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We propose a realization of the Weyl semimetal phase that is invariant under time reversal and occurs due
to broken inversion symmetry. We consider both a simple superlattice model and a more realistic tight-binding
model describing an experimentally reasonable HgTe/CdTe multilayer structure. The two models have the same
underlying symmetry, therefore their low-energy featuresare equivalent. We find a Weyl semimetal phase
between the normal insulator and the topological insulatorphases that exists for a finite range of the system
parameters and exhibits a finite number of Weyl points with robust band touching at the Fermi level. This phase
is experimentally characterized by a strong conductivity anisotropy and topological surface states. The principal
conductivities change in a complementary fashion as the system parameters are varied, and the surface states
only exist in a region of momentum space that is determined bythe positions of the Weyl points.

PACS numbers:

I. INTRODUCTION

In the last decades, topological phases of matter have been
in the focus of intense theoretical and experimental study:for
a review, see Ref. 1 and references therein. The order ex-
hibited by these phases is not associated with spontaneous
symmetry breaking, and it can be described by topological
invariants that are insensitive to smooth changes in the sys-
tem parameters.2 As a generic feature, these phases also have
topologically protected edge states.

The field of topological phases was revolutionized by the
discovery of two-dimensional (2D) topological insulators,3,4

and the subsequent generalization to three-dimensional (3D)
topological insulators.5 These materials exhibit a bulk energy
gap between the valence and the conduction bands, similarly
to normal insulators. On the other hand, they have gapless
surface states that are topologically protected, therefore con-
duction is possible on the surface. Since topological insula-
tors arise due to strong spin-orbit coupling, their prevalence is
larger within materials consisting of heavier elements.6 They
find potential applications in the areas of spintronics and quan-
tum computation.

It is a recent development that topologically protected sur-
face states can also be achieved in materials without a bulk en-
ergy gap: these are the Weyl semimetals.7–9 They have band
touching between the conduction and the valence bands at
the Fermi level. The band touching points are called Weyl
points because the dispersion relation around them is linear
and hence the excitations are equivalent to Weyl fermions.
Weyl points can have positive or negative helicities, and they
always appear in pairs. To achieve robust band touching that
can not be removed by an infinitesimal perturbation, Weyl
points of opposite helicities must be separated in momentum
space.8 This requires breaking either the time reversal or the
inversion symmetry of the system.10

Recent papers on Weyl semimetals have predominantly
studied the case with broken time reversal symmetry.7,8 One
notable exception is Ref. 9 where time reversal symmetry
remains intact and inversion symmetry is broken. It was ar-
gued that a gapless phase appears in three dimensions between
the normal insulator (NI) and the topological insulator (TI)

phases. In this paper, we are also interested in the time re-
versal invariant case, but address specifically how this phase,
which is in fact the Weyl semimetal, may be designed in a
NI/TI superlattice. We propose two models: a simple super-
lattice model adapted from Ref. 8 and a more realistic tight-
binding model describing a HgTe/CdTe multilayer structure.
The former model is presented in Section II and the latter one
is presented in Section III. The most prominent experimental
features are discussed in Section IV, while the overall conclu-
sions of the paper are summarized in Section V.

II. SUPERLATTICE MODEL

A. General description

The model considered in this section is based on the multi-
layer structure in Ref. 8: a periodic superlattice of NI and TI
layers grown in thez direction. It is a simplified tight-binding
model where we only take the surface states located at the
NI/TI interfaces into account. These states are labeled by the
unit cell index and the parallel 2D momentumk = (kx, ky).

It is known that a realization of the Weyl semimetal phase
requires breaking either the time reversal or the inversionsym-
metry of the system. Since we intend to keep the time reversal
symmetry intact, the inversion symmetry must be broken. To
achieve that, we introduce a finite voltageV between the top
and the bottom NI/TI interfaces in each unit cell. The Hamil-
tonian of the multilayer structure is then

H =
∑

k

∑

i,j

[

vF τ
z(σxky − σykx)δi,j + V τzδi,j

+ ∆T τxδi,j +∆N

∑

±

τ±δi,j±1

]

c†i,kcj,k, (1)

where the Pauli matrices~σ = (σx, σy, σz) act on the real spin
degree of freedom and the Pauli matrices~τ = (τx, τy , τz)
act on the top/bottom surface pseudospin degree of free-
dom. The first term describes the NI/TI surface states with
isotropic Fermi velocityvF , the second term represents the
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inversion-breaking voltage, and the remaining terms describe
hopping between neighboring interfaces. The hopping ampli-
tude through a TI layer is∆T and that through a NI layer is
∆N . In general, both∆T and∆N can be functions of the
parallel momentumk, and the symmetries of these functions
determine the symmetry of the system.

The Hamiltonian in Eq. (1) can be solved by exploiting the
translational symmetry in thez direction, and introducing the
corresponding 3D momentum~k = (kx, ky, kz). By doing so,
we find that the band dispersion relation is

E2
±(

~k) = ∆2(kz) +
[

V ± vF |k|
]2
, (2)

where∆(kz) =
√

∆2
T +∆2

N + 2∆T∆N cos(kzd) andd is
the periodicity of the superlattice. The four bands are non-
degenerate whenk 6= 0, and band touching between the two
middle bands takes place whenE− = 0. If we assume with-
out loss of generality that∆T and∆N are both positive, this
happens whenkzd = π, ∆T = ∆N , andV = vF |k|.

