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A one-dimensional Ising model in a transverse field can bepadpnto a system of spinless fermions with
p-wave superconductivity. In the weak-coupling BCS regiinexhibits a zero energy Majorana mode at each
end of the chain. Here, we consider a variation of the modkichvrepresents a superconductor with longer
ranged kinetic energy and pairing amplitudes, as is likelydcur in more realistic systems. It possesses a richer
zero temperature phase diagram and has several quantuetpdrasitions. From an exact solution of the model
these phases can be classified according to the number ofaviajaero modes of an open chain: 0, 1, or 2 at
each end. The model posseses a multicritical point whersgshaith 0, 1, and 2 Majorana end modes meet.
The number of Majorana modes at each end of the chain is @i the topological winding number of the
Anderson’s pseudospin vector that describes the BCS Hamah. The topological classification of the phases
requires a unitary time-reversal symmetry to be presenteMthis symmetry is broken, only the number of
Majorana end modes modulo 2 can be used to distinguish tweeph#n one of the regimes, the wave functions
of the two phase shifted Majorana zero modes decays expalteint space but in an oscillatory manner. The
wavelength of oscillation is identical to the asymptotioeected spin-spin correlation of tB€Y -model in a
transverse field to which our model is dual.

I. INTRODUCTION of areal space renormalization group transformafiand has

a richer phase diagram. The purpose of that study was to un-
gerstand how irrelevant operators can drive a system along a
critical line between two different zero temperature quamt
critical points. The flow of this crossover as the higher gger
states are integrated out conform to the Zamolodchikev's
@eorem%—o It is an explicit example of an exactly solved case
where a system that points to a given fixed point at higher
energies can asymptotically flow to a different fixed point at
lower energy scales. This flow was explicitly traced in terms
of a flow from higher temperature to lower temperature. The
lesson learnt there was that at higher temperatures a system
may be pointing to a different fixed point compared to its true
fate at zero temperature.

There has been much recent interest in Majorana zer
modest=3 Their relevance to topologically protected quan-
tum computation is intensely studied. Kité&guggested an
elegant model of a one-dimensionalvave superconducting
wire, which supports Majorana zero modes at the ends of th
chain.

Kitaev's model is the fermionized version of the famil-
iar one-dimensional transverse field Ising model (TF),
which is one of the simplest models of quantum critical-
ity. In the fermionic representation, the well-known quant
phase transition in the model can be understood as a ti@msiti
from the weak pairing BCS regime to the strong pairing BEC
regimel® The weak-pairing phase is topologically non-trivial ~ Here we reexamine the Ising model with a transverse field,
and in this phase the chain with open boundaries possessedv#h the added three spin interaction from the perspective
Majorana fermion zero enegy mode localized at each end. Rf Majorana zero modes. We find that the phase diagram
is equivalent to the ferromagnetic phase of the transveskk fi can be classified according to the number of Majorana zero
Ising chain. The strong-pairing phase is topologicallyiii modes. The fermionized version of this model corresponds to
and does not have any normalizable Majorana fermion zer@ P-wave superconductor in which the electrons have longer
enegy modes at the ends. It corresponds to the quantum disé@nged hoppings and longer ranged harmonics of the p-wave
dered phase of the transverse field Ising chain. Recenglieth 9ap function, enabling us to address the effect of such longe
have been attempts to realize Kitaev’'s model in one dimentanged interactions on the zero temperature phase diagram o
sional wire networké? In a realistic quantum wire, however, the gquantum Ising chain. We find several topological phase
the range of the hybridization of the electron wave fungtasm transitions in our model, and the phases can be classified by a
well as that of Cooper pairing will be of finite range and the topological invariant of the Anderson pseudospin vegtof
effect of such longer ranged interactions must be addressethe mean-field description of the superconducting statés Th
The goal of this paper is to study the effect of such longeftopological invariant is an intege?, and also specifies the
ranged interactions. We do so within the context of anothePumber of normalizable Majorana fermion zero energy modes
exactly solvable model, and find a rich phase diagram that rethat are localized at each end of a chain with open boundary
sults from such longer ranged correlations. conditions.

These longer ranged interactions were considered in a pre- We assess the conditions under which the topological or-
viously introduced generalization of the Ising model in ader of the zero temperature phase diagram remains intatt, an
transverse field by extending it to contain a three spinatter find that all phases are protected by a unitary version of-time
tion term® which is also exactly solved by a Jordan-Wigner reversal symmetry (appropriate for spinless fermionsjosg
transformatiort® This generalized model arises as a first stepas this time reversal symmetry is preserved, the phases de-



scribed in our work remain stable. In particular, we find thatis

even when there are 2 Majorana fermion zero modes localized N N1
ateachend, separated by a lattice spacing with wave functions,; _ oty i ot
orthogonal to each other. Once we allow breaking of time 2~ 9 1(1 2¢60) =M Z (cicimn Feieiy +hee)
reversal invariance the topological invariant collapseZ 4, N1
which implies at most one Majorana zero mode at each end of A Z (cT Cir1 + CirCit + hoc.)

an open chain. The results of the 1D superconductor also of- % 2 i—1%+1 T S Bl e

fers insights into TFIM. We find that the phase dominated by =2 ()

the three spin interaction has ground state degeneracy from

analyzing the Majorana zero modes. However, we also findn contrast to the spin model, the spinless fermion Hamil-
that there exists a class of local spin interaction that ean r tonian is actually a one-dimensionmakan fieldmodel for a
move this ground state degeneracy. Such impurities are timigiplet superconductor, where there are both nearest axtd ne
reversal breaking and it is not clear how they realize in gene nearest neighbor hopping, as well as condensates. The near-
circumstances. est neighbor hopping amplitudg is also the amplitude of

