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We propose a realization of the Weyl semimetal phase thawariant under time reversal and occurs due
to broken inversion symmetry. We consider both a simple gafpiee model and a more realistic tight-binding
model describing an experimentally reasonable HgTe/Cdllglayer structure. The two models have the same
underlying symmetry, therefore their low-energy featuaes equivalent. We find a Weyl semimetal phase
between the normal insulator and the topological insulpt@ses that exists for a finite range of the system
parameters and exhibits a finite number of Weyl points withusd band touching at the Fermi level. This phase
is experimentally characterized by a strong conductiviigatropy and topological surface states. The principal
conductivities change in a complementary fashion as thesyparameters are varied, and the surface states
only exist in a region of momentum space that is determinetth®&yositions of the Weyl points.

PACS numbers:

I. INTRODUCTION phases. In this paper, we are also interested in the time re-
versal invariant case, but address specifically how thisg@ha

In the last decades, topological phases of matter have bedflich is in fact the Weyl semimetal, may be designed in a
in the focus of intense theoretical and experimental stémty: ~ NI/TI superlattice. We propose two models: a simple super-
a review, see Refl] 1 and references therein. The order ejattice model adapted from Refl 8 and a more realistic tight-
hibited by these phases is not associated with spontaneof#1ding model describing a HgTe/CdTe multilayer structure
symmetry breaking, and it can be described by topologica]-he former mpdel |s.presented in Sectidn Il and the Ia'_[ter one
invariants that are insensitive to smooth changes in the sydS Presented in Sectidnlil. The most prominent experinienta

tem parameter$As a generic feature, these phases also havigatures are discussed in Secfioh IV, while the overall kenc
topologically protected edge states. sions of the paper are summarized in Sedfibn V.

The field of topological phases was revolutionized by the
discovery of two-dimensional (2D) topological insulatéfs
and the subsequent generalization to three-dimensiobal (3
topological insulator8.These materials exhibit a bulk energy

Il. SUPERLATTICE MODEL

gap between the valence and the conduction bands, similarly A. General description
to normal insulators. On the other hand, they have gapless
surface states that are topologically protected, theeaton- The model considered in this section is based on the multi-

duction is possible on the surface. Since topological msul layer structure in Ref.l8: a periodic superlattice of NI ad T
tors arise due to strong spin-orbit coupling, their preweéeis  layers grown in the direction. It is a simplified tight-binding
larger within materials consisting of heavier eleménthiey  model where we only take the surface states located at the
find potential applications in the areas of spintronics amthg ~ NI/T! interfaces into account. These states are labeledéy t
tum computation. unit cell index and the parallel 2D momentim= (k. k).

It is a recent development that topologically protected sur It is known that a realization of the Weyl semimetal phase
face states can also be achieved in materials without a bulk e requires breaking either the time reversal or the inversyon-
ergy gap: these are the Weyl semimetafsThey have band metry of the system. Since we intend to keep the time reversal
touching between the conduction and the valence bands aymmetry intact, the inversion symmetry must be broken. To
the Fermi level. The band touching points are called Weylachieve that, we introduce a finite voltagebetween the top
points because the dispersion relation around them isrlineand the bottom NI/TI interfaces in each unit cell. The Hamil-
and hence the excitations are equivalent to Weyl fermionstonian of the multilayer structure is then
Weyl points can have positive or negative helicities, arayth
always appear in pairs. To achieve robust band touching that _ 2wy y o z5.
can not be removed by an infinitesimal perturbation, Weyl "= ZZ {UFT (" ky = 0Vk2)0ig + V0
points of opposite helicities must be separated in momentum ko
§pacé—f. This requires breaking either the time reversal or the + ApTi; + Ay ZTidi,jil} CIij.,ka (1)
inversion symmetry of the systet. T ’

Recent papers on Weyl semimetals have predominantly
studied the case with broken time reversal symméti@ne  where the Pauli matrices = (¢%, 0¥, 0*) act on the real spin
notable exception is Ref.] 9 where time reversal symmetryglegree of freedom and the Pauli matrices= (r%,7Y,77)
remains intact and inversion symmetry is broken. It was aract on the top/bottom surface pseudospin degree of free-
gued that a gapless phase appears in three dimensions hetwalm. The first term describes the NI/TI surface states with
the normal insulator (NI) and the topological insulator)(TI isotropic Fermi velocityvr, the second term represents the
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inversion-breaking voltage, and the remaining terms dlescr where the polar coordinatés = |k|cos andk, = |k|sin6
hopping between neighboring interfaces. The hopping ampliare introduced. The differende; — Ay depends on the angle
tude through a Tl layer is\; and that through a NI layer is 6 at |k| = V/vp, therefore band touching with, = Ay
Apn. In general, bothAr and A can be functions of the only occurs at specific points of the circle. The band toughin
parallel momentunk, and the symmetries of these functions glso becomes robust because the paramméﬂ% andér n
determine the symmetry of the system. do not require fine-tuning: an infinitesimal change in any of

The Hamiltonian in Eq [{1) can be solved by exploiting thethem only gives an infinitesimal change n displacing the
translational symmetry in thedirection, and introducing the - pand touching points along the circle.