B. The Weyl semimetal phase

If ∆T and∆N are independent ofk, the band touching
occurs along a circle of radiusV/vF in thekz = π/d plane. It
marks the transition between the NI and the TI phases of the
material at∆T = ∆N . We can argue on physical grounds that
∆T > ∆N (thin TI layers and thick NI layers) corresponds to
the NI phase, while∆T < ∆N (thick TI layers and thin NI
layers) corresponds to the TI phase.

However, this band touching is not robust because it re-
quires the fine-tuning of the condition∆T = ∆N . To achieve
robust band touching, we need to make the hopping ampli-
tudes depend on the momentumk:

∆T,N = ∆
(0)
T,N +∆

(1)
T,N (k). (3)

Furthermore, we can not keep the continuous rotational sym-
metry around thez axis because then∆T and∆N are still
constants at|k| = V/vF , the only region where band touch-
ing is possible. On the other hand, the continuous rotational
symmetry is broken in real crystals as well, and one is only
left with a discrete rotational symmetry. In the following,we
demonstrate robust band touching in the reasonable cases of
the four-fold and two-fold rotational symmetries.

C. Four-fold rotational symmetry

In the first case, we assume a four-fold rotational symmetry
around thez axis and four planes of reflection symmetry: the
{x, z} plane, the{y, z} plane, and the two planes halfway in
between. These are the natural symmetries of many real ma-
terials with tetragonal crystal structures. By neglectingany
contributions depending on|k| only, the lowest order term
having all the above symmetries and time reversal symme-
try is ∝ (k4x + k4y). Thek dependent parts of the hopping
amplitudes are then

∆
(1)
T,N (k) = δT,N |k|4

(

cos4 θ + sin4 θ
)

, (4)

where the polar coordinateskx = |k| cos θ andky = |k| sin θ
are introduced. The difference∆T−∆N depends on the angle
θ at |k| = V/vF , therefore band touching with∆T = ∆N

only occurs at specific points of the circle. The band touching
also becomes robust because the parameters∆

(0)
T,N andδT,N

do not require fine-tuning: an infinitesimal change in any of
them only gives an infinitesimal change inθ, displacing the
band touching points along the circle.

Contrary to the case with continuous rotational symmetry,
now there is a Weyl semimetal phase between the NI and the
TI phases that exists for a finite range of the parameter val-
ues. This phase features a finite number of Weyl points at
which band touching between the two middle bands occurs.
To be more precise, the solution of the band touching equa-
tion∆T = ∆N for the angleθ is

cos(4 θ) =
4
(

∆
(0)
N −∆

(0)
T

)

|k|4(δT − δN )
− 3. (5)

This expression gives 8 Weyl points which are related to each
other by the symmetry transformations of the system. Since
| cos(4 θ) | ≤ 1, the condition for the Weyl semimetal phase

becomes1/2 <
(

∆
(0)
N −∆

(0)
T

)

/
[

|k|4(δT − δN)
]

< 1, where
|k| = V/vF as always in this subsection. Let us assume with-
out loss of generality thatδT > δN , and imagine decreas-
ing ∆

(0)
T gradually while keeping the other parameters con-

stant. This corresponds to a transition from the NI phase to
the TI phase. The Weyl points then first appear at the lines
kx = ±ky, move along the circle of radiusV/vF , and finally
disappear at the lineskx = 0 andky = 0. For an illustration
of this, see the top half of Fig. 1.

It can be verified that the band touching points occurring
in this scenario are indeed proper Weyl points around which
the band dispersion is linear in all directions. To obtain physi-
cally transparent results, we assume thatδT−δN is sufficiently
small so that∆T−∆N is almost independent ofθ. This differ-
ence is then only important along circles of constantkz and|k|
where there would be no difference otherwise. Consequently,
the principal directions are the axial (z), the radial (r), and
the tangential (t) directions, and an expansion ofE− around a
band touching point reads

E2
−(

~k) = v2zδk
2
z + v2rδk

2
r + v2t δk

2
t , (6)

where the effective Fermi velocities corresponding to the prin-
cipal directions arevz = d

√
∆T∆N = d∆T , vr = vF , and

vt = |k|3(δT − δN )| sin(4 θ)|. The expression in Eq. (6) in-
deed gives a linear band dispersion in all directions. We can
now establish that the approximation of smallδT − δN re-
quiresvt ≪ vr, i.e. V 3(δT − δN ) ≪ v4F . This is satisfied
in the reasonable case when the inversion-breaking voltageV
and the coefficientsδT,N are small.

We note that the Weyl points related to each other by rota-
tions have identical helicities, while those related to each other
by reflections have opposite helicities: this implies that there
are 4 Weyl points of each helicity. If we pair up all the Weyl
points into pairs of opposite helicities, the sum of the result-
ing separation vectors is zero. This property follows from the



3

FIG. 1: (Color online) Illustration of the Weyl semimetal phase in the
cases of four-fold (top) and two-fold (bottom) rotational symmetries.
We setkz = π/d in all subfigures. (a) Arrangement of the Weyl
points with positive (red plus) and negative (blue minus) helicities.
(b) Trajectories of the Weyl points as the transition from the NI phase
to the TI phase takes place. The Weyl points first appear at thered
squares and finally disappear at the yellow diamonds.

general notion of time reversal symmetry which also implies
that the anomalous Hall conductivity vanishes.