The dua#? (exchanging the site spins by the bond spins)the nearest neighb.or supert_:ondu_cting gap, and the next near
of the three-spin model that we study is amusingly the one€St neighbor hopping amplitude is equal to the next nearest
dimensional quantunXY-model in a transverse magnetic N€ighbor superconducting gap; in genexal7 Ao. In terms
field23 in an enlarged parameter space than studied previousl§f Jordan-Wigner fermions one can envision finding an actual
From a complex calculation of the asymptotic form of the One-dimensional system with such an extended Hamiltonian.
connectect-component of the instantaneous spin-spin corre-The solution of the corresponding spin Hamiltonian through
lation function it was discovered that there is an oscitiato Jordan-Wigner transformation is, however, exact and giesu
region within the ferromagnetic phase. We find that this phe@ll possible fluctuation effects andrist a mean field solution
nomenon of oscillation is intimately related to the ostitia Imposing periodic boundary condition, the Hamiltonian
of the Majorana zero modes, most remarkably the oscillatiol$an be immediately diagonalized by a Bogoliubov transfor-
wavelengths are identical, as is the exponential decayein thmation:

=1

vicinity of the quantum critical lines. ; 1

The plan of the paper is as follows: in Sec. Il we set the H=3 e <77’€77’c B 5) : ©)
stage by recapitulating the phase diagram of the model {o ori k
ent the reader. In Sec. Il Majorana zero modes and theiThe anticommuting fermion operatafg’s are suitable linear

properties are obtained from the solution of the Bogoliubov combinations in the momentum space of the original Jordan-
de Gennes (BdG) equation, while in Sec. IV we discuss th&Vigner fermions. The spectra of excitations are (latticacsp
efficacy of the Majorana representation by obtaining the soing will be set to unity throughout the paper)

lution of a three-term recursion relation instead of thd ful

numerical solution of the BdG Hamiltonian. In Sec. Vwe ., — iz\/l + A2 £ 02+ 20 (1 — A\p) cos k — 2\, cos 2k
discuss the topological aspects and Sec. VI is the congjudin (6)

section. There are three appendices giving some details. unless, otherwise stated, we shall get 1. Quantum phase
transitions of this model are given by the nonanalyticités
the ground state energy:

1
II. THEHAMILTONIAN AND THE PHASE DIAGRAM E0:—§ E Ek- (7)
k

The three spin extension of the TFIM, which was previ- These nonanalyticites are also defined by the critical lines
ously studied® has the Hamiltonian where the gaps collapse; see Fig. 1.
For the Ising model in a transverse field without three spin
. .. L interaction, the gaps collapse at the Brillouin zone boueda
H=- Z(g"i +Xofoi o7+ oior 1) (1) = 41 atthe self-dual poink; = 1 and\, = 0. When the
i three spin interaction is added, the gaps can collapgse-ad
as well ask = arccos(A1/2) for Ay = —1 and0 < \; <
Theo’s are the standard Pauli matrices. In this section we in2. But at the free fermion point, there are no zero energy
troduce the Hamiltonian and its phase diagram from a converexcitations except é = +r/2. When we move to the point
tional Jordan-Wigner analysis. The Hamiltonian after dord ¢ the spectrum evolves increasing the weight at 0 and the
Wigner transformation locations of the nodes are incommensurate with the lattice.
The incommensuration shifts as a functiomef The pointd
- t is a multicritical point and the spectra vanishes quada#yic
o; =1-2¢cci (2) at +x. As we shall discuss below, the spectra are no longer
oF = — H(l — 2c;cj)(ci + CZ) (3) relativistic at this point as a result of the confluence of two
i<i Dirac points, corresponding to a dynamical exponest 2.
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open boundary condition. The phase diagram itself can be de-
duced from the number of zero modes of the BdG equation.
In the next section we shall see that in the Majorana repre-
sentation, the zero modes can be obtained from a very simple
recursion relation. With reference to Hig. 1 we note thatethe
are regions oi» = 0, n = 1, andn = 2 zero modes, and
the lines separating them are quantum critical lines, excep
for the line separating = 0 andn = 2, which is a topolog-
ical transition. The thin line\? = —4\, corresponds to zero
entanglement entrog. In this respect, it is remarkable that
this thin line osculates the quantum critical line.

For s > 0,and\; > 1+ A, one of the zero modes decays

n=2 exponentially in the bulk, and the decay length diverges as
2L ‘ ‘ ‘ ‘ the quantum critical line is approached. The amplitude ef th

0 1 2 3 4 second zero mode also decays exponentially but it osallate
M ase’™ regardless of\; as it approaches the quantum critical

line, at which point it loses the compactness of its support,
signifying the loss of this zero mode. On the side< 1+ A4,

one zero mode is recovered and it decays exponentially in the
bulk, as in the region, > 1 + )\, as shown in Fid.]2.