corresponding 3D momentui= (ks, ky, k). By doing so, Contrary to the case with continuous rotational symmetry,
we find that the band dispersion relation is now there is a Weyl semimetal phase between the NI and the
9 5 2 Tl phases that exists for a finite range of the parameter val-

B (k) = A%(k:) + [V £ vplk]], () ues. This phase features a finite number of Weyl points at

whereA(k.) = /AZ + A% + 287 Ay cos(k.d) andd is which band touching between the two middle bands occurs.

the periodicity of the superlattice. The four bands are nonJ© P& more precise, the solution of the band touching equa-

degenerate whek + 0, and band touching between the two 0N A = Ay for the angle) is
middle bands takes place whéh = 0. If we assume with- ) )
out loss of generality thah and Ay are both positive, this cos(4) = 4(AN - Ar ) _3 (5)
happens wheh.d = w, A7 = Ay, andV = vp|k|. k|4 (67 — On)
This expression gives 8 Weyl points which are related to each
B. TheWeyl semimetal phase other by the symmetry transformations of the system. Since
|cos(40)| < 1, the condition for the Weyl semimetal phase

If Ay and Ay are independent ok, the band touching becomed /2 < (A§8> - A%”)/ [[k|*(67 — én)] < 1, where
occurs along a circle of radilg/vy inthek, = 7/d plane. It |k| = V/vr as always in this subsection. Let us assume with-
marks the transition between the NI and the Tl phases of theut loss of generality thaiy > dy, and imagine decreas-
material atAr = A . We can argue on physical grounds thating Ag)) gradually while keeping the other parameters con-
Ar > Ay (thin Tl layers and thick NI layers) corresponds to stant. This corresponds to a transition from the NI phase to
the NI phase, whileAr < Ay (thick Tl layers and thin NI the TI phase. The Weyl points then first appear at the lines
layers) corresponds to the Tl phase. ks = %k,,, move along the circle of radiug/vr, and finally

However, this band touching is not robust because it redisappear at the lings, = 0 andk, = 0. For an illustration
quires the fine-tuning of the conditiah; = Ay. To achieve of this, see the top half of Fif] 1.
robust band touching, we need to make the hopping ampli- It can be verified that the band touching points occurring
tudes depend on the moment&m in this scenario are indeed proper Weyl points around which

0 1 the band dispersion is linear in all directions. To obtaiggh

AN = ASf)N + AEF,)N(k)' (3) cally transparent results, we assume that d v is sufficiently
Furthermore, we can not keep the continuous rotational synsmall so thal\p — A v is almost independent 6f This differ-
metry around the: axis because theAr and Ay are still  enceis then only importantalong circles of constarand|k|
constants atk| = V/vr, the only region where band touch- where there would be no difference otherwise. Consequently
ing is possible. On the other hand, the continuous rotaltionahe principal directions are the axial)( the radial {), and
symmetry is broken in real crystals as well, and one is onljthe tangential#) directions, and an expansionbf around a
left with a discrete rotational symmetry. In the followinge  band touching point reads
demonstrate robust band touching in the reasonable cases of _
the four-fold and two-fold rotational symmetries. E? (k) = v26k2 + v2ok? + v} oki, (6)

where the effective Fermi velocities corresponding to ttie-p
C. Four-fold rotational symmetry cipal directions are, = dvArAyx = dAr, v, = vp, and
v = |k|*(67 — )| sin(46)|. The expression in Eq[](6) in-

In the first case, we assume a four-fold rotational symmetryl€ed gives a linear band dispersion in all directions. We can
around the- axis and four planes of reflection symmetry: the "OW establish that the approximation of smafl — o re-
{z, 2} plane, the{y, z} plane, and the two planes halfway in Auiresv: < v, i.e. V*(dr —dy) < vg. This is satisfied
between. These are the natural symmetries of many real m4! the reasonable case when the inversion-breaking voltage
terials with tetragonal crystal structures. By neglectamy ~ and the coefficientsr, - are small.
contributions depending ofk| only, the lowest order term Ve note that the Weyl points related to each other by rota-
having all the above symmetries and time reversal symmédions have identical helicities, while those related tdeather

try is oc (k! + k%). Thek dependent parts of the hopping PY reflections have opposite helicities: this implies thetre
amplitudesmare tﬁen are 4 Weyl points of each helicity. If we pair up all the Weyl

points into pairs of opposite helicities, the sum of the lesu
ASFI)N (k) = o7 n|k[* (cos4 6 + sin* 9), (4) ing separation vectors is zero. This property follows frowea t
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disappear at the, = 0 line. For an illustration of this, see the
bottom half of Fig[1.

If or — on is sufficiently small, the principal directions
around the Weyl points are the axial, the radial, and the tan-
gential directions. Eq.[]6) is therefore valid in this case a
well, and the effective Fermi velocities in the principaledi-
tions are given by, = d/ArAy = dAp, v, = vp, and
v = |k|(dr — dn)|sin(26)]. The approximation of small
dr — dn holds when; < v,., i.e. whenV (67 — 6y ) < v%.