D. Two-fold rotational symmetry

In the second case, we have a two-fold rotational symmetry
around thez axis and two planes of reflection symmetry: the
{x, z} plane and the{y, z} plane. This case is particularly
important for us because the tight-binding model describedin
Section III has the same symmetries. The lowest order terms
obeying all these symmetries and time reversal symmetry are
∝ (k2x + k2y) and∝ (k2x − k2y). However, the former one only
depends on|k|, and hence it would not break the continuous
rotational symmetry on its own. For the sake of simplicity, we
consider the special case of

∆
(1)
T,N (k) = δT,N k2x = δT,N |k|2 cos2 θ, (7)

and obtain that the solution of∆T = ∆N is

cos(2 θ) =
2
(

∆
(0)
N −∆

(0)
T

)

|k|2(δT − δN )
− 1. (8)

Now there are 4 Weyl points in the Weyl semimetal phase that
occurs when0 <

(

∆
(0)
N − ∆

(0)
T

)

/
[

|k|2(δT − δN )
]

< 1. If
there is a transition from the NI phase to the TI phase due to
a gradual decrease in∆(0)

T , the Weyl points first appear at the
kx = 0 line, move along the circle of radiusV/vF , and finally

disappear at theky = 0 line. For an illustration of this, see the
bottom half of Fig. 1.

If δT − δN is sufficiently small, the principal directions
around the Weyl points are the axial, the radial, and the tan-
gential directions. Eq. (6) is therefore valid in this case as
well, and the effective Fermi velocities in the principal direc-
tions are given byvz = d

√
∆T∆N = d∆T , vr = vF , and

vt = |k|(δT − δN )| sin(2 θ)|. The approximation of small
δT − δN holds whenvt ≪ vr, i.e. whenV (δT − δN ) ≪ v2F .

III. REALISTIC TIGHT-BINDING MODEL

A. Formulation of the model

In this section, we consider a periodic multilayer structure
of strained HgTe and CdTe layers which are grown on top of
each other in thez direction. This model is in fact a concrete
realization of the superlattice structure described in Section II
because CdTe is a NI and HgTe becomes a TI under strain.11

The band structures of these materials are well known, and can
be reproduced with high accuracy from realistic tight-binding
models. Here we adapt the ten-band tight-binding model de-
scribed in Ref. 12 which assumes twos orbitals (s, s∗) and
threep orbitals (px, py, pz) on each atom.

Both HgTe and CdTe have zinc-blende structures: the an-
ions (Te) form a face-centered cubic lattice, and the cations
(Hg, Cd) are located at the positions14 [1, 1, 1]. This implies
that each anion (cation) is tetrahedrally coordinated by 4 near-
est neighbor cations (anions). We assume that the thicknesses
of the HgTe and CdTe layers areN1 andN2 as measured in
units of the cubic lattice parametera. When cutting through
the structure along thez direction, one finds subsequent lay-
ers of one atomic thickness consisting of only anions and only
cations, respectively. The anionic layers all contain Te, while
there are2N1 cationic layers containing Hg and2N2 cationic
layers containing Cd in each superlattice period.

The atomic orbitals are labeled according to|~R, u, t, σ〉,
where~R is the position of the atomic site,u = {Te,Hg,Cd}
is the type of the atom,t = {s, s∗, px, py, pz} is the type of
the orbital, andσ = {↑, ↓} is the spin quantum number. The
Hamiltonian of the system can be written as

H = H0 +HI +Hso, (9)

where the first term contains the bare energies of the atomic
orbitals, the second term describes the interaction (hopping)
between them, and the third term represents spin-orbit cou-
pling. These terms are

H0 =
∑

~R,t,σ

|~R, u(~R), t, σ〉E
u(~R),t〈~R, u(~R), t, σ|, (10)

HI =
∑

~R,t,σ

∑

~R′,t′

|~R, u(~R), t, σ〉V
u(~R),u(~R′),t,t′〈~R

′, u(~R′), t′, σ|,

Hso =
∑

~R,t,t′σ,σ′

|~R, u(~R), t, σ〉2λ
u(~R)

~L · ~σ〈~R, u(~R), t′, σ′|,
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where the second sum inHI goes over all 4 nearest neighbors
~R′ of the atomic site~R, andu(~R) denotes the type of the atom
at the position~R.

The hopping amplitudesVu,u′,t,t′ between different types
of p orbitals are related to each other by the geometry of the
crystal structure. In particular, they are affected by the uni-
axial strainǫ which is defined as the relative elongation of
the lattice constant in thez direction with respect to those in
the x andy directions. This strain occurs because the sub-
sequent layers of HgTe and CdTe are grown on top of each
other, and there is a slight lattice constant mismatch.13 Since
the lattice constant of CdTe is approximately 0.3% larger than
that of HgTe, and both materials have a Poisson’s ratio≈ 0.5,
we assume that the relationship between the strains in them is
ǫ(CdTe) = ǫ(HgTe) + 0.009. Even if a small strain does not
change the distance between neighboring atoms, the direction
vector connecting them changes, leading to a different overlap
between any two orbitals if at least one of them is ap orbital.
Using simple geometry, the different hopping amplitudes in-
volving p orbitals are then expressed as

Vs,px
= Vs,py

=
1√
3
Vs,p,σ

(

1− ǫ

3

)

, (11)

Vs,pz
=

1√
3
Vs,p,σ

(

1 +
2ǫ

3

)

,

Vpx,px
= Vpy ,py

=
1

3

[

Vp,p,σ

(

1− 2ǫ

3

)

+ 2Vp,p,π

(

1 +
ǫ

3

)

]

,

Vpz ,pz
=

1

3

[

Vp,p,σ

(

1 +
4ǫ

3

)

+ 2Vp,p,π

(

1− 2ǫ

3

)]

,

Vpx,py
=

1

3
(Vp,p,σ − Vp,p,π)

(

1− 2ǫ

3

)

,

Vpx,pz
= Vpy ,pz

=
1

3
(Vp,p,σ − Vp,p,π)

(

1 +
ǫ

3

)

.