FIG. 1. (Color online)The region. > 1 + \; is ordered in the
original spin representation and the boundary of it is dcaitine
where the gap dt = 0 collapses. The regioh: < 1 — A; is disor-
dered as well and the boundary corresponds a critical lirerevthe
gap atk = 7 collapses. The poink; = 0 and\; = 1 is a special
multicrtical point with an emergerit (1) symmetry, most transpar-
ently seen in the dual representation (see below). In the shral
representation, the region enclosed)Xfy= —4.\. is an oscillatory
ferromagnetically ordered phase separating from an oddghase 30 L
for A2 < 0, as determined by the spatial decay of the instantaneous 0 20 40 60 80 100
spin-spin correlation function. Note that duality exchesigrdered i i
and disordered phases. Here= 0, 1, 2 correspond to regions with
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n-Majorana zero modes at each end of an open chain.
S
1. MAJORANA ZERO MODES
[ [
In this section we explore the zero modes by the O.15T
Bogoliubov-de Gennes equations with open boundary condi-  0.157 U
tion. < 0.10f | £ 010
O 0.05t ] & 0.05¢ E
0.00 0.00

A. Unbroken timereversal invariance

0 20 40 60 80 10C

0 20 40 60 80 100

The situation is richer fony < 0. First of all there are

The equations, assuming open boundary condition, are
given by FIG. 2. (Color online)The two Majorana zero modes Xar= 0.05
R . and A2 = 1.5. The row number 1 showso: (i) andvo1 (i) cor-
( h A ) ( Un, > _E ( Un, > ®) responding to the the first Majorana zero mode. The second row
~A —} v, )] "\ 4, |’ corresponds to the second Majorana zero mode that is ortabgm
the first. The third row corresponds to the probability digttions
where the submatrices are (unless otherwise stated, we wilfo1 (¢) and P2 (4) for the two respective Majorana modes. The nu-
setg = 1) merical diagonalization was carried out for a latticeéf = 100
A sites with open boundary condition. For lattices largenth&0, one
hij = M (0541 + 6j.i—1) + A2(8ji42 + §5.i—2) — 28;;(9)  quickly looses numerical control becausel6f® difference in the
Aij MGt — 851) = Na(§yave — Gy0m0)  (10) order of magnitudes of the largest eigenvalue and the zedemo
Hered! = (u,(1),un(2),...u(N)) and from time reversal
symmetry of the Hamiltoniaw,, = @ andv,, = ¢;. The no zero modes untihs < —1 for A < 1 — A\;. In this
eigenvalue is labeled by and the arguments af and¢ are  region, there are two zero modes, both of which are oscilla-
lattice indices. tory with exponentially decaying envelope. But this time th
From the diagonaliztion of the BdG Hamiltonian, we canwavelengths of the modes depend on the paramgXers.,).
easily see that the Majorana zero-modes can occur only fddote that they are phase shifted by a lattice site; see[Fig. 3.
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When we cross the quantum critical life, = 1 — A\, anon- Xy will be purely imaginary, while the\; term will remain
oscillatory and exponentially decaying zero mode is oberv  untouched. This is easier to compare with the previous phase
diagram because the absolute magnitude of the next-nearest
neighbor condensate remains the same. We have verified that
our conclusions hold for arbitrayas well.

02 | 01l
_§.c1) \UAVAVAVA VAvAvf\Un\‘ R n Iy

b 04
E . . . e . . . A 1
0 20 40 60 80 100 0 20 40 60 80 100 O-ZM [
i i i 5 5 s M 1 2 7N
. . -0.2 -1
0.2f A of ! 04[\/ W
0.1t 3 E -0. -2
(\ Af\ﬂ : A

_ozlvuw i

Uox(i)
Vou(i)

Uo2(i)
o .
o

—
=

Vo2(i)

VVUM FIG. 4. (Color online)Splitting of: = 2 Majorana zero modes for

‘ the complex Hermitian BdG equation. Left; = 2.5. Right: Ao =

80 100 —2.0. The magnitude of, is the smallest eigenvalue. The slight
rounding in the proximity of the quantum critical point isedto the
finite size of the latticelN = 200. The quantum critical point for the
infinite system is ah; = 1.5 for the left panel and; = 3.0 for the
right panel. Then = 1 Majorana zero mode survives intact. Note
that at\; = 0 the chain splits into two independent chains and hence
there is a zero mode irrespective of the fact thapairing amplitude

is purely imaginary.
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FIG. 3. (Color online)The two Majorana zero modes foks =
—1.2 andX; = 1. The row number 1 depictso2 (i) and vo2(7)
corresponding to the the first Majorana zero mode. The seamnd
shows the second Majorana zero mode that is orthogonal firshe To unveil the hidden topology behind the TFIM with three
The third row corresponds to the probability distributidis (i) and  spin interaction, we introduce Majorana fermion operators
Py2 (1) for the two respective Majorana modes.

IV. MAJORANA HAMILTONIAN

a; = c;-f + ¢, (14)
bi = —i(c] — ¢;), (15)

7
satisfying anti-commutation relations, so that the Haonilan

B. Brokentimereversal invariance in Eq. @) becomes

We can ask what happens if we add a relative phase between N N-1 N-1
the two order parameters in the BAdG Hamiltonian, while keep-H = —i [= Y biai + A1 > bigig1 + X2 > bi1ais
ing the single particle Hamiltonian intact. Then, i=1 i=1 i=2

(16)
A A A The three-spin interaction corresponds to a next-nearest
( At —E) ( e ) =E, ( e ) ; (11)  neighbor coupling in addition to the Majorana fermion ana-
" " log of polyacetylene in the transverse ising model. Theediff
where the submatrices are ence here is that onsite-potentials do not occur with Majara
fermions: terms liké/a? or Vb? only add overall constants,
hij = M (001 +0j0-1) + X285 + 0j.i2) sincea? = b? = 1 We write down the Hamiltonian in the
_ 2513 (12) baSiSﬂJT = (al, bl, as, bQ, as, bg) and see that
Aij = €29 (6i 12 — it j) + M (61 — diy14) (13) 0 1 o
The solution of this modified BAG Hamiltonian shows that -1 0 A 0 ALl
the regions of the phase diagram which contaia 1 Majo- H=_Y1 0 -x 0 1 0 ... . (17)
rana zero mode remain robust while those containing 2 2 0 0 =1 0 X 0 X ...