I11. REALISTIC TIGHT-BINDING MODEL

A. Formulation of the model

In this section, we consider a periodic multilayer struetur
of strained HgTe and CdTe layers which are grown on top of
each other in the direction. This model is in fact a concrete
realization of the superlattice structure described irtiSegll
because CdTe is a NI and HgTe becomes a Tl under strain.
The band structures of these materials are well known, amd ca
be reproduced with high accuracy from realistic tight-tirgd

+

FIG. 1: (Color online) lllustration of the Weyl semimetalgde in the
cases of four-fold (top) and two-fold (bottom) rotationghsnetries.

We setk. = w/d in all subfigures. (a) Arrangement of the Weyl . o
points with positive (red plus) and negative (blue minud)citées. models. Here we adapt the ten-band tight-binding model de-

(b) Trajectories of the Weyl points as the transition from i phase scribed in Ref[ 12 which assumes twarbitals 6, s7) and

to the TI phase takes place. The Weyl points first appear agthe threep orbitals (., p,, p-) on ea<_:h atom.
squares and finally disappear at the yellow diamonds. Both HgTe and CdTe have zinc-blende structures: the an-

ions (Te) form a face-centered cubic lattice, and the cation
(Hg, Cd) are located at the positiogsl, 1, 1]. This implies
general notion of time reversal symmetry which also impliesthat each anion (cation) is tetrahedrally coordinated bga¥n
that the anomalous Hall conductivity vanishes. est neighbor cations (anions). We assume that the thickaess
of the HgTe and CdTe layers aré, and N, as measured in
units of the cubic lattice parameter When cutting through
D. Two-fold rotational symmetry the structure along the direction, one finds subsequent lay-
ers of one atomic thickness consisting of only anions anyg onl

In the second case, we have a two-fold rotational symmetr§&tions, respectively. The anionic layers all contain Teiev

around ther axis and two planes of reflection symmetry: the here aréZNl_c_emomc_Iayers containing Hg an.}N? cationic
{z, 2} plane and the(y, -} plane. This case is particularly layers containing Cd in each superlattice penodﬁ.

important for us because the tight-binding model described ~ The atomic orbitals are labeled according[f® u,t, o),
Sectior 1] has the same symmetries. The lowest order termghereR is the position of the atomic site, = {Te, Hg, Cd}
obeying all these symmetries and time reversal symmetry aris the type of the atony, = {s, s*, ps, py, p-} is the type of
o (k2 + k) andoc (k2 — k). However, the former one only  the orbital, andr = {1, |} is the spin quantum number. The
depends ork|, and hence it would not break the continuousHamiltonian of the system can be written as

rotational symmetry on its own. For the sake of simplicitg, w

consider the special case of H = Hy + H; + Hso, 9)
A(Tl)zv(k) = 0pn k2 = 6p.n|k|? cos? 6, (7)  Wwhere the first term contains the bare energies of the atomic
' orbitals, the second term describes the interaction (mappi
and obtain that the solution &, = Ay is between them, and the third term represents spin-orbit cou-

pling. These terms are
2 A(O) —A(O)
Ao A0 ®  Hy = S R u(R).t.0)E, g (Fu(R).t 10
|k|2(5T—6N) 0 = Z| 7u( )7 ’U> u(R),t< 7u( )a 70|7 ( )
R,t,a

cos(26) =

Now there are 4 Weyl points in the Weyl semimetal phase that O S o
occurs wherd < (A — A/ [k2(67 — 6n)] < 1. If Hr = Z Z R, u(R), 6, 0) V) iy e (B u(R), 1, 0,
there is a transition from the NI phase to the Tl phase due to Rto Rt

a gradual decrease v\, the Weyl points first appear at the He, > |Ru(R).t, 0)2)\u(§)5 &R, u(R),t', o,

k. = 0line, move along the circle of radid&/vr, and finally Bottoo
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where the second sum iti; goes over all 4 nearest neighbors to each other at this point. The spin-orbit coupling strangt
R’ of the atomic siteR, andu(R) denotes the type of the atom Ar. is averaged in the same way, and the final values of the

at the positior?. tight-binding parameters are presented in Talles [dnd II.
The hopping amplitude¥,, ., ¢+ between different types

of p orbitals are related to each other by the geometry of the v/« Te/Hg Te/Cd

crystal structure. In particular, they are affected by the u Vi ss _0.817 ~1.195

axial straine which is defined as the relative elongation of , 1.044 0.753

u,u,8,p,0

the lattice constant in the direction with respect to those in

. . . . Vi pos —1.404 —2.064
the z andy directions. This strain occurs because the sub- “* ¢

sequent layers of HgTe and CdTe are grown on top of eaclu s po 1.524 0.844
other, and there is a slight lattice constant misma#c@ince V' pis*.o —0.140 —1.147
the lattice constant of CdTe is approximately 0.3% larganth  V,u/p.p.0 2.180 2.651
that of HgTe, and both materials have a Poisson’s katib5, V' o —0.549 —0.442

we assume that the relationship between the strains in them
¢(CdTe) = ¢(HgTe) + 0.009. Even if a small strain does not TABLE II: Hopping amplitudes between different atom anditab
change the distance between neighboring atoms, the dinecti types (all numbers are in eV units).