Note that the subscriptsu andu′ are suppressed for the sake
of compactness, the labels can stand for boths ands∗, and
all terms are expanded up to first order inǫ.

u Te Hg Cd

Eu,s −9.75 −1.40 −1.42

Eu,p 0.12 4.30 3.48

Eu,s∗ 6.08 6.50 6.67

λu 0.333 0.286 0.013

TABLE I: Bare energiesEu,t and spin-orbit coupling strengthsλu

for different atom types (all numbers are in eV units).

The concrete tight-binding parameters are based on those
in Ref. 12, but they are normalized according to a consistent
procedure. The bare energies of all orbitals in the CdTe model
are first shifted such that the Te orbitals have the same aver-
age energy in HgTe and CdTe. This corresponds to matching
the arbitrary zero energy levels of the independent HgTe and
CdTe tight-binding models. The bare energies of the respec-
tive Te orbitals are then obtained by averaging those in the
normalized HgTe and CdTe models which are already close

to each other at this point. The spin-orbit coupling strength
λTe is averaged in the same way, and the final values of the
tight-binding parameters are presented in Tables I and II.

u/u′ Te/Hg Te/Cd

Vu,u′,s,s −0.817 −1.195

Vu,u′,s,p,σ 1.044 0.753

Vu,u′,p,s,σ −1.404 −2.064

Vu,u′,s∗,p,σ 1.524 0.844

Vu,u′,p,s∗,σ −0.140 −1.147

Vu,u′,p,p,σ 2.180 2.651

Vu,u′,p,p,π −0.549 −0.442

TABLE II: Hopping amplitudes between different atom and orbital
types (all numbers are in eV units).

Table I shows that the normalized bare energies of the Hg
orbitals are on average larger than those of their Cd counter-
parts. The HgTe layers are therefore more positively charged
than the CdTe layers, resulting in a potential difference that
lowers the orbital energies in the HgTe layers. This effect is
taken into account by introducing a periodic potentialU(~r)
which is added to all bare energies at position~r. The potential
depends onz only, and we write it in the form

U(z) = −U0 cos

[

2π

d

(

z − d1
2

+ δ0

)]

, (12)

whered1,2 = aN1,2 are the thicknesses of the HgTe and CdTe
layers, andd = d1+d2 is the periodicity of the superlattice. In
the symmetric case whenδ0 = 0, the potential functionU(z)
reaches its minimum in the middle of the HgTe layer and its
maximum in the middle of the CdTe layer. However, we as-
sume a certain asymmetry inU(z) which is characterized by
the displacementδ0 of these extrema. When the multilayer
is grown under reasonable experimental conditions, such an
asymmetry is inadvertently present due to the specific growth
direction. For example, it is possible that the HgTe and CdTe
materials are more likely to form an alloy at one of their in-
terfaces. Since the resulting asymmetry is probably small,we
take0 < |δ0| < a in the rest of this section. Also, by compar-
ing the bare energies in Table I we estimate that the amplitude
of the potential isU0 ∼ 0.1 eV.

B. Linear four-band approximation

The Hamiltonian presented in Eqs. (9) and (10) can be
solved by exploiting translational invariance and introducing
the corresponding momentum~k = (kx, ky, kz). On the other
hand, the large periodicity in thez direction means that the
Hamiltonian is represented by a largeM × M matrix where
M = 40(N1 + N2). It can therefore only be solved numeri-
cally, and for relatively small layer thicknessesN1,2.

However, despite the complexity in this model, some of its
properties can be deduced by referring to symmetry only. In
the case ofU0 6= 0 andδ0 6= 0, the basic symmetries of the
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system are time reversal symmetry (T) and the reflection sym-
metries (R1,2) across the{y′, z} and the{x′, z} planes. The
natural coordinatesx′ = (x+y)/

√
2 andy′ = (x−y)/

√
2 are

introduced to make these symmetries more explicit. Note that
the reflection symmetriesR1,2 also lead to a two-fold rota-
tional symmetry (S) around thez axis. In terms of symmetry,
the tight-binding model studied in this section is equivalent to
the superlattice model in Section II D.

The presence of bothT andS symmetries puts two cru-
cial restrictions on the band structure. First, the states on the
kx′ = ky′ = 0 line are two-fold degenerate. Since the num-
ber of occupied bands is always even, the highest occupied
band (HOB) and the lowest unoccupied band (LUB) have dif-
ferent energies on this line with the Fermi level lying between
them. Second, the band structure is invariant under the reflec-
tion kz ↔ −kz. As shown in Section III C, this implies that
robust band touching between the HOB and the LUB is only
possible in thekz = 0 and thekz = π/d planes.

Numerical investigation of the model indicates that band
touching between the HOB and the LUB always occurs close
to thekx′ = ky′ = 0 line. In perspective of this and the
symmetry considerations above, we introduce simplified four-
band models around the two special points at~k = (0, 0, 0) and
~k = (0, 0, π/d). We only keep the nearest two bands on each
side of the Fermi level, and assume that they are linear in the
relative momentumδ~k = (kx′ , ky′ , δkz) with respect to the
corresponding special point. More formally, we project the
HamiltonianH onto a subspace spanned by four basis states:
the appropriate eigenvectors of the full model atδ~k = 0. The
reduced HamiltonianH is then a4 × 4 diagonal matrix at
δ~k = 0, and the linearity of the band dispersion is achieved
by additional terms that are linear inδ~k.