Majorana zero modes are in general destroyed, meaning that

they are split; two examples are shown below in Hig. (4) for

6 = m/2. For an arbitrary value of, the real and the imagi- 16 erg modes are given by the recursion relation of the
nary parts ofA;; will receive contributions from both; and  ampjitudes,

A2 making it difficult to directly compare with the previous

phase diagram in Fi]l 1. For = = /2, the term containing — A+ MAip1 + XA 40 =0, (18)



where the eigenvector is chosen to be of the formand
(A1,0, As,0,---)T. We note that when, < 0, the above re- L2
cursion relation looks like the equation of motion of a dachpe Aj = (=A2)777sin b, (24)

harmonic oscillator with the time variable discretized. (.aTh where® — arcsin(\/v/—133). The amplitude could be
two linearly independent solutions can be expressed as: rewritten as

A = Cil + Cagl (19) (=Xo) 2 = e72/¢ (25)
whereq.. satisfy where¢ = 2a/ In(—)\;). Note that close to the quantum crit-
1= Ag+ Aog? (20) ical line [A2| ~ |[A; — 1]. We have reintroduced the lattice

spacinga here. An example of oscillatory Majorana modes

A EVAT+AN (21)  are shownin Fig[(3).

2X2 ’ When )\, becomes negative, an oscillatory phase, as deter-
mined from the spin-spin correlation function, was obtdine
{;om a dual transformation that exchanges sites and bonds of
he lattice. Then the Hamiltonian in Ed. (4) can be cast in
the standard notation of the quantufY’-model by factoring
out an overall scale. Thus, witti's as bond-centered Pauli

q+

and Cq, Cy are constants. However, when we restrict our-
selves to real and normalizable solutions, we may have onl
one, two, or zero solutions. Note the + 4\ > 0 is suffi-
cient for giving us real solution regardless@f to Cs ratio.
Therefore, we can obtain the phase boundaryfer4 X, > 0

just by examining whethey. | is larger than 1 or not. For the matrices,

caseA;, A2 > 0, we can recover the results found by Kopp 2 147

and Chakravarty. Fot — A\ < A2 < 1 4 A\, we have H = 11r Z { 5 pa(n)pr(n+1)

0 < g+ <1 < —q-, and therefore a single Majorana zero n (26)
mode at each end of the chain. Por > 1 + \{, we have 1—r

0 < —¢_ < 1and0 < ¢, < 1 and thus there are two Majo- T pa(n)ua(n +1) + hpss(n)) |

rana zero modes at each end of the chain. Lastly, we have no o
Majorana zero mode fox, < 1 —\;, asq,. and—gq_ are both the two parametrizations are related to each other by
greater than 1. We can extend this analysig}et 4\; > 0 o r—1
andXy < 0, Ay > 0. Forda < 1 —X; andXy > —1, A1 =1 .
we have|q.| > 1 and thus no Majorana zero mode, whereas tr
Ao >1— )1 givesus) < ¢ < 1 < —¢_ and thus thereis The critical line inXY-model, separating the quantum dis-
one Majorana zero mode at each end of the chain. ordered phase from the ferromagnetic phasg, s 1, which

By contrast, when we break the time reversal symmetry bycorrespondsta; + )\, = 1, separating the ordered phase from
having phase difference between the two pairing terms as ithe disordered phase. The model was previously studied only
Eg. (I3), we find that we can have only zero or one normalin the range) < r < 1 andh > 0. Since the ordered and the
izable Majorana zero mode at the end of the chain, as showdisordered phases are exchanged under duality, the disdrde
above from the explicit solution of the BdG equation. Ingtre  phase of the three-spin modelig + > < 1.
ingly, we find that we obtain the same result if we break time A complex calculatiof? of the instantaneous spin-spin cor-
reversal symmetry by adding an impurity term of the formrelation function showed that within the ferromagneticgha

2 (27)

1+

(see AppendikB) there is an oscillatory phase in the which the connecteceorr
. lation functionG(x) = (us(x)p(0)) — (us(x)){us(0)) in the
Himp = —ida;jajim limit x — oo, is
(AT T Tt (22)
= —iA(CjCjm = CjpmCi + CjCipm = CjtmC)), %e—w/f, disordered,
to the original Hamiltonian Eq14). Since the translationa G(r) = { Zze™*/¢, ordered, (28)
invariance is broken in this case, the number of zero Majo- L e 22/¢R(Be'k™), oscillatory ordered.

