dilution with formation of
a low-energy singlets between a LMs and a 3-spin doublet.

neighbor couplings only or with frustrated ones34–37. The
occurrence of extended parameter regions with IRFP is
only observed in the case of frustrated ladders. Therefore
it is quite remarkable to observe an IRFP-like behavior
in our unfrustrated system for a large interval of doping
values. On the other hand, the absence of a documented
IRFP for unfrustrated random ladders suggest that the
logarithmic divergence observed in our system might not
be the true asymptotic behavior for T → 0. Nonethe-
less, a definite conclusion on such an asymptotic behavior
would require a precise determination of the distribution
of the effective couplings between LMs, which goes be-
yond the scopes of this paper.

B. 4-leg and 6-leg ladders

Fig. 6 shows that the dependence of the correlation
length on bond dilution in 4-leg and 6-leg ladders ex-
hibits a qualitatively different behavior compared to 2-leg
ladders. Indeed for 4-leg and 6-leg ladders ξ is initially
decreasing with increasing bond dilution. In the case
Jl = Jr = J the correlation length reaches a minimum
for z ≈ 6.2%, and then starts growing with doping, up
to a maximum attained for z ≈ 22%. In the following we
will analyze this phenomenon in details.

Similarly to what done for 2-leg ladders, we can dis-
tinguish among different effects of doping depending on
which bond is diluted; we will focus here on the case of
a 4-leg ladder (which is sketched in Fig. 14):

1. the dilution of a leg bond leads to the the enhance-
ment of the 4-spin rung singlet on the two adjacent
rungs;

2. the dilution of a center rung bond leads to the for-
mation of two 2-spin rung singlets on the intact
outer rungs;

3. the dilution of an outer rung bond separates an
outer LM from three rung spins, which tend to form
locally a spin-doublet. This doublet should have
then tendency to form again a low-energy singlet
with the LM through the effective antiferromag-
netic coupling which binds them.
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FIG. 15: (color online). Correlation length with selective
bond dilution. Bond dilution is distinguished as: (a) rung-
bond and leg-bond dilution in 2-leg ladders; (b) center-rung
bond, outer-rung bond and leg bond dilution in 4-leg ladders.
The dashed line is the average correlation length from above
selectively bond-diluted mechanisms

Hence we observe that bond dilution of type 1) and
2) have the tendency to enhance locally the spin gap of
the ladder, while dilution of type 3) has the tendency to
suppress it. The case of 6-leg ladders is analogous, with
the only difference that dilution of the central rung bond
leads to the formation of two rung doublets. Therefore
we will hereafter focus on the 4-leg case for simplicity.

We have disentangled the competing effects of dilution
on 4-leg ladders by considering only one at a time. First
of all we consider the effect of enhancement of correla-
tions due to outer rung-bond dilution only, whose results
are shown in Fig. 8. Analogously to what has been seen
for rung-bond dilution in the 2-leg ladders, outer-rung-
bond dilution in 4-leg ladders leads to a strong enhance-
ment of correlations (with a similar exponential scaling
ξor(z) ≈ ξ0 exp(a′z), or=outer rung). In homogeneously
diluted ladders this effect of enhancement is fundamen-
tally limited by the finiteness of ladder segments (due to
leg-bond dilution): indeed a numerical estimate of the
average length of ladder segments, 〈l〉, shows that 〈l〉
crosses the correlation length ξor for a value of z (≈ 23%)
which nicely corresponds to the optimal doping in the
homogeneously bond-diluted ladder. Hence, similarly to
2-leg ladders, we can conclude that the optimal doping
is completely dictated by the competing effect of outer-
rung-bond dilution and ladder fragmentation.

Finally, we study the effect of selective dilution on the
correlation length. In Fig. 15(a), we investigate the effect
of rung-bond and leg-bond dilution in 2-leg ladders. In
Fig. 15(b), we distinguish dilution of outer-rung bonds,
center-rung bonds, and leg bonds in 4-leg ladders. As an-
ticipated, latter forms of dilution in above cases lead to
a significant suppression of correlations, again with ap-
proximate exponential scaling, ξl,cr(z) ≈ ξ0 exp(−b′z) (l
= leg, cr = center rung). We observe that b′ ≈ a′ (b ≈ a
for 2-led ladder), so that the simultaneous suppression
and enhancement of correlations due to dilution of dif-

ferent types of bonds are in strong competition. The fact
that at low doping the suppression of correlation wins is
simply due to combinatorics: in 2-leg ladders (a), rung
bonds only hold a fraction fr = 1/3 while leg bonds
contain fl = 2/3 of all bonds; in 4-leg ladders (b), outer-
rung bonds only represent a fraction for = 2/7 of all
the bonds, whereas leg bonds and center-rung bonds are
respectively fl = 4/7 and fcr = 1/7. Hence correlation-
enhancing bond dilution has a global lower probability
than correlation-suppressing one. In the limit of very
low dilution (z � 1/ξ0) we can easily imagine to sep-
arate a ladder into correlated regions (of characteristic
length ξ0) which are statistically independent from each
other. Upon dilution, each correlated region will only be
affected by a single missing bond on average, with a prob-
ability fi for the i-th bond type (i = r, l in 2-leg ladders;
and i = or, l, cr in 4-leg ladders). Therefore the local
correlations will be enhanced or suppressed in the same
way as for the case of selective bond doping of type i.
For z � 1/ξ0 it is then tempting to write the correlation
length of the homogeneously diluted ladder as a spatial
average of different local correlation lengths. Assuming
that the ratio of structure factors entering in Eq. (2) can
be written as