vector connecting them changes, leading to a differentaper

between any two orbitals if at least one of them jsarbital. Table[]l shows that the normalized bare energies of the Hg
Using simple geometry, the different hopping amplitudes in orbitals are on average larger than those of their Cd counter
volving p orbitals are then expressed as parts. The HgTe layers are therefore more positively clthrge
than the CdTe layers, resulting in a potential differene th
Vip, = Vap, = LVS o (1 _ E) ’ (11) lowers the orbital energies in the HgTe layers. This effect i
o RV R 3 taken into account by introducing a periodic potenidl”)
1 2¢ which is added to all bare energies at positioiThe potential
Vep. = ﬁvﬁp-ﬂ (1 + §) ’ depends on only, and we write it in the form
1 2¢ €
Vowre = Voypy = 3 [Vp-,p-,d (1 - §> 2Vppr (1 + g)] ’ U(z) = —Up cos [2% (Z - % + 50)] ) (12)
1 4e 2¢
Voow. = 3 [V;%Pva (1 + 3) +2Vopm (1 - 3)] J whered; » = aNy 2 are the thicknesses of the HgTe and CdTe

Voopy = 1 (Vopo = Vopr) (1 2 the symmetric case wheig = 0, the potential functiod/(z)

3 3 reaches its minimum in the middle of the HgTe layer and its
v — v 1 v, Vo) (1 i f) _ maximum in the middle of the CdTe layer. However, we as-

PPz S T 3 sume a certain asymmetry {n(z) which is characterized by
the displacemeni, of these extrema. When the multilayer

is grown under reasonable experimental conditions, such an
asymmetry is inadvertently present due to the specific dgrowt
direction. For example, it is possible that the HgTe and CdTe
materials are more likely to form an alloy at one of their in-

) layers, andl = d;+ds is the periodicity of the superlattice. In

Note that the subscripts andu’ are suppressed for the sake
of compactness, the labglcan stand for botk ands*, and
all terms are expanded up to first ordekin

u Te Hg Cd terfaces. Since the resulting asymmetry is probably smwall,
Eu s —9.75 —1.40 —1.42 take0 < |dg| < a in the rest of this section. Also, by compar-
Eup 0.12 4.30 3.48 ing the bare energies in Talfle | we estimate that the amglitud
Foy o 6.08 6.50 6.67 of the potential id/y ~ 0.1 eV.

Au 0.333 0.286 0.013

TABLE |: Bare energies®, ; and spin-orbit coupling strengths, B. Linear four-band approximation

for different atom types (all numbers are in eV units).

The Hamiltonian presented in Egs[] (9) andl(10) can be

The concrete tight-binding parameters are based on thos@lved by exploiting translational invariance and introidg

in Ref.[12, but they are normalized according to a consisterthe corresponding momentutn= (k,, ky, k). On the other
procedure. The bare energies of all orbitals in the CdTe inodéiand, the large periodicity in the direction means that the
are first shifted such that the Te orbitals have the same aveHamiltonian is represented by a largé x M matrix where
age energy in HgTe and CdTe. This corresponds to matching/ = 40(N; + N»). It can therefore only be solved numeri-
the arbitrary zero energy levels of the independent HgTe andally, and for relatively small layer thickness&s .
CdTe tight-binding models. The bare energies of the respec- However, despite the complexity in this model, some of its
tive Te orbitals are then obtained by averaging those in th@roperties can be deduced by referring to symmetry only. In
normalized HgTe and CdTe models which are already clos¢he case oty # 0 anddy # 0, the basic symmetries of the



system are time reversal symmetily) @nd the reflection sym- T R, Ro g
metries R1,2) across they’, 2} and the{xz', 2} planes. The ™

— + _

natural coordinates’ = (z+y)/v2andy’ = (z—y)/v2are _ + _ _

introduced to make these symmetries more explicit. Note thaélz _ N N N

the reflection symmetrieR, » also lead to a two-fold rota- N

tional symmetry §) around the: axis. In terms of symmetry, N N * B

the tight-binding model studied in this section is equivate o’ - * -

the superlattice model in Sectiball D. o® - - - +
The presence of botf' andS symmetries puts two cru- 7 + - - +

cial restrictions on the band structure. First, the statethe TY - — - +

ke = ky = 0 line are two-fold degenerate. Since the num- = + + + +

ber of occupied bands is always even, the highest occupied
band (HOB) and the lowest unoccupied band (LUB) have dif-TABLE I1I: Potential terms in the Hamiltonian and their g6 un-
ferent energies on this line with the Fermi level lying betwe der the symmetry operations of the system: time reveigglréflec-
them. Second, the band structure is invariant under thecrefle tion across thdy’, 2} plane R.1), reflection across thgr’, 2} plane
tion k., <+ —k,. As shown in Sectioh IITC, this implies that (Rz), and two-fold rotation around theaxis ().
robust band touching between the HOB and the LUB is only
possible in thé:, = 0 and thek, = 7/d planes.