rana modes provide a convenient way to distinguish differen
phases. Herecos K = \;/+v/—4)\y and¢ is the spin-spin correlation
length. The oscillatory phase in tiéY -model is bounded by
r?2 + h? < 1, which corresponds td; < —\?/4 in the three-
A. Oscillatory Majorana zero modes with varying wavelength spin model. Note that the oscillation wavelength is ideaitic
to the wavelength of the Majorana fermions. Even the corre-
We find from the recursion relation, EG._{18), that there ardation length close to criticality is the scale of the expoine
no Majorana zero modes ferl < Ay < 0 andy < 1 — ;. decay of the Majorana fermions. This must imply that in the
However, there are two oscillatory zero modesfer< —1  Spectral decomposition, the Majorana zero modes asymptot-
and\? + 4\, < 0, with amplitudes at a lattice sitegiven by ically dominate, although we have not yet found a rigorous
the two solutions of the recursion relation: proof of it.
Since Majorana modes of zero energy are degenerate eigen-
Aj = (—/\2)‘3’/2 cos j0, (23)  states, a change of the number of Majorana zero modes can



only occur when the energy gap collapses, i.e. at a quamnodel, the relative phase is identically zero). Howeveremwh
tum phase transition. Reexamining the behavior of Majoranéime-reversal symmetry is broken, the relative phase betwe
zero mode in the full parameter space, there are three diyidi these can be an arbitrary complex number. If this happens,
lines based on their numbek; = 1+ A1, Ao =1 — Ay and the Anderson pseudospin vector will hateeecomponents,
X2 = —1; see Fid L. These lines are identified with the criticaland the analysis below is invalidated. In this section, wadlsh
lines signifying phase transition, as can be seen in theggner restrict our attention to the case where the relative phase i
spectrum in the previous result. So in this case, the numberero. The topological invariant that characterizes thespha
of Majorana zero modes serve as an “order parameter” for theansitions will be defined in terms of the unit vector
guantum phase transition. -
We_ can then _distinguish pha_ses and Ioca_te quantum phase cZ(k) _ Ci(k) = cos Oy + sin By 2. (32)
transitions by simply transforming the Hamiltonian in tarm |d(k)|
of Majorana operators and finding the number of allowed Ma- _ o N
jorana zero-modes at each end of the chain, which is a topdi€re, the momentum states with periodic boundary condition
logically protected quantity. This provides us a profoyndl formaring7™, and the unit vectod(k), lives on a unit circle
simple way to study quantum phase transitions. S'in the yz—plane. Therefore, the anglék) is a mapping
O(k) : S' — T and the topological invariant we seek is
simply the fundamental group of this mapping, which is just
B. Unbroken unitary timereversal symmetry the integewinding number

Some insight into the phase diagram can be obtained from W = ?{ A0y (33)
the perspective of the weak to strong pairing topologicakeh 2m

transitions in this model. Starting from the spinless Fermi \ynere the integral is done around the one dimensional Bril-
Hamiltonian in Eq.[(#), we get upon Fourier transformation oin zone. This quantity characterizes the number of times

H— Z (2 — 2\ cos k — 2X; cos 2k) clcx the veqtord(k)_ rotates in theyz-plane around the one-
dimensional Brillouin zone. It can only be an integer and
(29)  therefore cannot vary with smooth deformations of the Hamil
+> (Ml sin ke, +idgsin2kefc!, + h-C-) ; tonian, so long as the quasiparticle gap remains finite. The
k winding number changes discontinuously only when the en-
which describes a superconductor with a pairing potertatit ergy gap vanishes, i.e. at a topological phase transitiamreM
consists of a nearest neighbor and a second nearest neighiger, the change in the number of normalizable Majorana
p-wave pairing. The BdG Hamiltonian which governs the dy-modes at each end of the chain across a transition is given
namics of the BCS quasiparticles at each momeritinas the by the change in the winding numbi&r®. We now apply this

k

form framework to characterize several critical points in e\
_ : plane. In Fig[b we show the results in the vicinity of theierit
er —pu iA(k) , S . .
Hpac (k) = CiAGK) p— eh (30)  calpointat\; = 1andX, = 0. At this critical point, the chain
. consists only of nearest neighbor hopping and pairing. &her
wheree, = —2Ajcosk — 2Ap cos 2k, A(k) = Aisink +  fore, the kinetic energy has its minimumiat= 0, and the gap
Azsin2k, andp = —2. In this representation of the model, function also vanishes at this point. For = 1~ and\, = 0,

the various phase boundaries described in previous ssctiofhe chemical potential occurs below the band bottom. In this
correspond to Lifshitz transitions, across which the numbejimit, the winding number ofi(k) is zero, since the configura-

of Fermi points change. However, as we shall se#,all o, js topologically equivalent to one whefigk) = /2 for
Lifshitz transitions are topological phase transitioniBo de- gy k. and this state clearly hd® = 0. On the other side of
termine precisely whether a Lifshitz transition is a togtal e transition\; = 1+ and\, = 0, the chemical potential
phase transition, we must define an integer-valued topabgi crosses the band bottom, and the winding number changes to
invariant that changes only across a topological phassitran y;- — 1 At the critical point itself, the Anderson pseudospin
tion. Itis convenient to define the invariant using the ARder nit-vector is not defined at the poiht= 0, where the gap

son pseudospin vectr closure occurs. The change Wi is identical to the change
(k) = Ak)§ + (e — p) 2. @31 N the number of normalizable Majorana fermion zero modes
B across this transition.
In terms of this vectotHguc(k) = d(k) - 7, whereT are Next, we use similar reasoning to study the transition at the

Pauli matrices which act in the Nambu (i.e. particle-hok) b critical point\ = 1 and\; = 0 across which thehange

sis of Hpqq. Itis important to highlight that the pseudospin in the number of normalizable Majorana modes at each end is
is defined only in theyz plane in this problem. This is a 2. Here, the chain consists only of second-neighbor hopping
consequence of time-reversal symmetry (applied to sminlesand pairing. Note that there are now two extremal points of
Fermions, time-reversal is simply the operation of complex the bandstructure: one &t= 0, the other att = =. The
conjugation). Time-reversal symmetry ensures thatréhe  winding number jumps from O to 2 across this transition, and
ative phase between the nearest neighbor and second neiglor A2 > 1 andA; = 0, we see 2 normalizable Majorana zero
bor pairing amplitudes must be real (in the context of tha spi energy modes at each end of the chain.