[S(π, π)]av

[S(π + 2π/L, π)]av
≈
∑
i

fi
[S(π, π)]av,i

[S(π + 2π/L, π)]av,i
(14)

where [...]av,i denotes averaging over disorder realizations
with dilution of bond of i-th type only (and with dilution
concentration fiz), we obtain that

ξ(z) ≈

[∑
i

fi ξ
2
i (fiz)

]1/2

. (15)

This average correlation length is presented by the
dashed lines in Fig. 15. It clearly shows a quantitative
agreement with random bond dilution results at small
dilution.

V. CONCLUSIONS

In this paper we have discussed the effects of site
and bond dilution on the low-temperature correlations of
even-leg S = 1/2 ladders with antiferromagnetic Heisen-
berg interactions. Site dilution is found to prune rung
singlets and thus create localized moments which inter-
act through unfrustrated, distance dependent couplings.
The Hamiltonian describing the effective interaction be-
tween these moments is a random exchange Heisenberg
model (REHM), with a gapless spectrum and power-law
diverging correlations as temperature decreases to zero.
We find that the distribution of the effective couplings
has an intrinsically discrete structure, which prevents the
system from realizing the universal regime of the REHM
with continuous couplings. Further studies would hence
be desired to clarify the role of a discrete distribution of
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effective couplings in determining the fixed point which
governs the low temperature physics of this system.

Bond dilution, on the other hand, can either enhance
or suppress locally the spin gap in even-leg ladders, de-
pending on the location of the bond which is diluted.
As a result of these competing effects, weak bond dilu-
tion is not enhancing the correlations of pure ladders.
In fact, correlations can even be suppressed by disor-
der, especially in 4-leg and 6-leg ladders. The resulting
short-range correlated phase has a gapless, Griffiths na-
ture, due to the appearance of exponentially rare, but
locally gapless regions. Beyond a critical concentration,
the correlation-enhancing effect of bond dilution leads to
a phase in 2-leg ladders, with a logarithmic scaling of the
correlation length with decreasing temperature. This be-
havior may suggests that the low-temperature behavior
of the system is governed by an infinite randomness fixed
point over an extended range of parameters. Nonetheless,
based on the investigation of the uniform susceptibility
of the system, and by comparison with existing results
on disordered ladders, we argue that this might not be
the true asymptotic behavior for T → 0, and that the
system is more likely to remain in a Griffiths phase for
all values of bond dilution.

In order to connect our results to experiments on
site-diluted and bond-disordered ladders, a fundamen-
tal question to address is the role of finite inter-ladder
couplings, which are unavoidable in real materials. If
J ′ is their energy scale, such couplings drive the system
towards a three-dimensional magnetically ordered phase
below a temperature Tc, which can be estimated via a
mean-field approach as kBTc ≈ J ′ ξ(Tc; z), where ξ is
the correlation length of the uncoupled ladders. For a
gapless critical phase, as that induced by site dilution
(at any concentration) and by bond dilution (beyond a
critical concentration), ξ(T ; z) diverges for T → 0, so
that the system orders at finite temperature. On the
other hand, the divergence of ξ with decreasing temper-
ature appears to be relatively weak (power law with a
small power ∼ 0.3 − 0.4 for site dilution, or logarithmic
for bond dilution). Hence a difference of several orders of
magnitude between the intra-ladder and the interladder
couplings, which is common to various ladder materials,
allows the asymptotic low-temperature behavior of ξ for
the uncoupled doped ladders to be manifested at temper-
atures which lie well above the critical temperature Tc
for magnetic ordering. For bond-diluted ladders, more-
over, short-range correlations proper of the pure ladder
persist up to a critical doping, so that three-dimensional
ordering in coupled ladders should be absent at weak di-
lution. Increasing the bond dilution leads to an increase
of correlations at low temperature, so that the system is
expected to undergo a disorder-induced quantum phase
transition from a Griffiths phase to a magnetically or-
dered phase (at T = 0), but with exponentially small
transition temperatures, Tc ∼ exp(−J/J ′), which might
be hardly detectable in experiments. As a result the tem-
perature scaling of correlations investigated here for un-

coupled ladders is expected to be relevant to the behavior
of real ladder materials with non-magnetic doping.
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