Numerical investigation of the model indicates that bandent Pauli matrices imply that we only need to choose the par-
touching between the HOB and the LUB always occurs closdies of 7* underT andR, . The choice of these parities
to thek,, = k, = 0 line. In perspective of this and the corresponds to setting the relative complex phases of the ba
symmetry considerations above, we introduce simplified-fou Sis states. Under the choice presented in Table I, the most
band models around the two special pointié at (0,0,0) and general contribution to the Hamiltonian takes the form
k = (0,0,7/d). We only keep the nearest two bands on each oz z ‘ 2
side (of the I/:e)rmi Ievel,}/and gssume that they are linear in the Hp =7 [Baky 0" + Bykaro? + B.0kz07] (14)
relative momentundk = (k' ky, 0k-) with respect to the  where the coefficients,., . are again to be determined from
corresponding special point. More formally, we project thea comparison with the full model. The reduced Hamiltonian
Hamiltonian/ onto a subspace spanned by four basis statesinally readsH = H, +Hs +Hp. Itis a considerable simpli-

the appropriate eigenvectors of the full modefat= 0. The fication with respect tdd, and it only contains 9 parameters
reduced Hamiltoniar{ is then a4 x 4 diagonal matrix at that need to be extracted from the full model.

5k = 0, and the linearity of the band dispersion is achieved
by additional terms that are linear di.

At the special point, the reduced Hamiltonian can be written C. Conditionsfor robust band touching
asHy = EW7M + E@ 73 wherer®? = (1 £ 72)/2 and
E(12) are the energies of the LUB and the HOBJ&t = 0. Band touching between the HOB and the LUB occurs in the

The energy levels are pairwise degenerate, and this degendull model when the two middle eigenvalues are equal in the
acy is split by a finite,, or k,, but not by a finiteSk,. Torep-  simplified model. It can be shown that foda 4 matrix of the
resent this splitting, we need to add coupling terms betweefDrqu, this is possible if and only if the direction of the vec-
states corresponding to the same ener@féaﬂt 0. Inthemost tor B = (B, ky, Byk,, 5.0k.) lies halfway between the di-
general case, the additional terms in the Hamiltonian read  rections of the vectord 2 = (o' Pk, o ¥k, 0). The

2 two bands then cross each other|@ is increased without

He=>» 70 {agmm,aw + ay(j)kyfay} , (13)  changing the direction ofk, whereas anti-crossing happens
1=1 otherwise. Since the above condition requires the three vec

tors to lie in the same plane, the third componenBdias to

where the coefficients;;” can be obtained from a compari- | o .o, ple to3. 0 in general, we find that robust band
son with the full model. The choice of the Pauli matrie€s’ touching can only occur in thik, — 0 plane.

corresponds to defining the basis states within the degenera Restricting our attention to this plane simplifies the peobl

subspaces ok, in a particular way. 7(1,2) =
There is also coupling between states corresponding to dhk_Jegauseél ' and.5 become 2D vectors. .If we change the
ratio k, /k,- gradually from0 to oo, the ratios of the corre-

ferent energies atk = 0. Since the Hamiltoniaf{ must be di SR ch i th directi
invariant under all symmetry operations of the system,etherSIOOn Ing components change in the same direction,

are only a small number of such coupling terms allowed byVhile those inB change in the opposite direction between
symmetry. The parities of the possible terms under the sym@nd=+0c0. This means that whether band touching happens at
metry operations are summarized in Tablé I1l. Note that theanydk is determined entirely by the signs of the different pa-
parities ofr* ando®¥ are determined by the already estab-rameters. Since we always chooﬁfé,gf) > 0, the condition
lished termsH, and# s which must be even under all sym- becomes straightforward: band touching occurs if and dnly i

metry operations. Furthermore, the relations betweeerdiff /3, andg, have the same sign.

(1,2)



Let us now consider the special case of the symmetric po- Now we turn our attention to the layer thicknesses. Keep-
tential withy = 0. By repeating the symmetry considera- ing the HgTe thicknesd’; = 3 constant and varying the CdTe
tions in Sectiod IIIB and taking into account the additional thicknessV, betweerd andg reveals that an increase M,
four-fold roto-reflection symmetry around theaxis, we find  decreasede¢,. This is intuitive becaus&, becomes smaller
that the parameters from the full model are no longer indepernin comparison tad. Keeping the CdTe thicknes¥,; = 4
dent because!? = a§1=2> andg, = —f3,. This shows that ~constant and varying the HgTe thickne¥s between3 and

band touching can only occur in this scenario if at least dne o7 shows that an increase M, shifts the ranges iny down-

these parameters vanishes. However, the Correspondim bawards. This means th.at the phases with robust band touching

touching is not robust because it requires the fine-tuning ofiPpear at more negative strains.

a parameter. We conclude that robust band touching requires To conclude that these phases are indeed Weyl semimetals,

the asymmetry characterized by # 0, and expect that it they need to satisfy one more condition: the lack of band-over

becomes easier to observelasandd, increase. lap. Even if there is robust band touching between the HOB
and the LUB, the band structure becomes metallic if the high-
est overall energy of the HOB is larger than the lowest oVeral

D. TheWeyl semimetal phase energy of the LUB. It is an empirical observation that the-ind

vidual band structures of the = 0 and thek, = =/d planes

The detailed behavior of the system is determined by hovt® Metallic wher, is sufficiently negative. This occurs for
the coefficients from the full model depend on the external pa@!l €0 < 0'in the limit of Uy — 0 ordy — 0, while the crit-
rameters. Since this dependence is affected by the corplexi

ical ¢y becomes slightly negative at larger valuesif and
of the full model, its understanding requires a numerieatr %0 Furthermore, the appropriate bands of the= 0 and the
ment. In perspective of this, we numerically investigate th k2