2 0 1

ty vttt

FIG. 7. (Color online)Topological phase transition in theinity
. = - C T o

FIG. 5. (Color online)Topological phase transition acrggspoint ~ Of the pointAr = 1.5, A2 = —1. (@ A2 = —17, A1 = 1.5; (b)
A =1, =0. (@M = 17, s = 0. The quantities plotted are Ao = —1_ 7)\_1 = 1.5._In (@), the pseudos_,pln dpes_ not wn_nd a_long
e1. (solid black line) (dashed black line)A (k) (dashed blue line), the 1d Brillouin zone, i.eWW = 0, whereas in (b) it winds twice, i.e.
and quasiparticle energy (solid red line) as a function offr@ietum W=2.
in the one dimensional Brillouin zone. (b) The same quatitire
plotted forA; = 17, A2 = 0. The associated Anderson pseudospin

vectord(k) is drawn schematically below each plot. It is clear that near the line\, = —1. An illustrative example is presented

in (a) the pseudospin does not wind along the 1d Brillouirezo®.  in Fig. [4. Here, the critical poink; = 1.5 and)\y = —1 is

W = 0, whereas in (b) it winds once, i.&/ = 1. studied. In Fig[l7a, the properties of the system are shown at
A1 = 1.5 and)\; = —17F, where no normalizable Majorana

zero mode occurs at the boundary. From the fact that Fermi
points occur in this system, it is clear that the system ifién t
BCS regime. However, it is apparent from the form of the
Anderson pseudospin that the winding number is identically
zero. Thus, while this state is a BCS state, it is topologjcal
equivalent to a BEC state which also has zero winding num-
ber. Thus, acrossovercan connect this state to a BEC state.
However, whem\; = 1.5 and\; = —17, i.e. just below the
critical point, we know from the analysis of previous seatio
that there are 2 normalizable Majorana fermion zero modes at
each edge of the chain. This is also consistent with the wind-
ing number of the Anderson pseudospin, whichiis = 2
in this regime. We stress therefore, that a topological @has
transition between 2 BCS states can occur. However so long
as the bandstructure possesses inversion symmetryaiviell
that such topological BCS-BCS transitions can only change
FIG. 6. (Color online)Topological phase transition in theinity of ~ the topological invariant by=2. In a similar way, the critical
the point\; =0, o =1. (@ =1, A =0; (D) A2 =17, )\ = line in Fig. (1) from b to d represents a topological trasiti
0. Itis clear that in (a), the pseudospin does not wind alomg th across which the winding number changes by 2. Along this
1d Brillouin zone, i.e.W = 0, whereas in (b) it winds twice, i.e. line, the gap vanishes at an incommensurate set of points in
W =2 momentum space. In (c), the poikf = 1 andX; = —1is
considered. Here again, there are two band minima. How-
ever, they occur at incommensurate mometite,, symmet-
Interestingly, our model hosts both BEC-B@@&nsitions  ric about the origin. Therefore this critical point marksant
and BEC-BCScrossovers Only the former are topological sition from 0 to 2 Majorana zero modes at each end of the
transitions: these require that (1) an extremum of the bandhain. This is the point (c) in Figll1). As we approach the
crosses the chemical potential, and (2) the pairing patenti special multicritical point d in Fig[{1)X; = 2, = —1),
vanishes at the same momentum. If an extremum of the barttiese two incommensurate points move towards the origin.
crosses the chemical potential at a point where the gap dod$hey meet att = 0, which is now a locamaximumof the
notvanish, the winding number witlotchange, since the total bandstructure. The 2 momentak, meet atk = 0 at the
energy gap does not vanish. This is an example of a BCS-BE@ulticritical point (\; = 2, A2 = —1). In this way, all the
crossoverand not @ransition This type of crossover is seen topological phase transitions that occur in the model can be




C. Brokentimereversal symmetry

When the phase difference between the nearest neighbor
and the second neighbor pairing amplitudes is non-zero, the
BdG Hamiltonian takes the form

H(k) = ( &~k Fif ) : (34)

—ay, — Bk —&k

where ap = Agsinfsin2k and 8, = Aisink +
Ao cosfsin2k. The particle-hole symmetry of the BdG
Hamiltonian is

0'1H(/€)0’1 = —H(—/{)* (35)

Thek = 0, -7 are special because they map onto themselves.

FIG. 8. (Color online)Topological phase transition alohg tine  Then from the equations
Ao = —1. (a) A = 1.6, Ao = —1. (b) Al = 1.8, Ao = —1. (C)
A1 = 2.0,x2 = —1. (d) Ay = 2.2, .2 = —1. The associated H(k=0)=(1-M\ — A2)os, (36)
Anderson pseudospin vector is not shown since it is not défate H(k; = 7r) = (1 + A — /\2)03, (37)
points where the quasiparticle energy gap vanishes. Howtwe
system in (d) is fully gapped and h&& = 1, which is consistent it follows that the topological invariant iﬂk:o,n sgn (&)
with the analysis of previous sections. Whenéy, = (1 — Ay — Ag) andé, = (1 + A\ — ,\2) have
opposite signs, we get = 1, otherwisen = 0. As to the
physical significance of = 0, +, it is similar to the case of
topological insulato® where these points are termed “time
reversal invariant” points. In a superconductoand + states
are paired, so the = 0, &7 points are again special because