At the special point, the reduced Hamiltonian can be written
asH0 = E(1)τ (1) +E(2)τ (2) whereτ (1,2) = (1± τz)/2 and
E(1,2) are the energies of the LUB and the HOB atδ~k = 0.
The energy levels are pairwise degenerate, and this degener-
acy is split by a finitekx′ orky′ but not by a finiteδkz . To rep-
resent this splitting, we need to add coupling terms between
states corresponding to the same energy atδ~k = 0. In the most
general case, the additional terms in the Hamiltonian read

HS =

2
∑

l=1

τ (l)
[

α(l)
x kx′σx + α(l)

y ky′σy
]

, (13)

where the coefficientsα(1,2)
x,y can be obtained from a compari-

son with the full model. The choice of the Pauli matricesσx,y

corresponds to defining the basis states within the degenerate
subspaces ofH0 in a particular way.

There is also coupling between states corresponding to dif-
ferent energies atδ~k = 0. Since the HamiltonianH must be
invariant under all symmetry operations of the system, there
are only a small number of such coupling terms allowed by
symmetry. The parities of the possible terms under the sym-
metry operations are summarized in Table III. Note that the
parities ofτz andσx,y are determined by the already estab-
lished termsH0 andHS which must be even under all sym-
metry operations. Furthermore, the relations between differ-

T R1 R2 S

kx′ − − + −

ky′ − + − −

δkz − + + +

σx − − + −

σy − + − −

σz − − − +

τx + − − +

τy − − − +

τ z + + + +

TABLE III: Potential terms in the Hamiltonian and their parities un-
der the symmetry operations of the system: time reversal (T), reflec-
tion across the{y′, z} plane (R1), reflection across the{x′, z} plane
(R2), and two-fold rotation around thez axis (S).

ent Pauli matrices imply that we only need to choose the par-
ities of τx underT andR1,2. The choice of these parities
corresponds to setting the relative complex phases of the ba-
sis states. Under the choice presented in Table III, the most
general contribution to the Hamiltonian takes the form

HD = τx [βxky′σx + βykx′σy + βzδkzσ
z] , (14)

where the coefficientsβx,y,z are again to be determined from
a comparison with the full model. The reduced Hamiltonian
finally readsH = H0+HS+HD. It is a considerable simpli-
fication with respect toH , and it only contains 9 parameters
that need to be extracted from the full model.

C. Conditions for robust band touching

Band touching between the HOB and the LUB occurs in the
full model when the two middle eigenvalues are equal in the
simplified model. It can be shown that for a4×4 matrix of the
formH, this is possible if and only if the direction of the vec-
tor ~B = (βxky′ , βykx′ , βzδkz) lies halfway between the di-

rections of the vectors~A(1,2) = (α
(1,2)
x kx′ , α

(1,2)
y ky′ , 0). The

two bands then cross each other as|δ~k| is increased without
changing the direction ofδ~k, whereas anti-crossing happens
otherwise. Since the above condition requires the three vec-
tors to lie in the same plane, the third component of~B has to
vanish. Due toβz 6= 0 in general, we find that robust band
touching can only occur in theδkz = 0 plane.

Restricting our attention to this plane simplifies the problem
because~A(1,2) and ~B become 2D vectors. If we change the
ratio ky′/kx′ gradually from0 to ∞, the ratios of the corre-
sponding components in~A(1,2) change in the same direction,
while those in~B change in the opposite direction between0
and±∞. This means that whether band touching happens at
anyδ~k is determined entirely by the signs of the different pa-
rameters. Since we always chooseα

(1,2)
x,y > 0, the condition

becomes straightforward: band touching occurs if and only if
βx andβy have the same sign.
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Let us now consider the special case of the symmetric po-
tential with δ0 = 0. By repeating the symmetry considera-
tions in Section III B and taking into account the additional
four-fold roto-reflection symmetry around thez axis, we find
that the parameters from the full model are no longer indepen-
dent becauseα(1,2)

x = α
(1,2)
y andβx = −βy. This shows that

band touching can only occur in this scenario if at least one of
these parameters vanishes. However, the corresponding band
touching is not robust because it requires the fine-tuning of
a parameter. We conclude that robust band touching requires
the asymmetry characterized byδ0 6= 0, and expect that it
becomes easier to observe asU0 andδ0 increase.

D. The Weyl semimetal phase

The detailed behavior of the system is determined by how
the coefficients from the full model depend on the external pa-
rameters. Since this dependence is affected by the complexity
of the full model, its understanding requires a numerical treat-
ment. In perspective of this, we numerically investigate the
phenomenon of robust band touching in the function of the
layer thicknessesN1,2, the strainǫ0 ≡ ǫ(HgTe) in the multi-
layer structure, the amplitudeU0 of the superlattice potential,
and the asymmetric displacementδ0.

We first consider the dependence on the strain. IfU0 6= 0
andδ0 6= 0, there are two ranges inǫ0 close to zero with band
touching in thekz = 0 and thekz = π/d planes, respectively.
The corresponding band touching is robust because it remains
intact for an infinitesimal change in any of the external param-
etersǫ0, U0, andδ0. The upper and lower limits of the ranges
are functions ofU0 andδ0 as illustrated in Fig. 2, and we ver-
ify the expectation from Section III C that the ranges increase
with bothU0 andδ0. For the reasonable values ofU0 ∼ 0.1
eV andδ0 ∼ a/2, the ranges are∆ǫ0 ∼ 0.002.