= = /d planes can overlap with each other as well. Since

phenomenon of robust band touching in the function of thdn® Pand touching energies are differentin the two plahés, t
layer thicknessed/, », the straincy = ¢(HgTe) in the multi- typically occurs when there is band touching in one of the

layer structure, the amplitud&, of the superlattice potential, Planes and aimost band touching in the other one.
and the asymmetric displacemdpt We are now in the position to discuss the other phases
We first consider the dependence on the strairt/olf£ 0 around the Weyl semimetals. The overall transition between
andd, # 0, there are two ranges i close to zero with band the two bulk phases at small and large valuescpfis a
touching in thek. = 0 and thek. = = /d planes, respectively. 2D topological phase transition because it happens via band
The corresponding band touching is robust because it remaiiouching around both special points on the axis. This
intact for an infinitesimal change in any of the external para Means that the bulk phases on the two sides of this transi-
etersey, Uy, anddy. The upper and lower limits of the ranges tion do not have a 3D topological character: we identify them
are functions ot/, andd, as illustrated in Fig]2, and we ver- as the NI phase and the weak (2D) topological insulator (WI)
ify the expectation from SectidnIMIC that the ranges inseea Phase. Since the spin-orbit coupling is stronger in HgTe tha
with both Uy andd,. For the reasonable values@f ~ 0.1  in CdTe, we argue that the system is in the NI phase when
eV anddy ~ a/2, the ranges arée; ~ 0.002.

€o 0.07F€g
0.07} WS Wi 0.02
WI
TI
TI WS 0.01
0.06 0.06 ¢
0.00
NI NI
0.05 L
Up/€V| 0.05} , do/a 4 5 6
0.0 0.1 02 00 0.5 1.0

FIG. 3: Phase diagram of the system against the strasnd the
FIG. 2: Critical strains againstl/y at constant, = a/2 (left) and HgTe thicknessV:. The other parameters are constaliy. = 0.2
againstdo at constant/y = 0.1 eV (right). The phase boundaries eV, §o = a/2, and No = 4. The phase boundaries separate five
separate four distinct phases: the normal insulator (KB,dtrong  distinct phases: the normal insulator (NI), the strong (@pplogical
(3D) topological insulator (TI), the weak (2D) topologidakulator  insulator (TI), the weak (2D) topological insulator (WIhet band
(WI), and the Weyl semimetal (WS). The layer thicknessexare overlap metal (M), and the Weyl semimetal (WS). The dashaskli
stantN; = 3 and N> = 4 in both subfigures. indicate approximate phase boundaries.



the HgTe layers are thin and in the WI phase when the HgTe IV. PHYSICAL CHARACTERISTICS
layers are thick. On the other hand, the phase between the
Weyl semimetals is related to each bulk phase by a topologi- A. Conductivity anisotropy

cal phase transition that has a 3D character because ithsppe
via band touching around only one special point. We con-
clude that this phase in the middle is the Tl phase. Note thaltn
the NI and the WI phases are equivalent in terms of their 30,
topology, therefore there is no need to distinguish betvileen

two Weyl semimetals: they are intermediates in two equivag,.p Weyl point, where is the effective Fermi velocity and

lent phase transitions. _ _ ~ is the strength of the impurity potential. This finite con-
The phase diagram of the system against the stiaand  quctivity is a characteristic experimental feature, egilydn

the HgTe thicknessV; is presented in Fig.]3. Since its bound- contrast with the neighboring NI and TI phases. In this sub-

aries are interpolated from only 5 points correspondin@o i gection, we demonstrate that the finite conductivitf'at 0

teger values ofVy, the phase diagram is only correct on the hecomes highly anisotropic when the Weyl semimetal phase
qualitative level. Nevertheless, it provides useful glifes  occurs due to broken inversion symmetry.

for the realization of the Weyl semimetal phase in this rulti
layer structure. The straiy has to be positive to avoid band o/ o

overlap but not too large because that would be hard to aehiev 10k 0
experimentally. This gives a restriction on the thickndsbe
HgTe layers: the ideal dimensionless thickness ef Ny < 6

corresponds to an actual thicknessipf~ 3 nm, which is on
the border of experimental reasonability.

It was shown in Ref[|8 that the Weyl semimetal phase is
etallic: when impurities are present, its conductivita -

ite constantin the limit of zero temperature. Using theBol
mann equation, one finds a conductivity= e?v? /67 for

0.0 |

E. Connection with the superlattice model 0.0 1.0

To illustrate the relationship with the results obtained inFIG. 4: (Color online) Variation in the principal condudties o
Sectior(1), we discuss the arrangement of the Weyl points il{red solid Iing) and,, (blue dashed line) du.ring.atransition between
the Weyl semimetal phase. There are 4 Weyl points that ar@'® normal insulator (NI) and the topological insulator)(phases
related to each other by the symmetries of the systenag s t riugg the(()\gv eyl s(eor)n |met2a | phase (WS). The trans't'on_ patanrrs
gradually increased, and the transition from the NI (Tl)ggha * = VF(&x" — Az )/[V(dr — dx)] and the conductivities are
to the TI (WI) phase happens through a Weyl semimetal, th&'€asured in units afo = 2e%vy. /3.