Lastly, we study the nature of the special multi-criticaigo €y map ontoYthems_eres. This elegant topological argamen
which occurs atX; = 2, \» = —1). As this multicritical point ~ due to R. Rog* confirms the results in SeC. 11B; see also

is approached, the two incommensurate momenta which od3€fs: (14 and 28.
cur around on either sides éf= 0, where the gap vanishes,

approach each other at= 0. At the multicritical point, the

momenta meet d = 0 and annihilate each other, as shown

in Fig.[8. Note that in Figl18 (a-c), the Anderson pseudospin

is not defined at points where the gap vanishes. Therefare, th In this paper we have studied an exactly solvable spin
winding number itself is not defined (this is consistent with Hamiltonian that is TFIM with an added three spin interac-
the fact that this line represents a topological phase itranstion. While such a spin interaction may appear to be artlficia
tion). However, for\; > 2, X\, = —1, the system is gapped to the reader, such a term is generated in real-space rerorma
everywhere, has a winding numb@éf = 1, and possess one ization group treatments of TFINP. Therefore, it is a physi-

normalizable Majorana fermion zero mode at each end of théally plausible coupling in a more realistic Hamiltoniardan
chain. corresponds to longer ranged pairing and hybridizatiogrint

actions among the fermions related to the spins via a Jordan-

To conclude, in this section, we have described a complewigner transformation. By analyzing the fermionized vensi
mentary way in which the phase transitions in this model carof this spin Hamiltonian we have identified the quantum phase
be understood. Specifically, we have introduced the topolog transitions in this system and to classify them accordirth¢o
cal invariant corresponding to the winding number of the An-number of Majorana zero modes localized at each end. This
derson pseudospin vector around the Brillouin zone. Each afiumber in turn is related to the winding number of the Ander-
the phase boundaries of the spin model studied in this pason Pseudospin unit vector along the one dimensional Bril-
per corresponds to regions where the winding number is illouin zone, so long as time-reversal symmetry for the spile
defined, and across each critical point, the winding numbefermions is preserved. We have noted that when there are an
changes by an integer. The number of normalizable Majoranaven number of Majorana fermion modes at each end, there
fermion zero energy modes localized to each end of the chaican be a crossover from a regime where the Majorana fermion
at a point in the\; Ao-plane is exactly equal to the winding wave-function decays in an oscillatory fashion (with an@xp
number at that point. We have also emphasized the point thaential envelope) to a regime where these modes decay expo-
a crossover can occur between a BEC and BCS system praentially without oscillation. Interestingly, at the csawer,
vided that both have the same winding numbér £ 0), and  the entanglement entropy vanishes identically. We stiess t
we have also demonstrated that there can be topologicat phathis crossover does not occur when there are an odd number
transitions from one type of BCS state to another. of Majorana fermions at each end. Whether the vanishing

understood.

V. CONCLUSIONS
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of the entanglement entropy is a necessary condition fer thihas been shown, however, that including fluctuation effects

crossover remains to be understood. The degree to which sudo not change the basic picture in a one-dimensional n¥ddel.

a crossover remains generic, or is ascribed to the intddyabi Whether such a conclusion holds in higher dimensions, where

of the spin chain is unclear. Finally, an interesting pasisib  Majorana zero modes are nucleated in the vortex cores of a

is that such crossovers may occur in higher dimensions im spip,, + ip, superconductors, remains to be seen. We leave this

triplet superconductors in the presence of vortices, ahdrot problem for future research.

topological superconductors involving non-centrosynrinet  An interesting question is whether or not the topologi-

systems. We shall relegate these studies to future work..  cal phases described here are perturbatively stable agains
For unitary time reversal invariance, the topological argu weak interactions. We believe that they are, because they

ment involving Anderson’s pseudospin vector leads to wind-are gapped. In principle, for stronger interactions, the un

ing numberZ. One might wonder if higher windings beyond tary time-reversal symmetry that protects the= 2 phase

n = 0,1, 2 are possible as well. In principle, it is. To check, can break spontaneously and destabilize it. The effect of

we added an even longer ranged teffy = Asclciyg +  Stronger interactions in a specific model has been considere

Asclel 5 + h.c. Now, in addition ton = 0,1,2, we also get " Ref.[30.
winding numbem = 3 in appropriate regimes of the parame-

ter space from explicit calculations of the BAG equatiois It

quite likely that these higher order windings are energéic

punished. The situation is very similar to tB&Y"-model in ) ) )
two dimensions for which higher order vorticity is suppess ~_ Yuezhen Niu thanks UCLA physics department for its hos-
by the chemical potential. Clearly phases with= Z Ma- pitality. S. C. and Y. N. were supported by US NSF under the

jorana zero modes are allowed by longer ranged HamiltoniSrant DMR-1004520. S.B.C was supported by the DOE un-
ans. We find this phenomena intriguing, which deserves furder contract DE-AC02-76SF00515. I. M. was funded by funds

ther attention. However, once the protection due to unitaryfom the David S. Saxon Presidential Chair at UCLA. S.R. is
time reversal invariance is removed the topological ireari SUPPOrted by startup funds at Stanford University. We thank

end of an open chain. taev, Roman Lutchyn, Chetan Nayak, Rahul Roy, Kirill Shten-

gel and Matthias Troyer for comments. This work was partly
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Appendix A: Broken timereversal invariance