0.0 0.1 0.2

0.05

0.06

0.07

0.0 0.5 1.0

0.05
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0.07
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TI
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WS
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TI

WI

WS

WS

U0�eV

Ε0

∆ �a0

Ε0

FIG. 2: Critical strainsǫ0 againstU0 at constantδ0 = a/2 (left) and
againstδ0 at constantU0 = 0.1 eV (right). The phase boundaries
separate four distinct phases: the normal insulator (NI), the strong
(3D) topological insulator (TI), the weak (2D) topologicalinsulator
(WI), and the Weyl semimetal (WS). The layer thicknesses arecon-
stantN1 = 3 andN2 = 4 in both subfigures.

Now we turn our attention to the layer thicknesses. Keep-
ing the HgTe thicknessN1 = 3 constant and varying the CdTe
thicknessN2 between4 and8 reveals that an increase inN2

decreases∆ǫ0. This is intuitive becauseδ0 becomes smaller
in comparison tod. Keeping the CdTe thicknessN2 = 4
constant and varying the HgTe thicknessN1 between3 and
7 shows that an increase inN1 shifts the ranges inǫ0 down-
wards. This means that the phases with robust band touching
appear at more negative strains.

To conclude that these phases are indeed Weyl semimetals,
they need to satisfy one more condition: the lack of band over-
lap. Even if there is robust band touching between the HOB
and the LUB, the band structure becomes metallic if the high-
est overall energy of the HOB is larger than the lowest overall
energy of the LUB. It is an empirical observation that the indi-
vidual band structures of thekz = 0 and thekz = π/d planes
are metallic whenǫ0 is sufficiently negative. This occurs for
all ǫ0 < 0 in the limit of U0 → 0 or δ0 → 0, while the crit-
ical ǫ0 becomes slightly negative at larger values ofU0 and
δ0. Furthermore, the appropriate bands of thekz = 0 and the
kz = π/d planes can overlap with each other as well. Since
the band touching energies are different in the two planes, this
typically occurs when there is band touching in one of the
planes and almost band touching in the other one.

We are now in the position to discuss the other phases
around the Weyl semimetals. The overall transition between
the two bulk phases at small and large values ofǫ0 is a
2D topological phase transition because it happens via band
touching around both special points on thekz axis. This
means that the bulk phases on the two sides of this transi-
tion do not have a 3D topological character: we identify them
as the NI phase and the weak (2D) topological insulator (WI)
phase. Since the spin-orbit coupling is stronger in HgTe than
in CdTe, we argue that the system is in the NI phase when

4 5 6

0.00

0.01

0.02

NI

TI WI

WS WS

M M
N1

Ε0

FIG. 3: Phase diagram of the system against the strainǫ0 and the
HgTe thicknessN1. The other parameters are constant:U0 = 0.2
eV, δ0 = a/2, andN2 = 4. The phase boundaries separate five
distinct phases: the normal insulator (NI), the strong (3D)topological
insulator (TI), the weak (2D) topological insulator (WI), the band
overlap metal (M), and the Weyl semimetal (WS). The dashed lines
indicate approximate phase boundaries.
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the HgTe layers are thin and in the WI phase when the HgTe
layers are thick.4 On the other hand, the phase between the
Weyl semimetals is related to each bulk phase by a topologi-
cal phase transition that has a 3D character because it happens
via band touching around only one special point. We con-
clude that this phase in the middle is the TI phase. Note that
the NI and the WI phases are equivalent in terms of their 3D
topology, therefore there is no need to distinguish betweenthe
two Weyl semimetals: they are intermediates in two equiva-
lent phase transitions.

The phase diagram of the system against the strainǫ0 and
the HgTe thicknessN1 is presented in Fig. 3. Since its bound-
aries are interpolated from only 5 points corresponding to in-
teger values ofN1, the phase diagram is only correct on the
qualitative level. Nevertheless, it provides useful guidelines
for the realization of the Weyl semimetal phase in this multi-
layer structure. The strainǫ0 has to be positive to avoid band
overlap but not too large because that would be hard to achieve
experimentally. This gives a restriction on the thickness of the
HgTe layers: the ideal dimensionless thickness of4 ≤ N1 ≤ 6
corresponds to an actual thickness ofd1 ∼ 3 nm, which is on
the border of experimental reasonability.

E. Connection with the superlattice model

To illustrate the relationship with the results obtained in
Section II, we discuss the arrangement of the Weyl points in
the Weyl semimetal phase. There are 4 Weyl points that are
related to each other by the symmetries of the system. Asǫ0 is
gradually increased, and the transition from the NI (TI) phase
to the TI (WI) phase happens through a Weyl semimetal, the
Weyl points first appear at thekx′ = 0 line, move on approx-
imately circular curves, and finally disappear at theky′ = 0
line. This is in perfect agreement with the corresponding ar-
rangement for the superlattice model in Section II D. Indeed,
the two models presented in Sections II D and III A obey the
same symmetries, therefore it is understandable that theirlow-
energy features are equivalent.