Weyl points first appear at the., = 0 line, move on approx- ) . ) .

imately circular curves, and finally disappear at the = 0 To achieve this, we consider the model in Secfionl 11 D, and
line. This is in perfect agreement with the corresponding arderive an expression for the con_o!uct|V|ty tensorin theFIrmm
rangement for the superlattice model in Secfionl Il D. IndeedSMall o7 — dn. When the condition of the Weyl semimetal
the two models presented in Secti@nslil D &nd il A obey thePhase is satisfied, there are 4 Weyl points at angiles- 0,

same symmetries, therefore itis understandable thatitveir 02 = —0, 63 = = + 6, andd, = = — 6. Due to the convention
energy features are equivalent. 0 < 6 < «/2 we find thatd gradually decreases fromy2 to

. . during a transition from the NI phase to the Tl phase. For
Th f the band struct Sections Il A and during a trar P O pha
© comparison o T® band STUCIUTES In Seclon an each Weyl point labeled bj; the conductivity tensor in the

[TBlalso makes it possible to estimate reasonable values fo basis takes the forfn
the superlattice parameters in E[g. (1). The inversionkinga (z,y, 2) basis takes the fo
voltageV corresponds to the energy differene€!) — E(2)

2 2 2 :
between the HOB and the LUB, which is typically about 2 Uy €OS .91 Ur COS.HIQSIH 0, 0
0.05 eV in the tight-binding model. The Fermi velocity 1= g vicosfpsint;  vZsin®6; 0 |, (15)
of the surface states becomes ~ al;” ~ 106 ms !, 0 0 v?

and the hopping amplitudes are estimated from the typical _ _ _ i .
energy scale along the. axis: Arx ~ 1073 eV. The where we exploiv, < v, relating the effective Fermi veloci-

small magnitude of\7 v indicates that the band structure is ties. Adding the contributions of all 4 Weyl points, thereais
relatively flat in thek, direction. Sincey, = vp ~ 106 ms~! cancelation in the off-diagonal terms, and we obtain

andd ~ 10 nm givesv, = d\/ArAx ~ 10* ms™!, this

results in the relation, < v, between the effective Fermi 4 962 v} cos® 6 0 0

velocities around the Weyl points. Note that the energyescal ¢ = Z o =g 0 vZsin?g 0 |. (16)
Ar n also translates into a maximal temperatiire- 10 K at =1 ™ 0 0 v?

which the Weyl semimetal phase is experimentally obseevabl

in this multilayer structure. As the transition between the NI and the Tl phases takes place

through the Weyl semimetal phase, the conductivities in the
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= andy directions change in a complementary fashion. Insponding dimensionless energies= =+ K2 + k2 are in-
particularo., vanishes on the Nl side ang, vanishesonthe dicative of surface states with Dirac dispersion between NI
Tl side of the Weyl semimetal phase. For an illustration, seend TI phases of matter. In the more relevant casé &f 0,
Fig. [4. The conductivity in the direction is approximately these analytic solutions only find straightforward geriesal
constant withy,, < 0,4, 0y, due tov, < v,. Such a strong tions forx, = 0 when
conductivity anisotropy that depends sensitively on trsten ~2

arameters is a potential hallmark of a Weyl semimetal with A Y Y~
Eroken inversionpsymmetry. g ) = (6, %4, F1,1) exp (_7 * sz) (20)

and the dimensionless energiesé)r& +k,. Note that these
B. Topological surface states surface states decay in an oscillating fashion at +oo, and
the wave vectok, = +V/vp of the oscillations corresponds

Since Weyl semimetals are topological phases of mattet0 the radius of the circle in the, = 7/d plane along which
they are characterized by topological surface stafesthis ~ band touching occurs in Sectibn 1.
subsection, we consider the model in Sedfiod I D, and demon- In the most generic case of # 0 andx, # 0, we solve
strate the existence of these surface states. Although weq. (I8) numerically and find that there are still two distinc
choose a specific situation and also make a couple of simplsurface stategl) for eachr, andr.. The ratios of the vec-
fying assumptions in the following, the topological natofe  tor components in¥) are no longer independent gf which
the surface states ensures that they exist under more genegixplains why simple analytic solutions like those in Eq8)(1
circumstances as well. and [20) can not be obtained. We verify that the surfacesstate
In our specific situation, the interface is in the, z} plane, ~ follow a Dirac dispersion at small momenta . < 1, even
therefore any spatial variation is in thyedirection only. This  when the dimensionless voltagéis large. However, the ef-
implies thatk,, andk. are still valid quantum numbers. Since fective Fermi velocity in thex,. direction is reduced by a fac-
Ar,y in Eq. (@) do not depend oh,, we can determine tor that is empirically found to bexp(—V2), and hence the
the surface states without taking the explikidependence dispersion relation at smatl, . becomes
into account, and then simply substitute the appropriakte va
uesAr y for eachk,. Itis assumed that onlAr changes — \/ 9 5172 9
with y and the other parameters are constakfi < Ay at E = /g exp(=2V2) + 2. (21)

y = =00, Ar = Ay aty =0, andAr > Ay aty — +00.  ypjike in ther, direction where the analytic solution guaran-
Furthermore, ifAr changes sufficiently slowly, we can ap- eeg the linearity of the dispersion for all, there is a devi-
proximate it with a linear function in the important region ation from the linear dispersion in the, direction. As illus-

aroundy = 0: we writt Ay — Ay = Ky. Expanding the  ateq in Fig[, the Dirac dispersion in EG_{21) is only dali
k. dependent terms up to first orderk = k., — «/d, we for small enough...