ACKNOWLEDGMENTS

We have previously emphasized that while the solution o
the spin model is exact, the fermonized version is a mead-fiel
description of gp-wave superconductor whose exact solution
requires treatment of fluctuation effects. In a recent péper

When there is a relative phasé between the nearest neighbor and the next-nearest neighibioig amplitudes the Majorana
Hamiltonian is

N N—-1 A N—-1
H = —i{— Z bia; + M1 Z biaj+1 + ?2 Z [(1 —+ cos 9)bi_1ai+1
1=1 1=1 =2
—(1 — COS 9)ai_1bi+1 + sin 6 Ai—1Qi41 — bi—lbi+1)]}- (Al)

Thus, we cannot simply seh, to be complex in Eq.[[18). The Hamiltonian in the Majoranaibas’ =
(a1,b1,a2,b2,a3,b3,---)is

0 1 0 0 %sin@ —%(1—@039) ......

-1 0 A1 0 )\—22(14-(3089) —% sinf @ .- .-

0 =X\ O 1 0 0O e ...

i 0 0 -1 0 A1 0o e ...
== (A2)

2 0 -\ 0 1

0 0 -1 0 e ...

To find the zero mode eigenvectors, we can try a solution ofdhe: |V) = (A;, By, As, Bo, A3, Bs,---)T. However, the
recursion relations turn out to be too complex to solve dially. Thus, we resorted to numerical diagonalizatiothaf BAG
Hamiltonian in the main text.

Appendix B: Majorana zero modesin the presence of impurity for some special cases), while the regime with one Majorana

In general, we find that wheH of Eq. (4) results in two
Majorana zero modey;,,, in Eq. (22) destroys them (except



zero mode remains intact.
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can obtain is the energy difference between the occupied and

Consider the general definition of the Majorana zero mode/acant zero energy state.

I' = > (A;a;+ B;b;), which is determined by the commutator

0 :[HO + Himpvr]

Therefore, an impurity term can annihilate the two Majo-
rana zero modes if the mode expansion of this impurity term
gives rise to dependence on the occupancy of the zero energy
state. We know that, in absence of any impurity, the Hamilto-

=2i 3 (A = M A = DaAip2)bi nian in Eq. [(#) gives us two Majorana zero modes riearl

—2iBia; — 2i(By — M1 B1)as (B1) can be written down as the linear combination of anf:
—2Z Z(Bi+2 — AlB»L'Jrl — AQBi)ai+2 Fn _ Z Crilis (Cl)
+2i)\(Aj+maj - Ajaj+m), A

which requires, in addition to the original recursion folenu ~ Wherén = 1,2 ande; € R. Then, the annihilation operator
of the zero energy state can be written as
A = MAip1 — X A2 =0, (B2)
B; —MBi_1 —ABi_5=0,(i > j,i#j+m), (B3) fo=T1+iT2)/2="Y (c1; +ica)a; /2. (C2)
new boundary conditions fdB;’s: .
' What follows from this is that when we do the mode expan-

B; =0 for i< j, (B4)  sion on Majorana fermions on each site, omji receive con-
B, = :\Aj+m (B5) tribution from the zero energy state whereasad do not:
Bjim —MBjim-1 — XoBjim_a=—MA;. (B6) >
(B7) a; =(Cio fo + C?ofg) + Z Cim fm + Em L),
m=1

(note that theA; recursion relation is not affected by;’s). =, -
Because of this change in the boundary conditions, we can no bi = (Efm + Emfl). (C3)
longer setB; = 0 for all i. Rather, fori > j + m, the general m=1

solution ford; andB; are of the form Any additional fermionic bilinear terms to the Hamiltonian

A; =Ciq'. +C_q", i
i =Cyqly q terms contairy, fo.

B; Zcﬁ(l/%)i +C" (1/q-), (B8) We make a further restriction that we demand the fermionic
5 bilinear to be local. The criterion for locality here is thét
wherel — A\1g+ — Aaqi = 0. our fermion operators are from sitégj, they should satisfy

We can now see how the impurity term EQ.](22) may de—|l- —j| ~0O(1).
stroy the Majorana zero modes. Eg.B8) implies that if we  This leads to the conclusion that orilya; can gap out the
had two Majorana zero modes without the impurity, whichzero modes, whiléa;b; andib;b; do not. (Conversely, if we
only requires|g-| < 1, we will not have any normalizable had the right end of the semi-infinite chain, itisb; that gaps
Majorana zero mode due to the divergenceBpfunless we oyt the zero modes.) We see from EGJ(C3)
have Bj1,—-1 = Bj+m = 0, which can occur only un-
der special situations. On the other hand, if we had a sin- iaza; = —i(GinCly — 5;05j0)f§f0 + (gapped) (C4)
gle Majorana zero mode without the impurity, which means
lg+| < 1 < |[g-|, the Majorana zero mode survives if but the mode expansions &f;b; andib;b; do not have the
Bitm/Bi+m-1 = 1/q—. We have checked this explicitly for fgfo term.
the special cases af = 1,2, 3.

Appendix C: Impurity induced tunneling between two
M aj or ana zer o modes

To consider the condition for the stability of two Majorana
zero mode, we first not that, in the limit where the bulk gap
is large, a semi-infinite chain can be regarded as a two-state
system. This is because the two Majorana zero mode would
form a single zero energy state, giving us energy degeneracy
between the case where this zero energy state is occupied and
the case where this zero energy state is vacant. Due to the
fermion number parity conservation, perturbation canig g
rise to any off-diagonal term between the two states; all we

cannot affect the zero modes unless mode expansion of such
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