The comparison of the band structures in Sections II A and
III B also makes it possible to estimate reasonable values for
the superlattice parameters in Eq. (1). The inversion-breaking
voltageV corresponds to the energy differenceE(1) − E(2)

between the HOB and the LUB, which is typically about
0.05 eV in the tight-binding model. The Fermi velocity
of the surface states becomesvF ∼ α

(1,2)
x,y ∼ 106 ms−1,

and the hopping amplitudes are estimated from the typical
energy scale along thekz axis: ∆T,N ∼ 10−3 eV. The
small magnitude of∆T,N indicates that the band structure is
relatively flat in thekz direction. Sincevr = vF ∼ 106 ms−1,
andd ∼ 10 nm givesvz = d

√
∆T∆N ∼ 104 ms−1, this

results in the relationvz ≪ vr between the effective Fermi
velocities around the Weyl points. Note that the energy scale
∆T,N also translates into a maximal temperatureT ∼ 10 K at
which the Weyl semimetal phase is experimentally observable
in this multilayer structure.

IV. PHYSICAL CHARACTERISTICS

A. Conductivity anisotropy

It was shown in Ref. 8 that the Weyl semimetal phase is
metallic: when impurities are present, its conductivity isa fi-
nite constant in the limit of zero temperature. Using the Boltz-
mann equation, one finds a conductivityσ = e2v2/6πγ for
each Weyl point, wherev is the effective Fermi velocity and
γ is the strength of the impurity potential. This finite con-
ductivity is a characteristic experimental feature, especially in
contrast with the neighboring NI and TI phases. In this sub-
section, we demonstrate that the finite conductivity atT → 0
becomes highly anisotropic when the Weyl semimetal phase
occurs due to broken inversion symmetry.

0.0 1.0

0.0

1.0

NI TIWS

Μ

Σ � Σ0
ΣxxΣyy

FIG. 4: (Color online) Variation in the principal conductivities σxx

(red solid line) andσyy (blue dashed line) during a transition between
the normal insulator (NI) and the topological insulator (TI) phases
through the Weyl semimetal phase (WS). The transition parameter is
µ = v2F (∆

(0)
N − ∆

(0)
T )/[V 2(δT − δN)] and the conductivities are

measured in units ofσ0 = 2e2v2F /3πγ.

To achieve this, we consider the model in Section II D, and
derive an expression for the conductivity tensor in the limit of
small δT − δN . When the condition of the Weyl semimetal
phase is satisfied, there are 4 Weyl points at anglesθ1 = θ,
θ2 = −θ, θ3 = π+ θ, andθ4 = π− θ. Due to the convention
0 ≤ θ ≤ π/2 we find thatθ gradually decreases fromπ/2 to
0 during a transition from the NI phase to the TI phase. For
each Weyl point labeled byl, the conductivity tensor in the
(x, y, z) basis takes the form8

σl =
e2

6πγ







v2r cos
2 θl v2r cos θl sin θl 0

v2r cos θl sin θl v2r sin
2 θl 0

0 0 v2z






, (15)

where we exploitvt ≪ vr relating the effective Fermi veloci-
ties. Adding the contributions of all 4 Weyl points, there isa
cancelation in the off-diagonal terms, and we obtain

σ =

4
∑

l=1

σl =
2e2

3πγ







v2r cos
2 θ 0 0

0 v2r sin
2 θ 0

0 0 v2z






. (16)

As the transition between the NI and the TI phases takes place
through the Weyl semimetal phase, the conductivities in the
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x and y directions change in a complementary fashion. In
particular,σxx vanishes on the NI side andσyy vanishes on the
TI side of the Weyl semimetal phase. For an illustration, see
Fig. 4. The conductivity in thez direction is approximately
constant withσzz ≪ σxx, σyy due tovz ≪ vr. Such a strong
conductivity anisotropy that depends sensitively on the system
parameters is a potential hallmark of a Weyl semimetal with
broken inversion symmetry.

B. Topological surface states

Since Weyl semimetals are topological phases of matter,
they are characterized by topological surface states.8 In this
subsection, we consider the model in Section II D, and demon-
strate the existence of these surface states. Although we
choose a specific situation and also make a couple of simpli-
fying assumptions in the following, the topological natureof
the surface states ensures that they exist under more generic
circumstances as well.

In our specific situation, the interface is in the{x, z} plane,
therefore any spatial variation is in they direction only. This
implies thatkx andkz are still valid quantum numbers. Since
∆T,N in Eq. (7) do not depend onky , we can determine
the surface states without taking the explicitk dependence
into account, and then simply substitute the appropriate val-
ues∆T,N for eachkx. It is assumed that only∆T changes
with y and the other parameters are constant:∆T < ∆N at
y → −∞, ∆T = ∆N at y = 0, and∆T > ∆N at y → +∞.
Furthermore, if∆T changes sufficiently slowly, we can ap-
proximate it with a linear function in the important region
aroundy = 0: we write∆T − ∆N = Ky. Expanding the
kz dependent terms up to first order ink′z ≡ kz − π/d, we
find that the surface states|Ψ〉 with energyE need to satisfy

E|Ψ〉 =

[

vF τ
z(−iσx∂y − σykx) + V τz

+ Ky τx + k′zd∆N τy
]

|Ψ〉, (17)

along with|Ψ〉 → 0 in the limits ofy → ±∞. To make the
subsequent discussion of the surface states more transparent,
we introduce the dimensionless form

Ẽ|Ψ〉 =
[

τz(−iσx∂ỹ − σyκx) + Ṽ τz + ỹ τx + κzτ
y
]

|Ψ〉,
(18)

where the variables̃y = y
√

K/vF , Ẽ = E/Λ, Ṽ = V/Λ,
κx = vF kx/Λ, andκz = k′zd∆N/Λ are all dimensionless,
whileΛ =

√
KvF is a characteristic energy scale.