find that the surface stat¢®) with energyE need to satisfy

E\V) = |vpT?(—ic®0y — 0Yky) + VT° 05 E

+ Kmi+]€;dANTy:||\I/>, a7)

0.0

along with|¥) — 0 in the limits ofy — +c0. To make the
subsequent discussion of the surface states more trangpare
we introduce the dimensionless form 05k

E\IJ :|:Z_-ma~_ yw+‘7z+~w+zy}qj’ 1 1 L \
| > " ( e ) ! vr et | > -1.0 -0.5 0.0 0.5 1.0
(18)

. ~ . - FIG. 5: Dimensionless energies of the surface states inuthetibn
where the variableg = y\/K/vp, E = E/A, V. = V/A,  ofthe momentum,, whens. = 0 andV = 1. The dashed lines are
ke = vrky /A, andr, = kld Ay /A are all dimensionless, |inear asymptotes given by EG{21) in the < 1 limit.
while A = \/Kvp is a characteristic energy scale.

As a starting point in our discussion, we consider the limit |t \ve now restore thé dependence af\r v, the surface
of V= 0. In this case, there are two distinct surface Statestates|\1!) remain the same for eadh.. How7ev’er, they only

solutions for each, andx, that take the analytic form exist at thosek,, for which the differencér — Ay changes
_ _ i sign betweery — +oo. Assuming without loss of generality
W) = (i, Fie™, Fe'?, 1) exp <—7> (19)  thats; > &y in Eq. (7) and thaﬁﬁfo) - ASS) does change

sign, we find thatA, > Ay for all &, aty — +o0, while
in the (Tt, T4, BT, BJ) basis, whergany = k,/k, and  Ap < Ay isonlytrue aty — —oo for |k, | < ko. The critical
the letters T/B stand for the top/bottom surfaces. The eorremomentumk, marks the equalitdAr = Ay aty — —oo,



which is one of the conditions required for band touching in Acknowledgments
Section). While the material a§ > 0 is definitely in the

NI phase, the material at < 0 is in the Weyl semimetal  \ng are grateful to T. L. Hughes for useful discussions. This
phase ifky < V/vr so that band touching occurs, and it is yesearch was supported in part by NSF grants DMR-0804564
in the Tl phase ifio > V//vr so that band touching does not and pPHY05-51164, and by the Army Research Office through
occur. In the former case, surface states exist between th@ur| grant No. W911-NF-09-1-0398. G. B. H. acknowl-

coordinates:, = £k of the Weyl points. As the Weyl points  eqges the support of J. Driscoll (Trinity College) and the-ho
first appear at thé, = 0 line, and then start to move further pitality of KITP during this work.

away from it, the range ik, increases and more surface states
appear. Remarkably, this range characterizedpyurther
grows when the material gt < 0 is already in the Tl phase,
and there is no band touching at all.

V. SUMMARY

We proposed a time reversal invariant realization of the
Weyl semimetal phase that occurs due to broken inversion
symmetry. We considered both a superlattice model adapted
from Ref.[8 and a tight-binding model describing an experi-
mentally reasonable HgTe/CdTe multilayer structure. The s
perlattice model was suitable for analytic calculations tiu
its simplicity, while the more realistic tight-binding meldre-
quired a numerical treatment.

Although the formulations of the two models are very
different, their identical symmetries lead to equivalent/
energy features. It should be remarked that, as seen from
the generality of the superlattice model, the Weyl semiineta
could be achieved in many possible material structures.
Exploration of potential compounds other than HgTe/CdTe
would be extremely interesting, especially given the need t
tune strain in the latter to observe the desired physics.

For both models considered, we found a Weyl semimetal
phase between the NI and the Tl phases. This phase is char-
acterized by a finite number of Weyl points with robust band
touching at the Fermi level: the band touching occurs for a
finite range of the system parameters, and hence it can not be
removed by an infinitesimal perturbation. We further vedifie
that the band touching points are proper Weyl points with a
linear dispersion relation around them.

In terms of experimental observation, the potential hall-
marks of the Weyl semimetal phase with broken inversion
symmetry are a strong conductivity anisotropy and the pres-
ence of topological surface states. The low temperature and
frequency bulk transport is highly unconventional, and wil
be discussed in a future publicati&hThe Dirac dispersion
relation of the surface states is indicative of TI materials
but these surface states only exist in a region of momentum
space that is determined by the positions of the Weyl points.
The Weyl semimetal phase between the NI and the Tl phases
described in this paper is therefore qualitatively new imte
of its topological surface states as well.
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