As a starting point in our discussion, we consider the limit
of Ṽ = 0. In this case, there are two distinct surface state
solutions for eachκx andκz that take the analytic form

|Ψ〉 =
(

i,∓ieiϕ,∓eiϕ, 1
)

exp

(

− ỹ2

2

)

(19)

in the (T↑, T↓, B↑, B↓) basis, wheretanϕ = κx/κz and
the letters T/B stand for the top/bottom surfaces. The corre-

sponding dimensionless energiesẼ = ±
√

κ2
x + κ2

z are in-
dicative of surface states with Dirac dispersion between NI
and TI phases of matter. In the more relevant case ofṼ 6= 0,
these analytic solutions only find straightforward generaliza-
tions forκx = 0 when

|Ψ〉 = (i,∓i,∓1, 1) exp

(

− ỹ2

2
± iṼ ỹ

)

(20)

and the dimensionless energies areẼ = ±κz. Note that these
surface states decay in an oscillating fashion aty → ±∞, and
the wave vectorky = ±V/vF of the oscillations corresponds
to the radius of the circle in thekz = π/d plane along which
band touching occurs in Section II.

In the most generic case of̃V 6= 0 andκx 6= 0, we solve
Eq. (18) numerically and find that there are still two distinct
surface states|Ψ〉 for eachκx andκz. The ratios of the vec-
tor components in|Ψ〉 are no longer independent ofỹ, which
explains why simple analytic solutions like those in Eqs. (19)
and (20) can not be obtained. We verify that the surface states
follow a Dirac dispersion at small momentaκx,z ≪ 1, even
when the dimensionless voltagẽV is large. However, the ef-
fective Fermi velocity in theκx direction is reduced by a fac-
tor that is empirically found to beexp(−Ṽ 2), and hence the
dispersion relation at smallκx,z becomes

Ẽ = ±
√

κ2
x exp(−2Ṽ 2) + κ2

z. (21)

Unlike in theκz direction where the analytic solution guaran-
tees the linearity of the dispersion for allκz , there is a devi-
ation from the linear dispersion in theκx direction. As illus-
trated in Fig. 5, the Dirac dispersion in Eq. (21) is only valid
for small enoughκx.

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

Κx

E
~

FIG. 5: Dimensionless energies of the surface states in the function
of the momentumκx whenκz = 0 andṼ = 1. The dashed lines are
linear asymptotes given by Eq. (21) in theκx ≪ 1 limit.

If we now restore thek dependence of∆T,N , the surface
states|Ψ〉 remain the same for eachkx. However, they only
exist at thosekx for which the difference∆T −∆N changes
sign betweeny → ±∞. Assuming without loss of generality
that δT > δN in Eq. (7) and that∆(0)

T − ∆
(0)
N does change

sign, we find that∆T > ∆N for all kx at y → +∞, while
∆T < ∆N is only true aty → −∞ for |kx| < k0. The critical
momentumk0 marks the equality∆T = ∆N at y → −∞,
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which is one of the conditions required for band touching in
Section II. While the material aty > 0 is definitely in the
NI phase, the material aty < 0 is in the Weyl semimetal
phase ifk0 < V/vF so that band touching occurs, and it is
in the TI phase ifk0 > V/vF so that band touching does not
occur. In the former case, surface states exist between the
coordinateskx = ±k0 of the Weyl points. As the Weyl points
first appear at thekx = 0 line, and then start to move further
away from it, the range inkx increases and more surface states
appear. Remarkably, this range characterized byk0 further
grows when the material aty < 0 is already in the TI phase,
and there is no band touching at all.

V. SUMMARY

We proposed a time reversal invariant realization of the
Weyl semimetal phase that occurs due to broken inversion
symmetry. We considered both a superlattice model adapted
from Ref. 8 and a tight-binding model describing an experi-
mentally reasonable HgTe/CdTe multilayer structure. The su-
perlattice model was suitable for analytic calculations due to
its simplicity, while the more realistic tight-binding model re-
quired a numerical treatment.

Although the formulations of the two models are very
different, their identical symmetries lead to equivalent low-
energy features. It should be remarked that, as seen from
the generality of the superlattice model, the Weyl semimetal
could be achieved in many possible material structures.
Exploration of potential compounds other than HgTe/CdTe
would be extremely interesting, especially given the need to
tune strain in the latter to observe the desired physics.

For both models considered, we found a Weyl semimetal
phase between the NI and the TI phases. This phase is char-
acterized by a finite number of Weyl points with robust band
touching at the Fermi level: the band touching occurs for a
finite range of the system parameters, and hence it can not be
removed by an infinitesimal perturbation. We further verified
that the band touching points are proper Weyl points with a
linear dispersion relation around them.

In terms of experimental observation, the potential hall-
marks of the Weyl semimetal phase with broken inversion
symmetry are a strong conductivity anisotropy and the pres-
ence of topological surface states. The low temperature and
frequency bulk transport is highly unconventional, and will
be discussed in a future publication.14 The Dirac dispersion
relation of the surface states is indicative of TI materials,
but these surface states only exist in a region of momentum
space that is determined by the positions of the Weyl points.
The Weyl semimetal phase between the NI and the TI phases
described in this paper is therefore qualitatively new in terms
of its topological surface states as well.
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